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Abstract: Early detection of corrosion in steel bridges is essential for strategizing the mitigation of
further corrosion damage. Although various image-based approaches are available in the literature
for corrosion detection, most of these approaches are tested on images acquired under uniform
natural daylight illuminations i.e., inherent variations in the ambient lighting conditions are ignored.
Owing to the fact that varying natural daylight illuminations, shadows, water wetting, and oil wetting
are unavoidable in real-world scenarios, it is important to devise a robust technique for corrosion
identification. In the current study, four different color spaces namely ‘RGB’, ‘rgb’, ‘HSV’ and ‘CIE
La*b*’ along with a multi-layer perceptron (MLP) is configured and trained for detecting corrosion
under above-mentioned real-world illumination scenarios. Training (5000 instances) and validation
(2064 instances) datasets for this purpose are generated from the images of corroded steel plates
acquired in the laboratory under varying illuminations and shadows, respectively. Each combination
of color space and an MLP configuration is individually assessed and the best suitable combination
that yields the highest ‘Recall’ value is determined. An MLP configuration with a single hidden
layer consisting of 4 neurons (1st Hidden Layer (HL)(4N)) in conjunction with ‘rgb’ color space is
found to yield the highest ‘Accuracy’ and ‘Recall’ (up to 91% and 82% respectively). The efficacy
of the trained MLP to detect corrosion is then demonstrated on the test image database consisting
of both lab-generated partially corroded steel plate images and field-generated images of a bridge
located in Moorhead (Minnesota). Lab-generated images used for testing are acquired under varying
illuminations, shadows, water wetting, and oil wetting conditions. Based on the validation studies,
‘rgb’ color space and an MLP configuration consisting of single hidden layer with 4 neurons (1st
HL(4N)) trained on lab-generated corroded plate images identified corrosion in the steel bridge under
ambient lighting conditions.

Keywords: corrosion detection; color spaces; artificial neural networks; varying illumination; casted
shadows; corroded steel bridges

1. Introduction

Corrosion damage is found to play a vital role in the overall maintenance cost of the steel
structures [1–3]. In the United States, the average annual cost of corrosion damage for steel bridges
is estimated to be ~$10.15 billion [3]. Detection of corrosion in its early stages not only results in the
reduction of maintenance costs but also increases the life of the structures [4]. Currently, either human
inspection or non-destructive techniques such as eddy current technique [5], ultrasonic inspection [6,7],
acoustic emission technique [8,9], vibration analysis [10], radiography [11], thermography [12], optical
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inspection [13], etc. are employed to monitor and identify the corrosion damage in the steel structures.
Although each of the above-mentioned techniques have their own advantages, the optical inspection
technique is most commonly preferred owing to its simplicity and ease of interpretation.

In optical inspection, digital images of structures are first acquired on-site and are then analyzed
using image processing techniques off-site to detect the corrosion. Recently, various approaches have
been proposed by researchers to detect the corrosion in steel structures using digital images [14–16].
Most of these approaches included either acquisition of grayscale images or a color image of the corroded
steel structure under uniform illumination conditions (i.e., same time of the day, without shadows).
Color is defined as a small portion of the electromagnetic spectrum that is visible to the human eye
and covers wavelength in the range of 380 nm to 740 nm [17]. When compared to grayscale images,
color images have more information i.e., chromaticity and luminosity [18]. Chromaticity refers to
the combination of the dominant wavelength of the visible light (known as hue) reflected from the
material surface and the purity (saturation) associated with it, and luminosity refers to the intensity
of light per unit area of the light source. For identifying corroded portions in the color images the
distinguishable features such as color [19], texture [20], and edge are extracted from the images.
For instance, in the study conducted by Shen et al. [16] color components extracted from 19 different
color spaces were considered. ‘CIE La*b*’ color space was reported to yield a satisfactory result.
In another study, conducted by Medeiros et al. [21], both color and textural features were included,
and linear discriminant analysis (LDA) classifier was employed to identify corrosion. Ranjan et al. [22]
proposed an edge-based corrosion identification wherein various edge filters were employed to detect
boundaries between corroded and non-corroded regions in the images. Lee, et al. [23] performed a
multivariate statistical analysis of three color channels Red (R), Green (G) and Blue (B) to identify the
corrosion in steel bridges coated in blue paint.

Further Chen, et al. [14–16,24] investigated the effect of artificially generated non-uniform
illumination on corrosion detection. Three different approaches were proposed by the authors. In the
first approach, a neuro-fuzzy recognition algorithm (NFRA) was implemented which automatically
generates three optimal threshold values for later image thresholding artificial neural network (ANN)
and a fuzzy adjustment system. In the second approach, the authors have investigated the use of 14
different color spaces for corrosion detection and proposed an adaptive ellipse to segment background
coating and corrosion rust. ‘CIE La*b*’ was identified as the best color space. In the third approach,
the authors have integrated color image processing, Fourier transforms and Support Vector Machines
(SVM) to identify the corrosion in the bridges with a red and brown color background. In another set
of studies, both Ghanta, et al. [25] and Nelson, et al. [26] implemented a wavelet transforms-based
approach to identify corrosion in steel bridges and shipboard ballast tanks, respectively. Son, et
al. [27] used ‘HSV’ color space and C4.5 decision tree algorithm to identify corrosion. It is important
to note that in reality, the illumination of natural daylight does not remain the same for the entire
day. Moreover, the steel structures have self-shadows (shadows from the structural components) and
oil/ water wetted spots (for example, bridges). In the recent study carried out by Liao, et al. [28],
both ‘RGB’ and ‘HSV’ color spaces were adopted in conjunction with the least squares-support vector
machine (LS-SVM)-based technique to identify corrosion under shaded area generated by natural light.
However, the proposed approach had a few limitations as reported by the authors: (1) the inefficiency
of the approach to predict dark corroded areas and (2) the proposed threshold values may vary for
other images that are not considered in their study. From a practical perspective, there is a need to
develop a more robust technique that can be used to identify the corrosion in steel structures using
images taken under varying illuminations, dark shadows, water, and oil wetting.

The aim of the current study is to detect corrosion in steel structures under ambient lighting
conditions such as varying illuminations, shadows, and water and oil wetting. To this end, four
different color spaces are employed, and a multi-layer perceptron (MLP) is configured and trained with
the color features extracted from the lab-generated corrosion images. Subsequently, the trained MLP is
deployed on the field-generated images (i.e., a steel bridge) and the corrosion is detected. Note that the
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scope of this study is only limited to the corrosion identification on the surface of the steel and not the
cross-section. The main emphasis of the current study is to determine the most suitable combination of
color space and an MLP configuration from the laboratory-generated image dataset which can yield
correct predictions in the case of images acquired in a real-world scenario. Rest of the manuscript
is organized as follows: materials and methods used to generate images of corroded plates in the
laboratory is described in Section 2, extracting the color features of corroded/non-corroded pixels and
building a training, validation, and test dataset is described in Section 3, details of MLP configuration
is provided in Section 4, performance assessment and efficacy of the trained model is discussed in
Section 5, and conclusions are provided in Section 6.

2. Laboratory Generated Corrosion Images

In this section, the procedure adopted for acquiring the lab generated corrosion images is described.

Accelerated Corrosion Tests and Image Acquisition

Six ASTM A36 structural steel plates (see Table 1 [29]) with dimensions 7.6 cm × 7.6 cm × 0.4 cm
are subjected to accelerated corrosion. To this end, ASTM A36 structural steel plates are placed inside a
salt spray chamber at an angle of 20◦ to the vertical and are continuously exposed to 3.5 wt. % sodium
chloride (NaCl) solution mist for 12 h. The corroded steel plates are then removed from the salt spray
chamber and are gently cleaned with warm water to remove the excess salt traces and then air-dried.
The detailed description of the accelerated corrosion protocol can be found elsewhere [30]. While the
surfaces of two of the plates are completely exposed to corrosion (see Figure 1), the surfaces of rest of
the plates are only partially exposed to corroded (see Figure 2) i.e., random patches of corrosion are
induced on the plate by preventing the interaction between the corrosive media and the surface with
the help of adhesive tapes. At this juncture, it is important to note that the plate surfaces completely
exposed to corrosion are used for generating training and validation datasets and the plate surfaces
partially exposed to corrosion are reserved for generating a test image database (see Section 3.4).
Here on the plate surfaces completely exposed to corrosion will be referred to as fully corroded plates
and the plate surfaces partially exposed to corrosion will be referred to as partially corroded plates.
Details of generating training and test dataset are provided in Section 3.

Table 1. ASTM A36 composition [29].

Composition Symbol wt. %

Carbon C 0.25–0.29
Iron Fe 98

Copper Cu 0.2
Manganese Mn 1.03

Phosphorous P 0.04
Silicon Si 0.28
Sulfur S 0.05

A mobile camera (Samsung Electronics America Inc., Ridgefield Park, NJ, USA) with a digital
resolution of 12 MP (4032 × 3024) is employed to acquire the images of the lab corroded steel plates.
Note that the images were acquired outdoors while the corroded plates are directly exposed to sunlight.
As per the manufacturer specifications, the size of the sensor and the size of the image pixel are 1/3.6"
and 1.0 µm, respectively and the camera’s angular field of view (FOV) is 45◦. For image acquisition,
the camera is mounted on a small tripod and is placed parallel to the target surface (corroded plate) at a
fixed distance of 8.0 inches. The camera was then operated with a fixed setting of ISO 400 and a shutter
speed of 1/350th of a second. In addition to this, the color tone was set to a standard color tone and
white balance was set to 5500 K (daylight). The images of the corroded steel plates are then acquired at
different time intervals during the day i.e., 5:00 AM, 9:00 AM, 12:00 PM, 3:00 PM and 6:00 PM such that
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varying illuminations of daylight are captured in the images (see Figure 1a,b) Furthermore, the images
of fully and partially corroded plates under shadows, water wetting, and oil wetting are also acquired.
Shadows, water wetting, and oil wetting are commonly observed in steel structures such as bridges,
water tanks, bunkers, and silos. Shadows are formed by blocking the light falling on the structure
by surrounding vegetation, constructions, or the structural components that are being monitored.
The water and oil wetting may occur due to rainfall and oil leak from cargo, respectively. The images
of fully and partially corroded plates with shadows are acquired by blocking the light falling on the
plate with an opaque object (see Figure 1c).
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Figure 1. Non-corroded and corroded steel plates used for training purposes. (a) top row (left to
right) includes images of non-corroded plates acquired at varying illuminations under natural daylight,
(b) second row (left to right) includes images of corroded plates acquired under illuminations similar
to that of non-corroded plates and, (c) third row (left to right) includes images of both corroded and
non-corroded plates acquired under casted shadows.

For acquiring the images of the fully and partially corroded plates wetted with water, the corroded
steel plates are sprayed with the water using a spray jug obtained from a local store. Enough distance
between corroded plates and spray jug is maintained such that only a drizzle of fine droplets of
water is sprayed on the plate and sufficient care is exercised to avoid the formation of bigger water
droplets on the surface of the plate. A similar procedure is then adopted for acquiring the images
of fully and partially corroded plates under oil wetting except that oil is used in the place of water
as a wetting agent. The images of all the corroded steel plates acquired using the mobile camera
are shown in Figures 1 and 2. Note that the images are not directly used as the input to the MLP
in this study i.e., the images are not directly considered to be the training and validation datasets.
Instead, color features of corroded and non-corroded pixels of the plate are extracted from the images
to generate a training dataset and then used to train various MLP configurations. For instance, if the
color features of 1000 corroded pixels are chosen from one image, then the training dataset is said to
have 1000 observations. The color feature extraction process is described next.
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Figure 2. Images of partially corroded steel plates used for testing: (a) acquired at different illuminations
of natural daylight, (b) shadows, (c) water wetting, and (d) oil wetting.

3. Color Feature Extraction and Dataset Generation

In this study, we hypothesize that the color features alone can be used to identify corrosion in
steel bridges. Hence color features are extracted from the lab-generated images to generate training,
validation, and test datasets that will be used to train, validate, and demonstrate the performance of
MLP, respectively. In this section, a brief overview of color spaces used in this study is provided and
the process of generating training, validation, and test datasets is described.

3.1. Color Spaces and Color Features

Color space is a mathematical abstraction introduced by Commission Internationale de l’éclairage
(CIE) [31] to numerically express color as a tuple of numbers. It is regarded as the color coordinate
system wherein each color feature is plotted along a coordinate axis. In this study, four-color spaces
namely ‘RGB’ (also known as primary color space), ‘rgb’ (also known as normalized color space),
‘HSV’ (also known as perceptual color space) and ‘CIE La*b*’ (also known as uniform color space) are
considered. A brief description of these four-color spaces is provided next.

3.1.1. ‘RGB’ Color Space

In ‘RGB’ color space, the primary colors Red (R), Green (G) and Blue (B) are considered to be the
color features whose intensities range from 0 to 255. These three-color intensities when plotted in a
three-dimensional Cartesian coordinate system with primary colors (R, G, B) as the x, y and z axis,
respectively, forms the ‘RGB’ color space. In the ‘RGB’ color space, all possible colors are encompassed
in a cube with dimensions (255 × 255 × 255) in the first positive octant of the coordinate system
(see Figure 3a). Each point enclosed in this cube represents a unique color. While the point (0, 0, 0)
represents the black color, the point (255, 255, 255) represents the white color. The points that fall on
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the line that joins origin (0, 0, 0) and its diagonally opposite point (255, 255, 255) represent different
gray shades. Note that the color images obtained from the mobile or Digital Single-Lens Reflex
(DSLR) cameras generally have intensities of R, G, and B as the pixel values. In the ‘RGB’ color
space the chromaticity is coupled with the luminosity in the R, G, and B features and are sensitive to
non-uniform illuminations.
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Figure 3. Color spaces in three-dimensional coordinate systems: (a) ‘RGB’, (b) ‘rgb’, (c) ‘HSV’ and
(d) ‘CIE La*b*’.

3.1.2. ‘rgb’ Color Space

Unlike ‘RGB’ color space, in ‘rgb’ color space the normalized intensities of primary colors Red,
Green and Blue are considered to be the color features. The magnitude of their intensities range from 0
to 1 and when plotted in a three-dimensional Cartesian coordinate system in which the normalized
primary colors (r, g, b) are the x, y and z axis, respectively, each point represents a single unique color.
In the ‘rgb’ color space, all possible colors are encompassed with-in the surface of a sphere in the first
octant of the coordinate system where the radius of a sphere is 1 (see Figure 3b). To determine the
values of ‘r’, ‘g’ and ‘b’, from ‘R’, ‘G’, and ‘B’ Equation (A1) (see Appendix A) is used. In ‘rgb’ color
space the chromaticity and luminosity are decoupled from the r, g, and b features and, unlike ‘RGB’
color space the ‘rgb’ color space is insensitive to non-uniform illuminations [32].
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3.1.3. ‘HSV’ Color Space

In ‘HSV’ color space, hue (H), Saturation (S) and Value (V) are considered to be the color features.
Hue is defined as the pure color, and its magnitude ranges from 0 to 1. Saturation is defined as
the amount of impurity or white color added to hue and its magnitude also ranges from 0 to 1.
Value is defined as the brightness or intensity of light, and its magnitude ranges from 0 to 255. On a
cylindrical coordinate system these color features i.e., Hue, Saturation and Value, represents the angle
(θ), radius (r) and vertical height (z), respectively. All the colors in the HSV color space fit in an
inverted cone (see Figure 3c) [33]. Given, the intensities of R, G, and B, the magnitude of H, S, and V can
be evaluated using Equations (A2)–(A5) (see Appendix A). Similar to ‘rgb’ color space, the chromaticity
and luminosity are decoupled in the ‘HSV’ color space and is robust to non-uniform illuminations.
However, in ‘HSV’ color space the chromaticity is represented as two separate features ‘Hue’ and
‘Saturation’. Moreover, ‘Hue’ is undefined when the intensities of R, G and, B are same.

3.1.4. ‘CIE La*b*’ Color Space

In ‘CIE La*b*’ color space, Lightness (L), and opponent colors (a* and b*) are considered to be the
color features. While L represents the intensity of light and its magnitude ranges from 0 (white) to
100 (black), a* and b* represents the opponent colors red-green and blue-yellow respectively and its
magnitude ranges from −128 to +128. The negative most value of a*, i.e., −128, represents the red color
and positive most value of a*, i.e., 128, represents the green color. Similarly, the negative most value of
b*, i.e., −128, represents the blue color and positive most value of b*, i.e., 128, represents the yellow
color. These three-color features when plotted in a three-dimensional Cartesian coordinate system
with (a∗, b∗, L) as the x, y and z axis, respectively, forms the ‘La*b*’ color space. In the ‘CIE La*b*’ color
space, all possible colors are encompassed in an ellipsoid (see Figure 3d) [34]. Each point enclosed
in the ellipsoid represents a unique color. Given, the intensities of R, G, and B, the magnitude of L,
a* and b*can be evaluated using Equation (A6) (see Appendix A). Similar to ‘rgb’ and ‘HSV’ color
space, the chromaticity and luminosity are decoupled in ‘CIE La*b*’ color space and are insensitive
to non-uniform illuminations. In addition to this, note that the ‘CIE La*b*’ color space is device
independent and mimics the way humans perceive the colors [32].

3.2. Training Dataset

To obtain the training dataset the color features of corroded and non-corroded pixels are extracted
from the lab generated images. Specifically, fully corroded steel plate images acquired under varying
illuminations are considered for this purpose (see Section 2). For the extraction of color features
the pixel information i.e., the intensity of primary colors R, G and B of the image is obtained in the
MATLAB® (MathWorks, Inc., Natick, MA, USA) and the Equations (A1)–(A6) provided in Appendix A
is used to determine the color features in the other color spaces. A total of 5000 instances are generated
for the training dataset among which 50% of the instances belonged to the ‘corrosion’ class and the rest
of them belonged to the ‘non-corrosion’ class. Labelling of the instances as corrosion/non-corrosion
is solely based on visual observation and judgement of the authors. As both ‘Non-corrosion’ and
‘Corrosion’ exhibit distinguishable color for trained human vision, the reproducibility of labeling can
be assured. However, a slight chance for subjectivity cannot be ruled out. The overall goal of this body
of research is to automate the optical corrosion detection by addressing the challenges associated with
identifying corrosion under ambient lighting conditions. Hence, no corrosion characterization tests
were performed to cross-validate the corrosion/non-corrosion pixels.

3.3. Validation Dataset

The validation dataset is used to validate a MLP that is trained using the color features
extracted from lab acquired images of corroded plates under different illuminations (training dataset).
The validation dataset is generated by extracting the color features of corroded and non-corroded
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pixels from the lab acquired images of corroded plates under shadows i.e., fully corroded steel plate
images acquired under the shadow (see Figure 1c). Evaluation of the performance of the trained MLP
on the validation dataset is seen as the first line of validation in this study and is used to identify
an appropriate combination of MLP configuration and color features that can be ultimately used to
detect corrosion in more challenging real-world scenarios. Note that none of the data instances in
the validation dataset are used for training purposes. A total of 2064 instances are generated for the
validation dataset, among which 50% of instances belong to ‘corrosion’ class and the rest of them
belong to ‘non-corrosion’ class.

3.4. Test Image Database

The test image database will be used to test and demonstrate the efficacy of the trained and
validated MLP to detect corrosion in digital images that have dark shadows and are acquired by a
different imaging sensor. In other words, the generalization capability of the trained MLP to predict
corrosion will be verified. The test image database generated herein includes the lab acquired images
of partially corroded steel plates exposed to natural daylight illuminations (different from the ones
used for training dataset), shadows and, water and oil wetting conditions and the images of a steel
girder bridge located in Fargo-Moorhead (Minnesota) area acquired on-site. Note that the sensor
employed for acquiring images in the laboratory and on-site bridge images are not the same. A Digital
Single-Lens Reflex (DSLR) camera is used for acquiring the on-site bridge images. The DSLR camera
has a resolution of 18 MP (5184 × 3456) with a pixel size of 4.3 µm and a 22.3 mm × 14.9 mm sensor
size, and a sensor ratio of 3:2. The bridge images acquired on-site consist of the steel plate girders with
naturally varying illumination and self-shadows. In particular, the images of the bottom side of the
deck of the bridge had dark self-shadows. Note that in order to detect corrosion portions in the test
images, the color features of each pixel in the test image have to be extracted first and then labeled by
the trained MLP.

4. Multi-Layer Perceptron

A multi-layer feed-forward neural network, also referred to as multi-layer perceptron (MLP), is
programmed in MATLAB® (MathWorks, Inc., Natick, MA, USA) and is trained, validated, and tested
in this study. The mathematical underpinnings and detailed description of multi-layer feed-forward
neural network can be found elsewhere [35–38]. The MLP employed herein receives the color features
of a pixel (see Section 3) as an input and delivers its class label (corrosion/non-corrosion) as an
output (see Figure 4). Since the suitable configuration of MLP is not known apriori, four different
configurations are explored: (1) one hidden layer (HL) with 2 neurons (1st HL(2N)), (2) one hidden
layer with 4 neurons (1st HL(4N)), (3) two hidden layers with 2 neurons in each layer (1st HL(2N)-2nd
HL(2N)) and (4) three hidden layers with 50 neurons in first layer, 10 neurons in second layer and
4 neurons in third layer (1st HL(50N)-2nd HL(10N)-3rd HL(4N)). Note that the selection of these
configurations is based on thumb rules provided in the following references [39,40]. Sigmoid function
is chosen as an activation function for all the neurons in the MLP except the output layer wherein
SoftMax function is used and the maximum number of epochs is fixed to 1000. The maximum number
of epochs is not exceeded in any case during the training phase. Furthermore, the MLP is trained only
once (until the weights converged), and no re-training is required when used on in-house generated
validation dataset or test image database. The back-propagation algorithm is used for determining the
weights of the MLP.
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Figure 4. Schematic of a multi-layer perceptron configuration for the classification of the labeled data.
Note that the input features x1, x2 and x3 represent three color features associated with ‘RGB’, ‘rgb’,
‘HSV’ and ‘La*b*’ color spaces respectively.

5. Results

In this section, the best combination of the color space and an MLP configuration that can detect
corrosion accurately under ambient lighting conditions is determined, and its efficacy in the real-world
scenario is demonstrated. Test images described in Section 3.4 are employed for the purpose of
demonstrating the efficacy i.e., the corroded portions in the lab generated images and steel bridge
images are detected and provided.

5.1. Determining the Best Combination of Color Space and MLP

Sixteen combinations of MLP configurations and color spaces are assessed for determining the best
combination i.e., the capability of each combination to predict the class labels (corrosion/ non-corrosion)
accurately is evaluated. All the combinations are first trained with the training dataset (see Section 3.2)
and then simultaneously deployed to predict the class labels in the validation dataset. The predicted
class labels are cross-validated with the actual known class labels in the validation dataset and the
summary of correct and incorrect classifications are provided in the form of a confusion matrix (C).
The confusion matrix is a square matrix of size m × m, where m (=2) represents the number of class
labels and the elements Ci j represents the frequency of instances from the validation dataset that are
assigned class label j by the classifier which in reality they belong to class label i. Given the confusion
matrix C, the performance of each combination is assessed by evaluating the four metrics namely
‘Accuracy’, ‘Precision’, ‘Recall’ and ‘F Measure’. ‘Accuracy’ is defined as the ratio of the total number
of instances whose class labels are correctly identified to the total number of instances present in the
validation dataset and is expressed as [20,41,42].

A =

∑m
i=1 Cii∑m

i=1
∑m

j=1 Ci j
× 100% (1)

‘Precision (O)’ is defined as the ratio of the number of observations whose class label i is correctly
predicted by the classifier to the total number of observations that are assigned to the class i by the
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classifier, and ‘Recall (R)’ is defined as the proportion of observations of class i that are correctly
predicted as class i by the classifier [41].

O =
1
m

m∑
i=1

Cii∑m
j=1 C ji

× 100% R =
1
m

m∑
i=1

Cii∑m
j=1 Ci j

× 100% (2)

Here, m = 2 represents the number of class labels. While overall precision and overall recall
are also used as the measures of performance assessment for classifiers, F-measure (F) combines the
trade-off between both overall precision and overall recall and is evaluated as

F =
2×O×R

O + R
× 100% (3)

The confusion matrix and ‘Accuracy’ evaluated for each combination of MLP configuration and
color space are summarized in Table 2. From Table 2, it can be inferred that the color spaces ‘RGB’ and
‘CIE La*b*’ resulted in a higher fraction of misclassification of ‘corrosion’ class label when compared to
‘rgb’ and ‘HSV’ color space i.e., on an average 65% of the instances in the training dataset belonging to
‘corrosion’ class are misclassified as ‘non-corrosion’ in the case of ‘RGB’ and ‘CIE La*b*’ color space
(see also Figure 5). However, it is interesting to note that in the case of ‘RGB’ color space the accuracy
improved when an additional hidden layer is added to the two-layer MLP configuration (see also
Figure 5). The improvement in the accuracy of the ‘RGB’ color space may be attributed to the increased
non-linearity or complexity in the decision boundary resulting from the addition of a hidden layer [43].
In other words, the decision boundary of a three-layer MLP maybe partitioning the training instances
such that more fraction of the instances belonging to ‘corrosion’ class are on the same side of the
boundary. Among the four-color spaces, the ‘rgb’ color space is found to yield a maximum prediction
accuracy (91%). Despite the increase in the number of hidden layers the accuracy for the ‘rgb’ color
space did not vary significantly (see Figure 5). To understand why the ‘rgb’ color space resulted in
higher accuracy even without the addition of hidden layers, the color feature data is plotted as 2D
scatter plots after dimensional reduction is performed on the training and validation datasets.

Table 2. Confusion matrix of the results predicted by various MLP configurations.

Color Space
Confusion Matrix

2N 4N 2N-2N 50N-10N-4N

‘RGB’
0.33 0.67 0.35 0.65 0.36 0.64 0.61 0.39

0 1 0 1 0 1 0 1
Acc. 66.50 67.50 68 80.50

‘rgb’ 0.79 0.21 0.81 0.19 0.81 0.19 0.82 0.18
0 1 0 1 0 1 0.03 0.97

Acc. 89.50 90.50 90.50 89.50

‘HSV’
0.66 0.34 0.68 0.32 0.70 0.30 0.60 0.40
0.38 0.62 0.28 0.72 0 1 0.04 0.96

Acc. 64 70 85 78

‘La*b*’
0.39 0.61 0.51 0.49 0.54 0.46 0.31 0.69

0 1 0 1 0 1 0 1
Acc. 69.50 75.50 77 65.50

Note: Acc.–Accuracy; Confusion matrix
[

c11 c12
c21 c22

]
where c11 and c22 represents the correct predictions corresponding

to class labels corrosion and non-corrosion respectively, c12 and c21 represents the incorrect predictions corresponding to
class labels corrosion and non-corrosion respectively.
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Figure 5. Prediction of corrosion in a test image (with shadow) using four different color spaces and four
different ANN configurations. Markers for ‘RGB’–accuracy improved for three-layer MLP; Markers
for ‘rgb’–accuracy remained almost same; Markers for ‘HSV’–accuracy is poor for 2 and 4 neurons
MLP configuration; Markers for ‘CIE La*b*’–accuracy is poor for three-layer MLP configuration.
Note HL–hidden layer.

In the context of the current study, the dimensional reduction will facilitate visualizing a
three-dimensional data (color features) in a two-dimensional space. Visualizing data in two-dimensional
space will not only reveal the spatial distribution of instances belonging to ‘corrosion’ and ‘non-corrosion’
class but also aids in understanding the decision boundaries that can partition the instances with
different class labels. Linear discriminant analysis (LDA) technique is used to perform dimensional
reduction [44,45]. The results obtained after dimensional reduction for all four-color spaces are
shown in Figure 6. Figure 6 consists of a scatterplot of four isolated groups that are labeled as
‘Tr_Corrosion’, ‘Tr_Non-corrosion’, ‘Sh_Corrosion’ and ‘Sh_Non-corrosion’. Note that the groups
labeled as ‘Tr_Corrosion’ and ‘Tr_Non-corrosion’ correspond to the instances with class labels
‘corrosion’ and ‘non-corrosion’, respectively that are obtained from the training dataset and the
groups ‘Sh_Corrosion’ and ‘Sh_Non-corrosion’ correspond to the instances with class labels ‘corrosion’
and ‘non-corrosion’, respectively obtained from the validation dataset. A trained MLP is anticipated to
predict the class labels correctly when the instances of the ‘Tr_Corrosion’ and ‘Sh_Corrosion’ group
remain on the same side of the decision boundary. In other words, the color features of the corroded
pixels obtained from shaded regions (validation dataset) and varying illuminations (training dataset)
should be on the same side of the decision boundary. In the case of ‘rgb’ color space, it may be true
that the higher number of instances from ‘Tr_Corrosion’ and ‘Sh_Corrosion’ always remained on the
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same side of decision boundary irrespective of change in the shape of the boundary. For the sake
of illustrating this point, the pseudo decision boundaries that may be resulting from two different
MLP configurations are plotted in Figure 6b. From Figure 6b it can be understood that the instances
partitioned by both the pseudo decision boundaries remains more or less similar.
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Figure 6. Dimensional reduction using LDA. Training dataset encompassing 4 class labels namely corrosion
(Tr-Cor), non-corrosion (Tr-Non-Cor), corrosion in shadow (Sh-Cor) and non-corrosion (Sh-Non-Cor) in
shadow are visualized in a 2-dimensional space. (a) RGB, (b) rgb, (c) HSV and (d) La*b*.

Besides ‘Accuracy’, the other performance metrics ‘Precision’, ‘Recall’ and ‘F-measure’ are also
evaluated and provided in Table 3. For most of the combinations of MLP and color spaces the ‘Precision’
value is 100%. This can be attributed to the zero false positive value of the ‘Corrosion’ class label i.e.,
no ‘Non-corrosion’ class labels are incorrectly predicted as ‘Corrosion’. However, the ‘Recall’ and
‘F-measure’ value varied for different combinations. Note that the ‘Recall’ with a higher magnitude is
preferred instead of ‘Accuracy’ for choosing the best combination of MLP and color space. ‘Recall’
measures the ability of a model to predict the actual ‘Corrosion’ class label as ‘Corrosion’ which is
highly desired. Based on the assessment of ‘Recall’ values for all the combinations i.e., a single hidden
layer with 4 neurons (1st HL (4N)) MLP configuration with ‘rgb’ color space is chosen as the best
combination in this study.
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Table 3. Performance metrics of various MLP configurations.

Color Space
Performance Metrics (%)

Accuracy Recall Precision F-Measure

‘RGB’

2N 66.5 33 100 49.62
4N 67.5 35 100 51.85

2N-2N 68 36 100 52.94
50N-10N-4N 80.5 61 100 75.78

‘rgb’

2N 89.5 79 100 88.27
4N 90.5 81 100 89.50

2N-2N 90.5 81 100 89.50
50N-10N-4N 89.5 81 100 90.11

‘HSV’

2N 64 66 63 64.47
4N 70 68 70 68.99

2N-2N 85 70 100 82.35
50N-10N-4N 78 60 100 75.00

‘La*b*’

2N 69.5 39 100 56.12
4N 75.5 51 100 67.55

2N-2N 77 54 100 70.13
50N-10N-4N 65.5 31 100 47.33

5.2. Detection of Corrosion in Lab Generated Test Images

An MLP configuration consisting of single hidden layer with 4 neurons (1st HL (4N)) trained on
‘rgb’ color features and is deployed to detect corroded portions in the lab generated test images and the
results obtained are shown in Figures 7–10. Note the corroded portions are represented as a bright mask
in the Figures 7b, 8b, 9b and 10b. For qualitative comparison, the ground truth images are also provided
along with the corrosion detected images (see Figures 7a, 8a, 9a and 10a). While Figures 7 and 8 consists
of test images acquired under varying illuminations and cast shadows, respectively, Figures 9 and 10
consists of test images acquired under water and oil wetting, respectively. From Figures 7–10, it is
evident that the trained MLP detects corrosion accurately in the test images that are acquired under
varying illuminations, shadows, water wetting, and oil wetting conditions. Despite the presence of light
shadows and dark shadows found in Figure 8 and the wetting conditions found in Figures 9 and 10,
the single hidden with 4 neurons (4N) MLP trained with ‘rgb’ color features predicted corrosion
accurately. However, in the caseof water and oil wetted test images some specular reflections are
observed, and it is highly unlikely to detect corrosion under such a scenario. Specular reflections
are the mirror-like reflections commonly observed on smooth surfaces of bodies where the angle of
incidence of light is equal to the angle of reflection [46].Metals 2020, 10, x FOR PEER REVIEW 14 of 20 
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Figure 9. Test images of partially corroded steel plates wetted in water and acquired in natural daylight.
(a) ground truth images, (b) MLP-based corrosion prediction.
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Figure 10. Test images of partially corroded steel plates wetted in oil and acquired in natural daylight.
(a) ground truth images, (b) MLP-based corrosion prediction.
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5.3. Detection of Corrosion in Steel Bridge

An MLP configuration consisting of single hidden layer with 4 neurons (1st HL (4N)) trained on
‘rgb’ color features is finally deployed to detect corroded portions in the steel bridge images and the
results obtained are shown in Figure 11. Similar to Figures 7–10, the corroded portions of the bridge are
highlighted as a bright mask in Figure 11 and the ground truth images are provided for a qualitative
comparison. From Figure 11, it can be observed that the trained MLP detects corrosion accurately in
the steel girder bridges under naturally varying illuminations and self-shadows. While ‘Marker 1′

and ‘Marker 2′ shown in Figure 11a reveals the ability of the trained MLP to detect corrosion under
brighter illumination, ‘Marker 3′ indicates the ability of the trained MLP to detect corrosion under
comparatively darker illuminations and self-shadows. Further from Figure 11b it is also evident that
the trained MLP configuration of single hidden layer with 4 neurons (1st HL (4N)) is able to predict
corrosion in the bottom side of the deck of the bridge that has a dark shadow. At this juncture, it is
important to emphasize the fact that it is highly unlikely for a human vision to detect corrosion under
dark shadows. Keeping in view that a greater portion of corrosion is found in the bottom side of the
deck of the bridge, the proposed method will be very useful.
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Figure 11. Identification of corrosion in the steel bridges using the single hidden layer with 4 neurons
(1st HL(4N)) MLP Configuration. (a) steel plate girders with naturally varying illumination and
self-shadows, (b) bottom side of the deck of the bridge with dark self-shadows.
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6. Conclusions and Limitations

Color spaces in conjunction with different MLP configurations are explored to detect corrosion
initiation in steel structures under ambient lighting conditions. To this end, 16 different combinations
of color spaces and MLP configurations are explored. The performance of each combination is then
assessed through the validation dataset obtained from lab generated images and the best combination
is determined. Subsequently, the obtained combination is deployed on the test image database and the
efficacy of trained MLP to detect corrosion in real-world scenarios is demonstrated.

From the current study following conclusions can be drawn.

1. Among all 16 combinations of color space and an MLP configuration, the combination of ‘rgb’
color space and an MLP configuration of a single hidden layer with 4 neurons (1st HL (4N))
yielded the highest ‘Recall’ of 81% and hence chosen as the best combination.

2. While the accuracy (up to 91%) of ‘rgb’ color space is found to be more or less similar for all the
MLP configurations, the accuracy of ‘RGB’ color space is observed to increase from 68% to 81%
with the addition of third hidden layer. Improved accuracy in the case of ‘RGB’ color space can be
attributed to the increased non-linearity of the decision boundary generated by the MLP which
will ultimately lead to overfitting issues.

3. Under shadows and wetting conditions, the trained MLP is still found to yield correct predictions
when ‘rgb’ color features are used. In particular, the detection of corrosion in the bottom side of
the deck of a bridge under dark shadows is noteworthy.

4. The proposed method is insensitive to the camera sensor employed for the image acquisition i.e.,
irrespective of images being acquired from a mobile camera or a DSLR camera the efficacy of
trained MLP to detect corrosion was not affected.

5. MLP trained on varying illumination dataset alone is sufficient for detecting the corrosion under
shadows and wetting conditions.

Although the efficacy of color spaces for corrosion detection is demonstrated in this study, it is
important to note that the employment of color features alone may have some limitations. One case
where this technique is not applicable is when the objects in the acquired images possess hue values
similar to that of a corroded surface. For instance, coatings, dirt, or some vegetation in the background
may be misclassified as corrosion. This limitation will be addressed in future work by the authors.
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Appendix A

Given the intensities (scalar) of color features ‘R’, ‘G’ and, ‘B’, the color features of ‘rgb’, ‘HSV’
and ‘CIE La*b*’ are evaluated using following equations.

‘RGB’ to ‘rgb’

r =
R

√
R2 + G2 + B2

; g =
G

√
R2 + G2 + B2

; b =
B

√
R2 + G2 + B2

(A1)

‘RGB’ to ‘HSV’
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Let αmax = max(R, G, B); αmin = min(R, G, B); δ = αmax − αmin
Then,

V = αmax (A2)

S =

{
0, δ = 0
δ

αmax
, δ , 0

(A3)

H′ =

5 + (αmax−B)
δ i f αmin = G

1− (αmax−G)
δ

αmax = R

1 + (αmax−R)
δ i f αmin = B

3− (αmax−B)
δ

αmax = G

3 + (αmax−G)
δ i f αmin = R

5− (αmax−R)
δ

αmax = B

(A4)

H =
H′

6
(A5)

‘RGB’ to CIE La*b*

L = 116 f
( Y

Yn

)
− 16; a∗ = 500

(
f
( X

Xn

)
− f

( Y
Yn

))
; b∗ = 200

(
f
( Y

Yn

)
− f

( Z
Zn

))
(A6)

where,

if
X
Xn

,
Y
Yn

,
Z
Zn

are replaced by ′t′ then

f (t) =
{ 3√t if t > 0.00856

7.787t + 16
116 otherwise

X
Y
Z

 =


0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505




R′

G′

B′


The definitions for Xn, Yn , Zn, R′, G′and B′ can be found in the cited reference [17,47,48].
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