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Abstract: The hot deformation behavior of a nitrogen-bearing martensitic stainless steel was researched
by the isothermal compression test in the temperature range of 950–1150 ◦C and strain rate range
of 0.01–10 s−1 with a Gleeble-3800 thermal-mechanical simulating tester. A strain compensated
sine-hyperbolic Arrhenius-type constitutive equation was developed to describe the relationship
between true stress and deformation parameters such as temperature, strain rate and true strain.
The hot deformation activation energy is calculated to be from 407 to 487 KJ mol−1. It is validated
by the standard statistical parameters that the established constitutive equation can accurately
predict the true stress. The processing maps at different true strains were constructed based on
the dynamic material model (DMM) and the true stress data obtained from the hot compression
tests. Two unstable regions which should be avoided during hot working were observed from
the processing map. In addition, the optimum hot working parameters are located in the domain
of 1000–1150 ◦C/0.1–1 s−1 with the peak power dissipation efficiency of 39.9%, in which complete
dynamic recrystallization (DRX) occurs.

Keywords: hot deformation behavior; nitrogen-bearing martensitic stainless steel; constitutive equation;
processing map

1. Introduction

Martensitic stainless steels (MSSs) generally possess high hardness and appropriate corrosion
resistance, so they are widely applied to machine parts in contact with seawater, bearings used in
aerospace, knives and scissors for food contact, medical equipment, etc. [1]. The two most important
alloying elements of the conventional MSSs are chromium and carbon, where chromium makes steel
stainless while carbon imparts solid solution strengthening. However, as chromium has a strong
affinity for carbon, coarse carbides such as M7C3 or M23C6 can easily form during the manufacturing
process of MSSs. These large chromium carbides not only reduce toughness and fatigue life, but also
deteriorate localized corrosion resistance and thus pose a potential risk for people’s health [2–4].
In order to resolve these problems, nitrogen as an important alloying element has been applied to
MSSs. Nitrogen is conventionally used in austenitic and duplex stainless steels for its relatively high
solubility in these steels. The addition of nitrogen can significantly improve the corrosion resistance
and mechanical properties of these steels [5,6]. However, due to the limited solubility of nitrogen in
MSSs, it is very difficult to manufacture nitrogen-bearing MSSs under ambient pressure. There are
several approaches to solve this problem, such as alloying with elements (e.g., Cr, Mo and Mn, etc.)
which can increase the solubility of nitrogen, employing pressurized metallurgy, powder metallurgy
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and surface nitriding etc. [7]. With the development of these techniques, many nitrogen-bearing
MSSs and high nitrogen MSSs have been developed [8–10]. The addition of nitrogen into MSSs
can inhibit the austenite grain growth, refine chromium carbides, fend off δ-ferrite, avoid eutectic
carbides and impart solid solution, thus can increase toughness, fatigue life and corrosion resistance
of MSSs [11–13]. In recent years, a new nitrogen-bearing martensitic stainless steel modified from
SUS420J1 was developed. Compared with the conventional SUS420J1 MSS, the modified steel has a
lower carbon content and a higher nitrogen content which makes it possess lower metal release rate
and comparable quenching hardness with SUS420J1. Therefore, the new developed steel is widely
used to replace SUS420J1 to make knives and scissors for food contact.

In the past few years, research into this nitrogen-bearing martensitic stainless steel were mainly
focused on its cold rolling and heat treatment processes [14,15]. However, little work has been done
on the investigation of the hot working process of this steel. Hot working such as forging and hot
rolling is a very important process during the manufacturing of nitrogen-bearing martensitic stainless
steels. Through the study of the hot deformation behavior, the appropriate hot working window can
be achieved, thus the optimum microstructure and properties can be attained and the forming defects
can be avoided. Therefore, it is of great importance to research the hot deformation behavior of the
modified steel. For its accuracy and practicability, the Arrhenius-type constitutive equation, which is
a phenomenological constitutive model, has been widely used to describe the correlation between
true stress and hot working parameters such as strain rate, temperature and true strain for many
different alloys and metals [16,17]. This equation can also be inputted into computer code to model the
material’s response to specific hot working conditions. Moreover, a processing map (PM), proposed by
Prasad et al. and based on DMM, is a convenient and powerful tool to optimize the process parameters
and evaluate the deformation mechanisms during the hot deformation process [18]. This technique
has been successfully adopted in many metals, such as alloys of magnesium, titanium, nickel-based
alloys and steels [19–21]. In recent years, many researchers have studied the hot deformation behavior
of stainless steels including AISI 304, AISI 410, AISI 420, etc., [22–24] by using PM technology based on
a hot compression test. Through this research, the optimized hot working parameters, hot deformation
mechanisms and the unstable flow regions of these alloys were determined.

The aim of the present paper is to investigate the hot deformation behavior of the nitrogen-bearing
martensitic stainless steel. The strain-compensated Arrhenius-type constitutive equations which
are used to model the true stress under different hot deformation conditions were established and
examined. In addition, the processing maps at different true strains were also constructed, and the
optimum hot working parameters and the unstable flow regions were determined according to the
processing maps and microstructure observation.

2. Materials and Methods

The material used in this study was the nitrogen-bearing martensitic stainless steel with the
chemical composition (wt%) of 0.14C, 0.42Si, 0.57Mn, 0.017P, 0.001S, 13.64Cr, 0.078N and the balance Fe.
The phase diagram of the experimental steel calculated by Thermo-Calc software (5.0.1.58, Thermo-Calc
Software, Solna, Sweden) is shown in Figure 1. It can be seen that the A3 point of the experimental
steel was about 925 ◦C, and the single austenite phase region was in the temperature range of
925–1216 ◦C. The experimental steel was melted by argon oxygen decarburization (AOD) furnace and
ladle furnace (LF), after which the slab was hot rolled in the temperature range of 1100–1200 ◦C into
a plate with the thickness of 33 mm. The plate was machined into the cylindrical hot compression
specimens with the diameter of 10 mm and the height of 15 mm. A Gleeble-3800 thermal-mechanical
simulating tester (Dynamic Systems Inc., El Segundo, CA, USA) was used for the hot compression
test. To minimize the friction during compression, graphite foils with the thickness of 0.25 mm
were positioned between the specimens and anvils. As can be seen in Figure 2, specimens were
first reheated to 1200 ◦C at the heating rate of 20 ◦C/s and held for 180 s to obtain a homogeneous
initial microstructure. As indicated in Figure 3, the microstructure, after soaking at 1200 ◦C for 180 s,
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was composed of uniform equiaxed grains with a mean grain size of 28 µm. After that the specimens
were cooled to deformation temperature at a cooling rate of 10 ◦C/s and held for 60 s to eliminate the
temperature gradient. The compression tests were performed at deformation temperatures between
950–1150 ◦C with intervals of 50 ◦C and strain rates ranging from 0.01 to 10 s−1 with intervals of
an order of magnitude. A total true strain of 0.8 was applied for the isothermal compression tests.
After hot compression, the specimens were immediately quenched into water to preserve the hot
deformed microstructures.

The deformed specimens were cut open from the compression axis and the metallographic
observation surfaces were prepared by standard mechanical grinding and polishing procedures.
The polished surfaces were etched by the solution composed of supersaturated picric acid together
with a few drops of hydrochloric acid and observed with an optical microscope (Leica DM4000 M LED,
Leica Microsystems Inc., Wetzlar, Germany) at the center of the section. The grain sizes were measured
by the linear intercept method regulated in the standard of ASTM: E 112–12. The fine structures
of the deformed specimens were further observed by a JEM-2100 transmission electron microscope
(JEOL, Tokyo, Japan) operated at 200 kV. Thin foils used for transmission electron microscopy (TEM)
examination were prepared firstly by grinding to a thickness of 0.05 mm, then thinned using a twin-jet
technique in an electrolyte solution consisted of 6% perchloric acid and 94% ethanol, during which the
electrolyte solution was maintained at the temperature of −30 ◦C.
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3. Results and Discussion

3.1. Flow Curves

The typical true stress−true strain curves of the experimental steel under different hot deformation
conditions are shown in Figure 4. It can be seen that deformation temperature and strain rate had a
significant effect on true stress and hot deformation behavior. True stress increased with increasing
strain rate (Figure 4a) under a given deformation temperature, while it decreased with increasing
deformation temperature at a given strain rate (Figure 4b). This is because the higher temperature
increases the vacancy diffusion rate, the mobility of dislocation and grain boundary which are beneficial
for the nucleation and growth of DRX grains, and the lower strain rate can provide a longer time for
energy accumulation thus reducing the true stress [25]. According to Figure 4, the shape of the true
stress curves can be roughly divided into two groups: (1) at the lower strain rates (less than 1 s−1),
true stress increased to a peak at small strain, after which it continuously decreased, which indicated
the occurrence of DRX [26]; (2) at the strain rates no less than 1 s−1, true stress increased rapidly at the
initial deformation stage and then gradually reached a steady state without any notable peak stress,
which was a result of the dynamic recovery (DRV) mechanism. The reason for this is that under the
higher strain rates, not enough time is provided for the movement of grain boundaries and dislocations,
therefore inhibiting the completion of nucleation and the growth of DRX grains.
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3.2. Constitutive Equation

3.2.1. Calculation of the Material Constants

Constitutive equations are generally used to describe the relationship between true stress and
hot deformation conditions such as deformation temperature and strain rate. The Arrhenius-type
constitutive equation is one of them which has been widely used for high temperature deformation
because of its high accuracy [27,28]. In addition, the Zener−Hollomon parameter, which refers to
the temperature-compensated strain rate, can also be applied to express the effect of deformation
temperature and strain rate on the hot deformation behavior [29]. The following Equations are applied
to calculate the material constants and hot deformation activation energy of the experimental steel in
this paper:

.
ε = A1σ

n1 exp (−
Q

RT
) (ασ < 0.8) (1)

.
ε = A2 exp (βσ) exp (−

Q
RT

) (ασ > 1.2) (2)

.
ε = A[sin h(ασ)]n exp (−

Q
RT

) (forallσ) (3)

Z =
.
ε exp (

Q
RT

) (4)

where T is the deformation temperature (K),
.
ε is the strain rate (s−1), σ is the true stress (MPa), R is

the universal gas constant (8.314 J·mol−1
·K−1), Q is the hot deformation activation energy (KJ·mol−1),

A1, n1, A2, β, A, α and n are the material constants, and α = β/n1, Z is the Zener−Hollomon parameter.
According to previous research [30,31], the power law expression of true stress in Equation (1) is
generally used for the low stress level, conversely the exponential law in Equation (2) is preferred for
the high stress level, while the hyperbolic sine law in Equation (3) is suitable for all the stress levels.
In the present study, the hyperbolic sine law in Equation (3) is applied for the description of the hot
deformation behavior of the experimental material.

To calculate the material constants and hot deformation activation energy, the characteristic
stresses such as peak stress, steady stress or the stress at a certain strain can be used [32]. As can be seen
in Equations (1)–(4), the effect of deformation strain on true stress is not taken into account. However,
the material constants in the constitutive equations and the true stress are also influenced by true
strain [27,33], so the stress corresponding to a given true strain is adopted in this paper to determine the
material constants. As an example, the stresses at the true strain of 0.2 under different strain rates and
deformation temperatures are substituted into Equations (1)–(4) to establish the constitutive equation.

For the low stress level and high stress level, taking natural logarithm on both sides of
Equations (1) and (2), the following equations can be yielded:

ln
.
ε = ln A1 + n1 ln σ− (

Q
RT

) (5)

ln
.
ε = ln A2 + βσ− (

Q
RT

) (6)

According to Equations (5) and (6), it can be seen that n1 = ∂ln
.
ε/∂lnσ and β = ∂ln

.
ε/∂σ. Substituting

the true stresses and strain rates at the true strain of 0.2 under different deformation temperatures
into Equations (5) and (6), the plots of lnσ-ln

.
ε and σ-ln

.
ε can be drawn respectively (Figure 5a,b).

The lines which linear fitted in these plots are almost parallel with each other, which suggests that the
temperature has a little effect on the correlation between strain rate and true stress. Therefore, the mean
values of the slopes of these lines can be taken as the values of n1 and β, which are calculated to be
8.765 and 0.080 MPa−1, respectively, and the value of the material constant α = β/n1 = 0.009147 MPa−1.
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For all the stress levels (including low stress level and high stress level), taking natural logarithm
on both sides of Equation (3), gives:

ln
.
ε = ln A + n ln[sinh(ασ)] − (

Q
RT

) (7)

at a given deformation temperature, n can be obtained by differentiating Equation (7) as follows:

n =

{
∂ ln

.
ε

∂ ln[sin h(ασ)]

}∣∣∣∣∣∣
T

(8)

and for a given strain rate, the hot deformation activation energy Q can be calculated by differentiating
Equation (7) as follows:

Q =

nR∂ ln[sin h(ασ)]

∂( 1
T )


∣∣∣∣∣∣∣ .
ε

(9)

According to Equations (8) and (9), the correlations of ln[sinh(ασ)]–ln
.
ε and 1/T–ln[sinh(ασ)] can

be plotted, as shown in Figure 6a,b, respectively. The value of material constant n which is calculated
from the mean slopes of the regression straight lines of ln[sinh(ασ)]–ln

.
ε is 6.471. Similarly, according to

the value of material constant n and the mean slopes of regression straight lines of 1/T-ln[sinh(ασ)],
the value of Q can be computed as 453 kJ mol−1. Based on Equations (3) and (4), lnA can be determined
by the interception of the linear regression straight line of ln[sinh(ασ)]–lnZ (Figure 6c) which is 39.16,
then the material constant A is 1.016 × 1017.
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3.2.2. Strain Compensation and Constitutive Equation

As aforementioned, the hot deformation activation energy, material constants and true stress are
significantly affected by true strain. Therefore, in order to predict the true stress more accurately, it is
necessary to compensate the constitutive equations with true strain. In this study, the hot deformation
activation energy and material constants under different true strains between 0.05 to 0.8 with an
interval of 0.05 were calculated by the method mentioned above. The relationships between these
constitutive equation parameters and true strain are plotted in Figure 7. As Figure 7 shows, the values
of n and Q decrease with the increase of true strain. The decreasing trend of the value of n indicates that
the hot workability of the tested steel becomes better when true strain increases [34]. The decreasing
trend of the value of Q suggests that it is difficult for the material to deform at the lower true strains,
however, with the increase of true strain, the softening mechanisms (such as DRV or DRX) begin
to occur [35]. The calculated values of Q for different true strains are between 407 to 487 KJ mol−1,
the average value of which is 442 KJ mol−1. This value is similar to that of other 13% Cr MSSs, such as
AISI 420 (362–435 KJ mol−1) and AISI 410S (413 KJ mol−1), and austenitic stainless steels such as AISI
304 (380 KJ mol−1) [36–38], etc.
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The sixth order polynomials were employed to fit the relationships of these material constants and
true strain and the fitting results are shown in Equations (10)–(13), the parameters in these equations are
listed in Table 1. According to Equations (3) and (4), the true stress can be expressed by a function of the
Zener−Hollomon parameter at a given true strain (ε), this function is shown in Equation (14). Then the
material constants at a certain true strain determined by Equations (10)–(13) can be substituted into
Equation (14) and the true stress under a given true strain can be determined.

α = B0 + B1ε + B2ε
2 + B3ε

3 + B4ε
4 + B5ε

5 + B6ε
6 (10)

n = C0 + C1ε + C2ε
2 + C3ε

3 + C4ε
4 + C5ε

5 + C6ε
6 (11)

Q = D0 + D1ε + D2ε
2 + D3ε

3 + D4ε
4 + D5ε

5 + D6ε
6 (12)

lnA = E0 + E1ε + E2ε
2 + E3ε

3 + E4ε
4 + E5ε

5 + E6ε
6 (13)

σ = (1/α(ε)) ln {(
Z(ε)

A(ε)
)

1
nε

+ [(
Z(ε)

A(ε)
)

2
nε

+ 1]1/2
} (14)

Table 1. The sixth-order polynomial fitting coefficients of each material constants.

α Value n Value Q Value lnA Value

B0 0.016 C0 9.306 D0 524.619 E0 45.432
B1 −0.094 C1 −40.067 D1 −890.774 E1 −73.425
B2 0.533 C2 242.724 D2 3918.746 E2 285.684
B3 −1.624 C3 −818.773 D3 −6409.682 E3 −299.800
B4 2.723 C4 1450.887 D4 19.204 E4 −548.697
B5 −2.343 C5 −1283.694 D5 8418.527 E5 1285.237
B6 0.806 C6 448.645 D6 −5332.214 E6 −676.125
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3.2.3. Examination of the Constitutive Equation

The true stress values obtained from the hot compression experiment at the strain rate of 1 s−1

and the predicted data calculated by the developed constitutive equation were compared to examine
the accuracy of the constitutive equation, the comparison result is shown in Figure 8a. The figure
indicates that the predicted true stresses fitted well with the experimental data. Two standard statistical
parameters (i.e., correlation coefficient (R) and average absolute relative error (AARE)) were adopted to
further evaluate the accuracy of the proposed constitutive equation. These parameters are expressed
by the following equations:

R =

∑N
i=1(σ

i
e − σe)(σi

p − σp)√∑N
i=1(σ

i
e − σe)2(σi

p − σp)2
(15)

AARE =
1
N

∑N

i=1

∣∣∣∣∣∣∣σ
i
e − σ

i
p

σi
e

∣∣∣∣∣∣∣ (16)

where N is the number of the data used in the calculation; σi
e is the true stress obtained from the

experiment; σi
p is the true stress predicted by the improved constitutive equation; σe and σp are the

mean values of σi
e and σi

p, respectively. As shown in Figure 8b, the values of R and AARE calculated
by Equations (15) and (16) are 0.994 and 4.76%, respectively, which demonstrated a good agreement
between the experimental and predicted values. Additionally, the developed constitutive equation was
used to predict the true stress for the experimental conditions which had not been used to determine the
material constants. The experimental and predicted values of true stress under these hot deformation
conditions (950 ◦C with the strain rate of 0.5 s −1 and 1050 ◦C with the strain rate of 5 s−1) and the
corresponding values of R and AARE are shown in Figure 9. The corresponding results declared that
the proposed constitutive equation could provide good reliability and predictability.
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3.3. Processing Map

3.3.1. Theory of the Processing Map

A processing map is widely used to predict the microstructure evolution mechanism during
hot compression, optimize the hot working parameters and indicate the “unsafe” regions in hot
deformation process. A processing map is established by superimposing the instability map on the
power dissipation map, which is based on DMM. The DMM considers the workpiece in hot working as
a power dissipator, and the total energy (P) absorbed by the workpiece during hot working is composed
of two complementary parts: the dissipative content G and the dissipative co-content J. G represents
the energy for the increase in temperature during hot deformation, while J denotes the energy for
metallurgical process, such as DRV, DRX, flow localization, etc. [18]. Therefore, the relationship
between these energies can be described by the following equation:

P = σ·
.
ε = G + J =

∫ .
ε

0
σd

.
ε+

∫ σ

0

.
εdσ (17)

During the hot working process, when strain and deformation temperature are constant, true
stress and strain rate obey the power law [39]:

σ = K
.
ε

m (18)

where K is a material constant and m is the strain rate sensitivity parameter, which illustrates the ratio
of dissipative co-content J and the dissipative content G:

m =
J
G

=
dlgσ
dlg

.
ε

(19)

Under a given strain and deformation temperature, a cubic spline can be used to fit the relationship
between true stress and strain rate [40]:

lgσ = a + blg
.
ε+ c(lg

.
ε)

2
+ d(lg

.
ε)

3 (20)

According to Equations (19) and (20), the value of strain rate sensitivity parameter (m) can be
described as:

m = b + 2clg
.
ε+ 3d(lg

.
ε)

2 (21)



Metals 2020, 10, 1502 11 of 19

Based on the Equations (17) and (18), the dissipative co-content J can be rewritten as:

J =
∫ σ

0
(
σ
K
)

1
m dσ =

m
m + 1

.
εσ (22)

The value of the strain rate sensitivity parameter (m) is between 0 to 1. When m = 1, the material is
at the ideal linear dissipation state, which makes the dissipative co-content J reach its maximum value:

Jmax =

.
εσ
2

=
P
2

(23)

The dimensionless parameter of the efficiency of power dissipation (η) can be achieved by
normalizing J with Jmax as follows:

η =
J

Jmax
=

2m
m + 1

(24)

From Equation (24), it can be seen that the physical meaning of η is the proportion of the energy
consumed by microstructure evolution to the ideal linear dissipation energy. Therefore, the value of
η reflects the efficiency of the power dissipated by microstructure change during hot deformation,
and can be used to predict the microstructure evolution mechanism and hot workability of the material
under certain hot working conditions. The variation of η with hot deformation temperature (T) and
strain rate (

.
ε) at a given strain composes the power dissipation map. Different regions of the map

correspond to different hot processing properties; hence it can provide the basis for selecting the
optimum hot working windows during hot deformation. Generally, the domains with the maximum
value of η correspond to the optimal hot processing parameters.

During hot working, plastic unstable behaviors such as adiabatic shear band, flow localization,
cracking, etc., may occur. These defects will deteriorate the thermal processing properties of the
material. Therefore, it is necessary for us to identify these forming defects. According to the extremum
principle of irreversible thermodynamics, the continuum instability criterion can be achieved as
follows [41]:

ξ(
.
ε) =

∂ ln (m/m + 1)

∂ln
.
ε

+ m < 0 (25)

where ξ(
.
ε) s a dimensionless instability parameter which indicates the instability of the system.

The variation of ξ(
.
ε) with hot deformation temperature and strain rate for a fixed strain constitutes

the instability map. In this map, ξ(
.
ε) with the negative value represents the flow instability domain

which should be avoided during hot working.

3.3.2. Establishment of a Processing Map

The data obtained from the true stress−true strain curves can be used to draw the plot which reflects
the relationship between lgσ and lg

.
ε at the true strains of 0.2, 0.4, 0.6 and 0.8, respectively (Figure 10).

The values of m can be calculated based on Equation (21) and the fitted cubic spline curves shown
in Figure 10. The values of η and ξ under different hot deformation conditions can be determined
by substituting the values of m into Equations (24) and (25), and then the processing maps can
be established.

Figure 11 shows the processing maps of the experimental steel at different true strains when the
hot deformation temperature ranges from 950 to 1150 ◦C and strain rate ranges from 0.01 to 10 s−1.
The number against each contour represents the value of the efficiency of power dissipation, while the
gray regions in these maps denote the unsafe domains which should be avoided during hot working.
It can be seen from Figure 11 that with the true strain increased from 0.2 to 0.8, the characteristics of
the power dissipation efficiency maps were basically unchanged which meant that the effect of true
strain on the efficiency of power dissipation was not significant. Figure 12 shows the peak power
dissipation efficiency under different true strains. As shown in Figure 12, it can be seen that the peak
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power dissipation efficiency mainly appeared in two hot deformation conditions. One appeared at
the temperature of 1100 ◦C and strain rate of 0.01 s−1 when the true strain was less than 0.7, the other
one occurred at the temperature of 1100 ◦C and strain rate of 0.1 s−1 when the true strain was no less
than 0.7.
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As shown in Figure 11d, when the true strain increases to 0.8, a single relatively high power
dissipation efficiency region can be observed on the map which is located at the temperature of
1000–1150 ◦C and strain rate of 0.1–1 s−1. In this field, the power dissipation efficiency is generally
higher than 30%, and the peak power dissipation efficiency of 39.9% occurs at 1100 ◦C/0.1 s−1.
Generally, the high value of power dissipation efficiency means that more energy is consumed by
the microstructure change during the hot deformation process, and the DRX occurs when the power
dissipation efficiency is between 0.3–0.5 [42]. So, DRX should occur at the above mentioned single
high power dissipation efficiency region when the true strain is 0.8, the stress−strain curves shown in
Figure 4b at the temperature of 1050–1150 ◦C also show the features of DRX. Therefore, the preferred
processing parameters for hot deformation at the true strain of 0.8 should be located in this domain.

As shown in Figure 11a−d, it can be seen that the true strain has a considerable impact on the
unstable region. At the true strain of 0.2, two unstable regions occurred at the lower temperatures:
one located at 950–1067 ◦C/0.01–0.13 s−1, and the other occurred at 956–1045 ◦C/1.07–10 s−1. With the
true strain increased to 0.4, three unstable regions which were mainly located at the medium and
higher strain rates could be observed: 950–1053 ◦C/0.09–10 s−1, 1049–1110 ◦C/0.03–1.15 s−1 and
1132–1150 ◦C/4.64–10 s−1. When the true strain was 0.6, two unstable regions were exhibited, the major
one occurred at the higher strain rates: 950–1146 ◦C/0.66–10 s−1, while the minor one was located at



Metals 2020, 10, 1502 13 of 19

the medium strain rates: 950–954 ◦C/0.08–0.12 s−1. When true strain reached 0.8, two larger unstable
regions appeared at the lower temperatures and lower strain rates and higher temperatures and higher
strain rates respectively: 950−1049 ◦C/0.01–0.14 s−1 and 1027–1150 ◦C/0.81–10 s−1.
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3.3.3. Microstructures Corresponding to the Processing Map

In order to investigate the hot deformation mechanism of the experimental steel and validate the
processing map constructed above, the microstructures under different deformation conditions at the
true strain of 0.8 were observed. The typical microstructures in the stability region with relatively high
power dissipation efficiency (where the values of η are higher than 30%) are shown in Figure 13. It can
be seen that all of these microstructures had recrystallized with fine grains, which indicated that DRX
had occurred in these hot deformation conditions. This phenomenon was consistent with the PM
results analyzed in Section 3.3.2. Moreover, the DRX grain sizes of the hot deformation conditions
of 1000 ◦C × 0.1 s−1, 1100 ◦C × 0.1 s−1, 1100 ◦C × 1 s−1 and 1150 ◦C × 1 s−1 were 11.4, 17.9, 16.2 and
18.0 µm, respectively. It was evident that with the increase of deformation temperature, the DRX grain
grew larger. The reason for this is that the higher temperature provides more energy for the movement
of dislocation, which makes the grains grow more easily. Additionally, with the increase of strain rate,
the DRX grain size decreases. It can be attributed to the fact that at a higher strain rate, the interaction
between dislocations becomes stronger which increases the dislocation density and strain stored energy.
The higher strain stored energy provides more driving force to overcome the obstacle of the nucleation
of DRX, thus increases the nucleation rate of DRX [43]. In addition, at a higher strain rate, there is
less time for the movement of the grain boundary. Therefore, the DRX grain size decreases with the
increase of strain rate.
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In order to investigate the hot deformation mechanism of the experimental steel and validate the 
processing map constructed above, the microstructures under different deformation conditions at the 
true strain of 0.8 were observed. The typical microstructures in the stability region with relatively 
high power dissipation efficiency (where the values of η are higher than 30%) are shown in Figure 
13. It can be seen that all of these microstructures had recrystallized with fine grains, which indicated 
that DRX had occurred in these hot deformation conditions. This phenomenon was consistent with 
the PM results analyzed in Section 3.3.2. Moreover, the DRX grain sizes of the hot deformation 
conditions of 1000 °C × 0.1 s−1, 1100 °C × 0.1 s−1, 1100 °C × 1 s−1 and 1150 °C × 1 s−1 were 11.4, 17.9, 16.2 
and 18.0 μm, respectively. It was evident that with the increase of deformation temperature, the DRX 
grain grew larger. The reason for this is that the higher temperature provides more energy for the 
movement of dislocation, which makes the grains grow more easily. Additionally, with the increase 
of strain rate, the DRX grain size decreases. It can be attributed to the fact that at a higher strain rate, 
the interaction between dislocations becomes stronger which increases the dislocation density and 
strain stored energy. The higher strain stored energy provides more driving force to overcome the 
obstacle of the nucleation of DRX, thus increases the nucleation rate of DRX [43]. In addition, at a 
higher strain rate, there is less time for the movement of the grain boundary. Therefore, the DRX 
grain size decreases with the increase of strain rate. 
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The microstructures in the stability region with low power dissipation efficiency are shown in
Figure 14a,b. At the temperature of 950 ◦C and strain rate of 10 s−1 (Figure 14a), where the power
dissipation efficiency was 16.9%, the original equiaxed grains were elongated along the deformation
direction and the serrated grain boundaries could be observed. This suggests that the main softening
mechanism at this hot deformation condition is DRV. Moreover, some recrystallized grains were formed
along the grain boundaries, which meant that partial DRX occurred. The reason for this is that the
grain boundary region has a higher dislocation density, which can provide a higher driving force
and more nucleation sites for DRX, thus facilitating the occurrence of DRX. As the hot deformation
temperature increased to 1000 ◦C (Figure 14b), more DRX grains could be found around the elongated
grains and the undesirable “necklace structure” was formed. Due to the partial DRX and the necklace
structure, the two above mentioned conditions are not suitable for hot deformation.
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The typical microstructures of the unstable regions of the material are illustrated in Figure 15.
At the hot deformation condition of 1000 ◦C/0.01 s−1 (Figure 15a), the elongated grains together
with the dynamic recrystallized grains could be observed. Furthermore, a detailed observation of
the microstructure analyzed by TEM (Figure 16) manifested the deformation twins (verified by the
corresponding selected area electron diffraction (SAED) pattern) and the bands of flow localization.
It is commonly recognized that the boundaries of the deformation twins would inhibit the dislocation
motion, causing dislocation pile-ups which result in stress concentration and could induce the
microcracks and voids. Additionally, cracks can also be easily initiated by these undesired bands
of flow localization. These instability phenomena were also observed in other alloys during hot
deformation, such as magnesium alloys and austenitic stainless steel [25,44]. Figure 15b shows the
typical microstructure of the hot deformation condition of 1100 ◦C/10 s−1 in another unstable region.
It can be seen that under this deformation condition complete DRX had occurred but some of the DRX
grains grew remarkably, which led to mixed grain structure. The mixed grain structure may result in
microcracks, thus should be avoided during hot deformation.
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4. Conclusions

The hot deformation behavior of a nitrogen-bearing martensitic stainless steel has been studied
through hot compression test in the temperature range of 950–1150 ◦C and strain rate range of
0.01–10 s−1. The following principal conclusions can be drawn from this paper.

(1) The hot deformation temperature and strain rate had a notable effect on the true stress of the
nitrogen-bearing martensitic stainless steel. The true stress decreases with the increasing of deformation
temperature and the decreasing of strain rate.

(2) The activation energy values of hot deformation of the experimental material at the true strains
of 0.1–0.8 are between 407 and 487 KJ mol−1. The relationships between material constants (α, n,
Q and A) and strain are fitted by sixth order polynomials, and the strain compensated Arrhenius-type
constitutive equation is established. The correlation coefficient and average absolute relative error
are 0.994 and 4.76%, respectively, indicating that the developed constitutive equation can accurately
predict the true stress.

(3) The true strain has a significant impact on the instability region. When the true strain is
between 0.2 and 0.6, the instability regions are mainly distributed in the lower temperature and higher
strain rate condition. As the true strain increases to 0.8, the instability region occurs mainly in two
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areas: 950–1049 ◦C/0.01–0.14 s−1 and 1027–1150 ◦C/0.81–10 s−1, in which deformation twins, bands of
flow localization and mixed grain structure occur.

(4) The optimal hot working window at the true strain of 0.8 is in the region of 1000–1150 ◦C/0.1–1 s−1

with a peak power dissipation efficiency of 39.9%. The microstructures in this domain are fine and uniform
DRX grains.
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