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Abstract: High-entropy nanomaterials possessing high accessible surface areas have demonstrated
outstanding catalytic performance, beating that found for noble metals. In this communication,
we report about the synthesis of a new, nanoporous, high-entropy alloy (HEA) possessing open porosity.
The nanoporous, high-entropy Ta19.1Mo20.5Nb22.9V30Ni7.5 alloy (at%) was fabricated from a
precursor (TaMoNbV)25Ni75 alloy (at%) by liquid metal dealloying using liquid magnesium (Mg).
Directly after dealloying, the bicontinuous nanocomposite consisting of a Mg-rich phase and a phase
with a bulk-centered cubic (bcc) structure was formed. The Mg-rich phase was removed with a 3M
aqueous solution of nitric acid to obtain the open, porous, high-entropy Ta19.1Mo20.5Nb22.9V30Ni7.5

alloy (at%). The ligament size of this nanoporous HEA is about 69 ± 9 nm, indicating the high surface
area in this material.
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1. Introduction

High-entropy alloys (HEAs) have attracted intensive research during the past decade due to
their unique properties [1–4]. Unlike the conventional alloy systems based on one principal element,
or occasionally two principal elements, HEAs contain at least five major elements at concentrations
ranging between 5 and 35 at%. The implicit hypothesis in the term “high-entropy” is that the high
mixing entropy of these modern types of alloys can exceed the enthalpies of compound formation.
Therefore, single-phase solid solutions are formed. The outstanding chemical and mechanical properties
of HEAs [1,4–11] are directly related to the four “core effects”, i.e., high entropy, sluggish diffusion,
severe lattice distortion, and the cocktail effect [12]. Especially, the sluggish diffusion effect is important
for the exceptional high-temperature strength [13,14] and high-temperature structural stability of
HEAs [13]. Recently, a number of HEA nanomaterials possessing high intrinsic catalytic activity for
the decomposition of ammonia, CO oxidation, and water splitting were discovered [15–17]. In this
case, the excellent functional, e.g., catalytic, properties can only be revealed for HEAs possessing a
very large accessible surface area.

Metals 2020, 10, 1396; doi:10.3390/met10101396 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
https://orcid.org/0000-0002-3155-583X
http://www.mdpi.com/2075-4701/10/10/1396?type=check_update&version=1
http://dx.doi.org/10.3390/met10101396
http://www.mdpi.com/journal/metals


Metals 2020, 10, 1396 2 of 7

Several methods have been used for the synthesis of high-entropy nanomaterials possessing
large surface areas, including chemical dealloying [17], sputtering [18], and carbothermal shock
synthesis [4]. Recently, Joo et al. demonstrated the synthesis of nanoporous HEAs by liquid metal
dealloying (LMD) [19]. Liquid metal dealloying, invented by Wada and Kato et al. in 2011 [20], is a
metallurgical method for the synthesis of porous and nanocomposite materials [21–24]. In contrast to
conventional chemical dealloying, the LMD method utilizes a metallic melt instead of a chemical etchant.
Thus, during the LMD process, oxidation is prevented and reactive materials such as Mg [25] can be
synthesized. To date, a wide variety of porous materials obtained by LMD have been reported, including
silicon (Si) [26], steels [24,27–30], graphene (C) [31–34], chromium (Cr) [27], niobium (Nb) [35,36],
titanium (Ti) [37,38], and titanium alloys (TiZr, TiHf, TiNb, TiFe, and TiMo) [23,38–41]. Moreover, LMD
was successfully applied for the surface functionalization of biomedical Ti–6Al–4V and Ti–6Al–7Nb
alloys [42,43], design of low modulus composites such as Fe–Mg [39,44], and synthesis of high-coercivity
NdFeB-based permanent magnets [45]. Since the LMD process is typically conducted at elevated
temperatures, it demonstrates significantly higher dealloying rates as compared to chemical dealloying.
On the other hand, the drawback of LMD is a significant and unavoidable microstructural coarsening
due to the high temperatures. The coarsening destroys the functional properties of the nanoporous
materials associated with their high surface area. In our recent study, we demonstrated a material design
principle enabling avoiding thermal coarsening in nanoporous materials [19]. In this communication,
we report about the synthesis of a new, open, porous, high-entropy Ta19.1Mo20.5Nb22.9V30Ni7.5 (at%)
alloy by the liquid metal dealloying of the (TaMoNbV)25Ni75 precursor alloy (at%).

2. Materials and Methods

The design of a material system for liquid metal dealloying begins from the selection of
elements. The elements for the liquid metal dealloying are selected based on the enthalpy of
mixture (∆Hmix

(Mg−element)) between a corrosive medium such as magnesium melt and the considered

element (Figure 1a). Elements exhibiting a positive value of ∆Hmix
(Mg−element) such as Ti, V, Cr, Fe, Mn, Co,

Zr, Nb, Mo, Hf, and Ta (Figure 1b) are immiscible in Mg and, therefore, self-organize into bicontinuous
structures upon dealloying. At the same time, elements with a negative value of ∆Hmix

(Mg−element) such
as B, Al, Si, P, Ca, Ni, Cu, Zn, Sr, Pd, Ag, In, Sn, Pt, and Au (Figure 1b) dissolve in Mg upon the
dealloying process. Thereby, a large number of element combinations can be selected for liquid/solid
metal dealloying and, particularly, for obtaining multicomponent porous scaffolds, including porous
high-entropy alloys. To demonstrate the effectiveness of the above-described approach, a precursor
(TaMoNbV)25Ni75 alloy (at%) was designed and dealloyed in magnesium at 1123 K for 20 min.

The precursor (TaMoNbV)25Ni75 alloy (at%) in the shape of rods (1 mm in diameter) was fabricated
and prepared from pure metals (99.99%) with an arc melting device coupled with a suction casting
set-up under an argon (Ar) atmosphere (Mini Arc Melter MAM-1, Edmund Bühler, Germany). To carry
out dealloying, rods 2 mm long together with a magnesium mesh were heated in a glassy carbon crucible
under Ar flow using an infrared furnace (IRF 10, Behr, Switzerland). Upon heating (at a heating rate of
about 40 K s−1), magnesium metal melts and diffuses into the precursor to selectively dissolve Ni out
of the precursor alloy. The remaining elements diffuse along the metal/liquid interface [20,22] to form
bicontinuous ligament structures. After dealloying, the crucible is cooled down to room temperature
and the nanocomposite consisting of new phases, namely Mg-rich and high-entropy phases, is formed
(Figure 2). To obtain porous HEA material, the Mg-rich phase was selectively etched out in 3 M HNO3

for 5 h (Figure 2). Structural investigation of the precursor alloys and porous samples was performed by
X-ray diffraction in Bragg–Brentano geometry (D8 Advance, Bruker, Germany) with Cu-Kα radiation.
The device was equipped with a position-sensitive detector (LynxEye, Bruker, Germany), enabling us to
achieve acceptable signal-to-noise ratios within a few hours of measuring time despite the smallness of
the samples. Scanning electron microscopy (Nova Nanolab 200, FEI, Hillsboro, OR, USA) coupled with
energy-dispersive X-ray analysis (EDAX, Weiterstadt, Germany) was used to explore the microstructure
and composition.
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Figure 1. Selection of elements for liquid metal dealloying. (a) The values of ∆𝐻(஺஻)௠௜௫  (kJ/mol) calculated 
by Miedema’s model for atomic pairs between Mg and elements indicated in the plot [46]; (b) 
Required relationship of the values of enthalpy of mixing between elements for the liquid metal 
dealloying of a master alloy AB in a liquid metal C. 
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Figure 2. Schematic illustration of liquid metal dealloying process. 
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following chemical composition: Ta19.1Mo20.5Nb22.9V30Ni7.5 (at%). The single-phase structure and 
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current porous material indicate that this is a high-entropy alloy. The SEM analysis reveals the 
nanoporous structure of the designed HEA (Figure 3). The average size of the ligaments is about 69 
± 9 nm, which is 1–2 orders of magnitude lower than is typically observed for the porous materials 
obtained by LMD [23,38]. The ligament coarsening during the liquid metal dealloying is primarily 
associated with surface diffusion [37]. Thus, the activation energy for the surface diffusion controls 
the coarsening. It seems that the sluggish diffusion effect observed in the high-entropy alloys [47] 
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Figure 2. Schematic illustration of liquid metal dealloying process.

3. Results and Discussion

Figure 3 shows the X-ray diffraction pattern and microstructure of the final open nanoporous
HEA. According to the X-ray analysis, the nanoporous HEA mainly consists of a phase with a
bulk-centered cubic (bcc) structure and a minor amount of an unknown phase (Figure 3). According to
the energy-dispersive X-ray analysis (EDX), the bcc phase is a solid solution of five elements with
the following chemical composition: Ta19.1Mo20.5Nb22.9V30Ni7.5 (at%). The single-phase structure
and multicomponent chemical composition (the concentration of each element is above 5 at%) of
the current porous material indicate that this is a high-entropy alloy. The SEM analysis reveals the
nanoporous structure of the designed HEA (Figure 3). The average size of the ligaments is about
69 ± 9 nm, which is 1–2 orders of magnitude lower than is typically observed for the porous materials
obtained by LMD [23,38]. The ligament coarsening during the liquid metal dealloying is primarily
associated with surface diffusion [37]. Thus, the activation energy for the surface diffusion controls
the coarsening. It seems that the sluggish diffusion effect observed in the high-entropy alloys [47]
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prevents coarsening in the current nanoporous HEA. However, the controversial results regarding the
sluggish diffusion phenomenon require a deeper understanding of the basic mechanisms suppressing
coarsening in the nanoporous HEAs.
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Figure 3. X-ray diffraction pattern and scanning electron micrograph of the nanoporous high-entropy
TaMoNbVNi alloy.

As was proposed by Chen and Sieradzki [48], the microstructural length scale (ligament size) of
porous materials fabricated by chemical dealloying at room temperature is correlated with the inverse
“homologous dealloying temperature” or 1/TH = Tmelting point/T298K. This universal correlation was
expanded by McCue et al. [49] to the porous materials obtained by liquid metal dealloying. It was
shown that the porous materials obtained by LMD follow a similar trend. The homologous dealloying
temperature, in this case, was modified to TH = Tmelting point/Tdealloying temperature. Later, Joo and
Okulov et al. demonstrated that porous HEAs synthesized by LMD possess a different correlation
of ligament size with homologous temperature [19]. Specifically, the universal relationship for
the nanoporous HEAs shifts down by one order of magnitude towards the smaller-size regime.
Similar to the reported nanoporous HEAs [19], the currently designed nanoporous HEA also deviates
from the universal relationship proposed by Chen and Sieradzki [48] and validates the recent
high-entropy design strategy [19] for suppressing thermal coarsening in nanoporous materials obtained
by dealloying (Figure 4).
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Figure 4. Ligament size versus homologous temperature in conventional nano- and microporous
materials and the nanoporous high-entropy alloys (HEAs) [19] (note: non-LMD represents the nanoporous
materials obtained by chemical dealloying [49]; the dealloying time is different from that for the LMD-based
materials: 10 min—open symbols, 20 min—half-open symbols, and 60 min—closed symbols).
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In summary, we have successfully designed a new, open, nanoporous, high-entropy
Ta–Mo–Nb–V–Ni alloy by liquid metal dealloying based on the design strategy proposed in our recent
study [19]. The currently developed open, porous HEA predominantly consists of a body-centered
cubic (bcc) solid solution phase. The ligament size of the nanoporous Ta–Mo–Nb–V–Ni alloy after
20 min of dealloying at 1123 K is 69 ± 9 nm, which indicates its high stability against thermal coarsening.
The nanoporous, high-entropy materials are promising candidates for functional applications such
as catalysis.
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