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Abstract: The peculiarities of sorption removal of uranium (VI) compounds from the surface and
mineralized groundwater using clay-supported nanoscale zero-valent iron (nZVI) composite materials
are studied. Representatives of the main structural types of clay minerals are taken as clays: kaolinite
(Kt), montmorillonite (MMT) and palygorskite (Pg). It was found that the obtained samples of
composite sorbents have much better sorption properties for the removal of uranium from surface
and mineralized waters compared to natural clays and nZVI.It is shown that in mineralized waters
uranium (VI) is mainly in anionic form, namely in the form of carbonate complexes, which are
practically not extracted by pure clays. According to the efficiency of removal of uranium compounds
from surface and mineralized waters, composite sorbents form a sequence: montmorillonite-nZVI >

palygorskite-nZVI > kaolinite-nZVI, which corresponds to a decrease in the specific surface area of
the pristine clay minerals.
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1. Introduction

Pollution of the water basin in sites where uranium ore is mined and processed is one of the most
important environmental problems, requiring an effective and rational solution [1]. The sources of
surface and groundwater pollution are, first of all, the areas of development of uranium deposits,
storages of wastes from hydrometallurgical processing of uranium ores, sites where uranium where
enriched [2–4]. Water pollution with uranium compounds is often accompanied by pollution of other
toxic elements, for example, arsenic [5].

Contaminated groundwater in places of extraction and processing of uranium ores, in addition
to the high content of compounds, is characterized by high mineralization. The latter is a few grams
per litre, mainly due to sulfates of Ca and Mg, which are formed due to the use of sulfuric acid
in the technological processes of leaching [6]. In such waters, it is mainly in the composition of
negatively charged sulfate or carbonate complexes, which significantly complicates the processes of
water purification [7].

Sorption methods using ion exchange resins and synthetic inorganic sorbents are most widely
used for deep purification of sewage and surface waters from uranium complexes [8–10]. At the same
time, if it is necessary to treat large amounts of treated water, the economic factor becomes principal.

Some of the new effective environmental protection technologies that havebeen developed and
widely tested in recent years are technologies based on the use of highly reactive nanoscale zero-valent
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iron. The use of coarsely dispersed zero-valent iron is quite common in environmental practice
in the construction of permeable reaction barriers that are installed in the path of contaminated
groundwater and serve as a collector of various toxicants [11,12]. The advantage of using nZVI is
the possibility of its use for groundwater purification without the application of permeable reaction
barriers, the construction of which requires significant capital costs.

Suspensions based on nZVI can be pumped into the ground along the path of groundwater directly
in front of contaminated areas. Further, they are carried with underground streams, promoting the
decomposition of organic toxicants or sorption of inorganic pollutants on themselves.

The first successful results on the use of nZVI were obtained during the decomposition of
organic toxicants (chlorinated solvents, pesticides, dyes) [13,14]. Subsequently, the effectiveness of
this technology was shown for a variety of inorganic pollutants, including heavy metals [15] and
natural radionuclides [16,17]. However, the potential risks for natural ecosystems when using nZVI is
insufficiently studied so far [18].

The problem with the use of nZVI for in situ and ex situ technologies is the insufficient colloidal
stability of its suspensions, easy aggregation, and difficulty in separating nZVI from the treated
solution. To solve it, various polymers and surfactants are commonly used [19,20]. Another approach
to increase the stability of suspensions is their anchoring onto a solid matrix, which allows not only to
increase their stability and stability to oxidation, but also to expand the scope of their application in
traditional sorption technologies [21]. Active carbons [22], amorphous silica [23,24], layered double
hydroxides [25], carbonized fungi [26], graphene and composites based on it [27,28] and others were
successfully investigated.

Some of the most widely used matrices as the supports of nZVIare clay minerals, which have a
significant specific surface area and rather high sorption properties in relation to radionuclides and
heavy metal ions [29,30]. Iron-containing composite sorbents based on clays have enhanced sorption
characteristics in relation to heavy metals and radionuclides compared to the initial minerals [31].
Representatives of almost all major classes of clay minerals were studied as matrixes: kaolinite [32],
montmorillonite [33,34], illite [35], palygorskite [36].

While considerable experimental material accumulated on the purification of uranium-containing
water using nZVI, there was no comparative study of the sorption properties of iron-containing
composites of different composition based on clay minerals. Taking into account the importance of
environmental studies based on natural minerals, the removal of uranium by nZVI supported on
kaolinite, montmorillonite and palygorskite was investigated, including the removal efficiency of
uranium from contaminated groundwater with low and high mineralization.

2. Materials and Methods

The object of the study was a layer silicate kaolinite (Al4Si4O10(OH)8) with a structure of 1:1 type.
This clay was taken from the Glukhovets deposit (Ukraine), and has the most perfect crystal structure
among the kaolinites from other numerous kaolin deposits of Ukraine. Among the representatives of
layered silicates with a 2:1 structure (smectites), montmorillonite from the Cherkassk deposit (Ukraine)
with a structural formula (Ca0.12Na0.03K0.03)0.18(Al1.39Mg0.13Fe0.44)1.96(Si3.88Al0.12)4.0O10(OH)2 × nH2O
was chosen. Fibrous clay mineral palygorskite (also known as attapulgite) with a structural formula
Mg5Si8O20(OH)2 × 4H2O was also taken from the Cherkassk deposit (Ukraine).

The purification of natural minerals from impurities of quartz, feldspars, carbonates, aluminium
and iron oxides was carried out.X-ray powder diffraction (XRD) patterns were recorded on X-ray
diffractometer DRON-4-07 (Russia) in the range of 2–40◦ (2θ) using CuKα irradiation.

The parameters of the porous structure: specific surface area (SSA), total pore volume (V), average
pore radius (r) of the natural and composite sorbents were determined by the BET method from nitrogen
adsorption isotherms obtained on a Nova 2200e gas analyzer (USA), pore distribution(Rmax)—by BJH
and DFT methods [37].
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To obtain composite sorbents “clay mineral/nZVI” with a mass ratio nZVI: clay mineral~0.2:
1 modified method was used [38,39]. To do this, in a 0.2M solution of Fe(NO3)3. 9H2O, weighed clay
was introduced.The resulting suspension (pH2) was quantitatively transferred to a three-necked flask
and the ion Fe3+ reduction process was performed with a solution of sodium borohydride (NaBH4) in
a nitrogen atmosphere. The resulting composite sorbent was then separated from the liquid phase
by centrifugation and washed three times with alcohol. The resulting precipitate was dried under
vacuum at a temperature of 60 ◦C and crushed to obtain a fraction ≤0.1 mm.

Water purification from uranium ions was performed using natural clay minerals and composite
sorbents. Solutions were prepared with distilled water and uranyl trihydrosulfate salt (UO2SO4·3H2O).
1M NaCl solution to create ionic strength (~0.01) was used. The pH of the solutions was adjusted with
0.1M solutions NaOH and HCl.

Mineralized waters were used solutions, whose composition corresponded to the composition of
underground mineralized water near the liquid waste storage facility for hydrometallurgical processing
uranium ores at the Centre of Ukrainian Uranium Industry (Zhovti Vody) by anions: HCO−3 —450;
Cl−—180; SO2−

4 —2830; NO−3 —130 mg/l and by cations: Ca2+—576; Mg2+—209; (Na+ + K+)—391;
NH+

4 —0.92; Ni2+—<0.05; Cu2+—<0.03; Co2+—<0.06; Mnsum—0.10; Zn2+—<0.01; Pb2+—<0.19;
Cd2+—<0.01; Fesum—0.05 mg/L [40]. The output solutions were prepared on the basis of the
corresponding sodium salts, the total salt content was—5280 mg/L, pH 7.2.

Sorption of uranium ions was performed under static conditions at room temperature with
continuous shaking of the samples for 1 h (the volume of the aqueous phase—50 mL, the amount
of sorbent—0.1 g). Inthe end, the liquid phase was separated by centrifugation (6000 rpm) and the
equilibrium metal concentration was determined spectrophotometrically (UNICO 2100UV) using an
Arsenazo III reagent at a wavelength of 665 nm.

3. Results

X-ray analysis of samples shows the presence of only small impurities in pristine minerals
(Figure 1).
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Figure 1. X-ray powder diffraction (XRD) patterns of pristine and nanoscale zero-valent iron
(nZVI)—modified clay minerals.

On diffractograms (XRD) of all modified minerals, there are weak reflections at 0.252 and 0.202 nm
corresponding to crystalline phases of zero-valent iron (α-Fe), iron oxide (FeO), and also, in time,
smaller quantities of goethite (FeOOH). Clays kept their structures in mixtures, since no structural
changes between neat and supported clays were found.The amount of iron applied to the surface
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is, according to the chemical analysis of the solution after treatment of the modified samples with
hydrochloric acid, 0.17 mg/g for all minerals.

By nature, the nitrogen sorption isotherm on the pristine kaolinite (Figure 2), according to the
modified de Boer classification, belongs to type II (b) isotherms and are typical for nonporous sorbents
with a small macroporous component [41].
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Figure 2. Nitrogen adsorption–desorption isotherms of pristine and nZVI—modified clay minerals:
(a)—kaolinite and montmorillonite,(b)—palygorskite.

The narrow hysteresis loop of type H3 on isotherms is the result of capillary condensation in
the structural aggregates of kaolinite between weakly interconnected flat elementary packages of
the mineral. The nature of the nitrogen adsorption curves on the samples of montmorillonite and
paligorskite are similar to kaolinite and, thus, also belong to type II (b) isotherms with a hysteresis
loop type H3. The calculated characteristics of the porous structure of the samples are given in Table 1.
As can be seen from the nitrogen isotherms, the specific surface area of samples sharply decreases after
the surface modification. Such reduction is stipulated by aggregation processes of small clay particles
by nZVI and practically complete closing of micropores with nZVI films and the resultant blocking of
the access of nitrogen molecules to these pores.

Table 1. Characteristics of the porous structure of the samples.

Sample S, m2/g V∑, cm3/g Vµ, cm3/g Vµ%, %

Distribution of Pore Size, nm

BJH dV (r) DFT dV (r)

r1 r2 r1 r2

Kaolinite 8.98 0.124 0.003 2.1 - - 2.36 4.91–8.58

Kaolinite-nZVI 11.72 0.093 0.003 3.1 - - 2.51 2.63–3.52

Montmorillonite 89.11 0.081 0.016 19.8 1.41 - 1.91 2.82

Montmorillonite-nZVI 24.74 0.384 0.008 2.1 2.11 - 2.84 8.96

Palygorskite 213.15 0.512 0.084 16.6 1.90 6.26 - -

Palygorskite-nZVI 71.68 0.274 0.002 0.8 8.89 - 6.73 8.64–9.95

Sorption (q, µmol/g) of uranium ions on pristine and modified samples are shown in Figure 3.
On the kaolinite surface, sorption can occur on active centres of two types: ditrigonal siloxane wells on
the basal surfaces of kaolinite particles and hydroxyl groups on broken bonds in tetrahedral (Si-O-Si)
and octahedral (Al-O-Al) sheets on edge surfaces of the particles [42].
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Figure 3. Sorption isotherms of U(VI) ions on pristine kaolinite and kaolinite-nZVI.

However, for the pristine Glukhovets kaolinite, due to its perfect structure and the absence of
heterovalent isomorphic substitutions in the mineral structure, the charge of the structural packages is
close to zero and, therefore, sorption at low concentrations of uranium ions in solution occurs mainly
on hydroxyl groups located on edge surfaces of the particles.

Such sorption centres on the edge surfaces, depending on the pH of the medium, can have the
composition >Si-OH and >Si-O− on the broken tetrahedral sheet of the mineral and >Al-OH2

+; Al-OH
and >Al-OH− on a broken octahedral sheet of the mineral and sorption of uranium ions on the surface
occurs with the formation of strong inner-sphere surface complexes.

The results obtained for the modified samples indicate that the sorption values of uranium ions at
pH 6 are several times higher than those for the pristine minerals (Figure 3). As it was established,
synthesized nZVI has a core–shell structure and the thin film on the surface of the particles consists of
iron oxides such as FeO, Fe2O3 and Fe3O4 and its hydroxides [14,17,43,44]. Fe(0) is in the centre of the
particles. As a result of such composite structure, the removal of uranium (VI) from water by nZVI
is also may be affected by the redox transformation of a highly soluble form of U(VI) to less soluble
U(IV)with direct electron transfer at the Fe(0) surface [16,17,45]:

Fe0+1.5UO2
2++ 6H+ = Fe3+ + 1.5 U4++ 3H2O (1)

In order to elucidate the synergetic effect for the Kt-nZVI composite sorbents, the removal of U(VI)
by nZVI alone was also investigated. As shown in Figure 3, the removal efficiencies of U(VI) by nZVI
alone wassignificantly lower than that of Kt-nZVI.

The dependence of the sorption values of uranium ions on the surface of kaolinite particles from
pHis presented in Figure 4. The corresponding curves have a characteristic form with a marked
minimum in the acidic and alkaline pH areas.
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The last is due to the peculiarities of the chemistry of the clay surface and the complex chemistry
of aqueous solutions of uranium salts [46]. In the acidic pH area, the sorption characteristics of clays in
relation to uranyl cations UO2

2+ are determined by the neutral and positive surface charge resulting
from protonation of surface groups and the formation of >>Si-OH, >Al-OH and >Al-OH2

+ groups.
In the alkaline area, dissociated >Si-O− and >Al-O−groups predominate on the clay surface, and
uranium in solution exists mainly in the form of neutral UO2(OH)2, UO2CO3 and negatively charged
species (UO2)2CO3(OH)3

− [7,47]. This causes insignificant values of sorption of uranium compounds
in these pH areas, because positively charged uranium species which predominated in the acidic pH
areas are not adsorbed onto the positively charged clay surface, and negatively charged uranium
species in the alkaline pH areas are not adsorbed onto the negatively charged clay surface. In the
neutral pH area, the charge of the kaolinite surface and the charge of uranium ions have opposite signs,
which influences the proceedings of sorption processes and the appearance of maximum on the curves
of the dependence of sorption values from pH.

Montmorillonite has a labile structure with the possibility of significant expansion of the
inter-package distance during the penetration of polar water molecules between flat structural
packages. This determines the availability for ion exchange processes not only of the outer but also
of the inner surface of the particles of this clay mineral, which determines a significant increase in
the sorption of uranium ions compared to kaolinite (see Figure 5). The nature of the dependence
of sorption values from pH for montmorillonite corresponds to that for kaolinite, however, is less
pronounced (see Figure 6). This is due to the smaller relative contribution of the edge surfaces of this
mineral to its total specific surface area and the increased role of sorption centres on the basal surfaces
of particles (ditrigonal wells) whose behavior is independent of pH [42].
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Particles of chain silicate paligorskite have an elongated rod-like shape, the volume of which
is pierced by zeolite-like channels [48]. Sorption of ions occurs on the outer surface of the mineral,
the value of which is greater than that of kaolinite and montmorillonite established by N2 sorption.
However, montmorillonite particles show an outstanding property to delaminate into individual
silicate layers or thin packets of them in solutions. So, the values of the specific surface area of
dispersions of montmorillonite samples in solutions are much higher than of air-dried samples
(maximum crystallographic value of SSA are ~750–780 m2/g [41]). Therefore, the values of the sorption
of uranium on both the pristine and modified minerals are the average values between those for
kaolinite and montmorillonite (see Figures 7 and 8).
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When considering the sorption processes in mineralized waters, it is important to analyze
the forms in which uranium exists under these conditions. Medusa software, which is widely
used in analytical practice, was used for calculations [49]. The main solid phases of uranium in
aqueous systems are insoluble hydrates UO3 ·H2O or UO2(OH)2 (lgKsp= −20.34 – −23.5) [47,50] and
carbonate UO2CO3 (lgKsp= −13.21 – −14.26) [51].At the same time, sulfate, carbonate, phosphate and
nitrate complexes of uranium may be the main species in water.The composition of main anions
of underground mineralized water near the liquid waste storage facility for hydrometallurgical
processing uranium ores at the Centre of Ukrainian Uranium Industry (Zhovti Vody)are: HCO−3 —450;
Cl−—180; SO2−

4 —2830; NO−3 —130 mg/L. The high affinity of uranyl ions to the nitrate is known,
but the content of nitrate-ions in Zhovti Vody mineralized water is much smaller thanthe content of
carbonate-ions and sulfate-ions. Therefore, we did not include nitrate-ions complexes in the speciation
calculations. Zhovti Vody-mineralized waters, even with a sufficiently high content of uranium
in them, are characterized by almost complete binding of uranium to sulfate complexes UO2SO4
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and UO2(SO4)
2−
2 in the acidic area, as well as in carbonate complexes UO2CO3, UO2(CO3)

2−
2 and

UO2(CO3)
4−
3 in neutral and alkaline areas (see Figure 9).
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Sorption processes in mineralized waters were studied using montmorillonite and paligorskite.
The pH dependence curves of uranium sorption values have a characteristic form for both types of
clays with a maximum in the pH area of 5–7 (Figure 10).
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Figure 10. Sorption of U(VI) ions on pristine and nZVI-modified montmorillonite and palygorskite
from mineralized waters as a function of pH.

Sorption of uranium complexes occurs primarily due to the exchange of hydroxyl ions of the
hydroxide film on the surface of nanoscale iron particles:

M-(OH)n + UO2(SO4)2
2−
→M-(OH)n-2UO2(SO4)2 + 2OH− (2)

M-(OH)n + UO2(CO3)2
2−
→M-(OH)n-2UO2(CO3)2 + 2OH− (3)

When considering the mechanism of sorption of uranium compounds on the surface of clays,
especially of rather high concentration of uranium, the possibility of precipitation of sparingly soluble
hydroxides and others(hexavalent uranium compounds schoepite, carnotite, tyuyamunite, etc. [52])
cannot be ruled out. In mineralized waters, in contrast to diluted waters, the solubility of insoluble
salts of uranium is significantly increased. Therefore, at concentrations of salts corresponding to those
in mineralized waters from 3–5 to 10–20 g/L [52], the precipitation of uranium solid phases is not
expected and the most probable mechanism of uranium binding is only the sorption mechanism.
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Sorption isotherms of uranium from mineralized waters were obtained at pH 7.2, which corresponds
to the pH value of real groundwater (Figure 11).
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Sorption isotherms were analyzed using Langmuir and Freundlich equations. The results of the
calculations of the corresponding coefficients are shown in Table 2.

Table 2. Langmuir and Freundlich parameters for the adsorption of uranyl ions onto pristine and
nZVI-modified minerals.

Sample MMT MMT-nZVI Pg Pg-nZVI

Langmuir

a∞, µmol g−1 125 452 59 325
KL, L µmol−1 0.0084 0.1093 0.0096 0.1221

R2 0.956 0.964 0.975 0.938

Freundlich

KF 5.3 92.0 3.2 116.5
1/n 1.97 3.28 2.13 3.35
R2 0.887 0.825 0.850 0.892

The obtained isotherms are well described by the equation of monomolecular Langmuir sorption
(correlation coefficient R2 = 0.968–0.996) which assumes the energy homogeneity of the active centres
accordingly. For the empirical Freundlich equation, which is suitable mainly for describing the starting
areas of isotherms, the correlation coefficient is lower (R2 = 0.934–0.991).

4. Conclusions

Thus, different in structure clays are effective cheap matrices for obtaining efficient sorption
materials based on zero valence iron for purification of uranium-contaminated surface and mineralized
groundwater, which is typical for areas of uranium ore mining and processing.In terms of sorption
capacity, the composite samples form a sequence: montmorillonite-nZVI > paligorskite-nZVI >

kaolinite-nZVI, which corresponds to a decrease in the specific surface area of the pristine clay minerals.
Removal of U(VI) from mineralized waters occurs primarily due to the exchange of hydroxyl

ions of the hydroxide film on the surface of nanoscale iron particles by uranium sulfate and
carbonate complexes.

Another possible mechanism of immobilization of uranium compounds is the reduction of
uranium (VI) to uranium (IV) by electron transfer from the volume of nZVI particles through a
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hydroxide film to their surface with the formation and deposition of much less soluble compounds
of the latter.However, it is necessary to specify the main reactions in the removal of uranium by
immobilized ZVI for its further practical applications.
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