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Abstract: This paper validates a methodology for the estimation of critical loads in tubular beams
containing notch-type defects. The methodology is particularized for the case of Al6060-T66 tubular
cantilever beams containing U-shaped notches. It consists in obtaining the stress field at the notch tip
using finite element analysis (FEA) and the subsequent application of the theory of critical distances
(TCD) to derive the corresponding critical load (or load-bearing capacity). The results demonstrate
that this methodology provides satisfactory predictions of fracture loads.
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1. Introduction

Tubular sections are widely used in engineering applications such as transport systems (e.g., tubes,
pipelines), naval and aeronautical engineering, offshore equipment, or lifting systems (e.g., cranes),
among others. These structural solutions have been demonstrated to have great strength against
different types of loading conditions such as torsion, compression, or multiaxial bending. In addition,
their specific shape has proved to be an adequate solution for structures exposed to wind, water,
or wave loads, and they are less prone to corrosion processes, as they do not tend to generate local
accumulations of water. With all this, it is of great importance from an engineering perspective to be
able to estimate the critical loads of this kind of structures, especially when they contain defects.

In the field of structural integrity, the analysis of defects plays an important role in ensuring
the safety of structural components. Structural integrity procedures (e.g., [1–3]) are able to evaluate
components containing cracks, combining fracture and plastic collapse analyses. However, in many
cases, the structures present defects with finite radii on the tip. These defects are generally named
notches, and if they are assessed as crack-like defects using standard methodologies (traditionally based
on fracture mechanics [4,5]), the results tend to be over-conservative. This is caused by the fact that
notches generate more relaxed stress fields at their tip (when compared to those generated by cracks).
Apparently, the material develops a higher fracture resistance (usually referred to as the apparent
fracture toughness) than that developed in cracked conditions (fracture toughness). Therefore, it is
necessary to provide structural assessment methodologies that are capable of taking the notch effect
into account, providing accurate predictions of the resulting critical loads. Different works (e.g., [6–11])
dealing with the structural integrity of tubular sections may be found in literature, although failure
processes (e.g., plastic collapse, buckling) and defect types (e.g., cracks, cutouts) are different to those
considered in this work.

In this sense, when dealing with notch assessments, there are two main types of criteria: the global
criterion (based on the use of a notch stress intensity factor, analogously to ordinary fracture mechanics),
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and local criteria (based on the study of stress or strain fields around the notch tip). Among the latter,
the theory of critical distances (TCD) stands out, and its applicability in fracture assessments has been
widely reported in the literature for a variety of materials (such as polymers [12,13], metals [14,15],
composites [16], or ceramics [17,18]). Moreover, the TCD has also been validated to analyze phenomena
such as fatigue [19] or environmentally assisted cracking [20] and has been applied to different length
scales [19,21,22].

The TCD is actually a group of methodologies initially proposed in the mid-twentieth century
by Neuber [23] and Peterson [24] to predict the fatigue behavior of structural components containing
notches. All these methodologies have in common the use of two additional parameters: a material
length parameter called the critical distance (L), which is defined by Equation (1), and a material
strength parameter named the inherent strength (σ0). In fracture analysis, both parameters are directly
related with the material fracture resistance (Kmat) through Equation (1).

L =
1
π

(
Kmat

σ0

)2

(1)

For brittle materials (e.g., ceramics) or quasi-brittle materials (e.g., many fiber-reinforced
composites), the inherent material strength is equal or very close to the corresponding ultimate
tensile strength (σu). Otherwise, σ0 tends to be higher than σu, with this tendency being more
pronounced as long as plasticity is developed in the vicinity of the notch. In such cases, σo has to be
determined (calibrated) through experimental tests of specimens containing notches with different
radii, or through a combination of experimental tests and finite element (FE) modeling.

Within the different approaches proposed by the TCD, the point method (PM) stands out for
its simplicity, and provides similar results to other TCD methodologies, such as the line method,
the area method, or the volume method, among others [19]. According to the PM criterion, fracture
occurs when the stress equates the inherent strength, σ0, at a distance equal to L/2 from the defect tip.
The mathematical expression is given by Equation (2):

σ
(L

2

)
= σ0 (2)

Thus, the PM allows the fracture behavior of notched components to be analyzed by simply
knowing L together with the (linear elastic) stress field at the notch tip. The evolution of FE tools
allows the stress distribution at a stress concentrator to be more easily determined, something that
has allowed extensive validation of the TCD methodologies [19]. However, this validation has been
strongly focused on fracture mechanics notched specimens (e.g., CT and single edge notched bend
(SENB) samples). In this context, this paper attempts to validate the application of the TCD (coupled
with FE analyses) on a larger scale in real structural components (in this case, tubular cantilever beams
containing U-notches).

With all of this, Section 2 presents the material and methods, Section 3 gathers the results obtained
experimentally and through the TCD-FE analysis, together with the corresponding discussion, and
Section 4 summarizes the main conclusions.

2. Materials and Methods

2.1. Materials

The material employed in the present study is a 6060-T66 aluminum alloy. It belongs to the wrought
aluminum–magnesium–silicon alloys (6xxx series), and it has been additionally solution heat-treated
and artificially aged (T66). This alloy is especially optimized for extrusion processes and develops
good tensile strength. It has remarkable corrosion resistance and good weldability. It is commonly
used in engineering applications (e.g., railway, automotive industry, building construction, etc.).
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In order to carry out the experimental program, four 1.8 m long tubular beams were employed.
Two of them had an outer diameter of 312 mm and 6 mm thickness, with the other two beams having
an outer diameter of 260 mm and 5 mm thickness. Table 1 gathers the nominal chemical composition
of this aluminum alloy [25].

Table 1. Chemical composition (nominal) of Al6060-T66 [25].

Si Fe Cu Mn Mg Cr Zn Ti Al

0.30–0.60 0.10–0.30 ≤0.10 ≤0.10 0.35–0.60 ≤0.05 ≤0.15 ≤0.10 balance

2.2. Methods

The present study proposes a methodology for the analysis of tubular cantilever beams containing
(circumferential) through thickness U-notches by applying the TCD. This requires completing
experimental tests and FE simulations.

Regarding the experimental program, three of the tubes mentioned above were conducted to
failure through bending tests, but previously both fracture and tensile tests were performed in order to
characterize the material. Fracture and tensile specimens were machined from the remnant fourth tube
(with an outer diameter of 260 mm and 5 mm thickness).

Three tensile tests were conducted according to the ASTM E8M standard [26]. Figure 1 shows the
dimensions of the samples that were machined in the longitudinal direction. The tests were carried out
with a loading rate of 5 mm/min.
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Figure 1. Tensile test specimens. Dimensions in mm.

Subsequently, the fracture behavior of AL6060-T66 was characterized. A total of nine SENB
specimens were tested following ASTM E1820 [27]. Three specimens for each notch radii were obtained
in LC orientation: the opening stresses act in the longitudinal direction of the pipe, and the defect
propagates circumferentially. The notch radii considered in this work are 0 mm (crack-like defect),
1 mm, and 2 mm. Notches of finite radius (1 mm and 2 mm) were obtained by machining, whereas
crack-like defects were generated by fatigue pre-cracking according to ASTM E1820. Figure 2 shows a
schematic of the specimen used in the fracture characterization. It can be noticed that the width is
slightly smaller than the tube thickness due to the need to have prismatic samples. The loading rate
was 10 mm/min.
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To conclude with the experimental works, the remnant three tubular cantilever beams were
prepared to be tested. Through-thickness circumferential U-notches were machined at a distance of
approximately 350 mm from one of the tube ends. In order to obtain a fixed support, the same tube
end was introduced 330 mm in reinforced concrete. Figure 3 shows an image of the experimental
setup, Figure 4 represents a schematic of the notched tubular cantilever beams, and Table 2 gathers the
geometry of both the tubes and the notches.
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Table 2. Geometrical parameters of the tubes and their corresponding U-notch: Ø, outer diameter; B,
tube thickness; D, distance from concrete support to notched section; L, distance from applied load to
notched section; 2a, defect length; ρ, defect radius. Dimensions in mm.

Tube Material Ø B D L 2a ρ

AL1 AL6060-T66 312 6.0 30.4 1451 27.2 0.8
AL2 AL6060-T66 312 6.0 27.0 1448 27.2 1.5
AL3 AL6060-T66 260 5.0 21. 1452 45.3 0.8
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In order to obtain the experimental critical loads (load-bearing capacity), the tubes were set up in
the testing bench, ensuring that the solid concrete block was totally fixed with screws avoiding any
kind of movement. A single vertical load was applied at the free edge with a testing rate of 10 mm/min,
while a calibrated laser comparator measured the resulting deflection.

As explained above, the application of the PM requires the stress field around the defect tip to be
determined. With this aim, FE analyses were carried out. The simulations were performed in linear
elastic conditions using the finite element software ANSYS 19.2 (Ansys Inc, Canonsburg, PA, USA)
both in the SENB specimens and the cantilever beams.

The simulation of the SENB specimens (Figure 5a) was performed using a structured mesh
composed by 20-node hexahedron elements, as shown in Figure 5b. The area surrounding the notch
tip was discretized using a much finer mesh, because of the higher stress gradient generated in that
zone. For each notch radius, the stress–distance curves were finally obtained in the middle line of the
fracture section and for the corresponding average value of the critical loads. The stresses used in
the analyses are the corresponding maximum principal stresses, which, in these particular structural
conditions, act in the longitudinal direction of the tubular beams.
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Once the stress–distance curves for each notch radius were determined, the PM was applied to
calibrate the material parameters. When PM is used, it is sufficient to obtain the cutoff point between
the different curves, which theoretically corresponds to the coordinates (L/2, σo), as shown in Figure 6.
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Finally, the three cantilever tubular beams were modeled (see an example in Figure 7). Again,
a structured mesh composed by 20-node hexahedron elements was used. The notch region was
partitioned in order to generate a refined mesh, also ensuring 20 elements along the tube thickness.
The simulation was performed with just a half of the tube because of the symmetry conditions, applying
the load at the free end of each beam. The part of the tube fixed in the concrete block had all the
movements restricted, and the points of the tube located in the symmetry plane could only have
displacements in such a plane. Here, it is important to notice that the critical load of the complete
tubular beam is twice the critical load of the model. A path was created on each tube, starting
at the notch root, at half of the tube thickness and along the circumferential direction. Thus, the
stress–distance curve (along the corresponding path) was obtained for each tube under the load being
applied. Finally, the estimated critical load (or load-bearing capacity) was that for which Equation (2)
was satisfied.
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3. Results

The main tensile properties of the Al6060-T66 being used are gathered in Table 3, with E being the
Young’s modulus, σ0.2 being the proof strength, σu being the ultimate tensile strength, and εmax being
the strain under maximum load.

Table 3. Mechanical properties (mean and standard deviation).

Material E (MPa) σ0.2 (MPa) σu (MPa) εmax (%)

AL 6060 70,750 ± 554 215.0 ± 1.7 264.4 ± 1.8 11.60 ± 0.31

Table 4 presents the experimental results of the fracture tests, with Figure 8 showing some
representative examples of the experimental load–displacement curves obtained for each notch radius.
Here, it is important to notice that the fracture resistance values obtained are high, even in cracked
conditions. In this sense, Equation (3) provides a criterion to estimate the onset of the plane stress
conditions [19], with B being the thickness and σy being the yield stress (the proof stress for the material
being analyzed here). It is straightforward to derive that plane stress conditions are achieved for
fracture resistance values above 26.7 MPam1/2, approximately, so all the SENB specimens being tested
are under plane stress conditions, explaining the high values of fracture resistance obtained here.
This is also important to justify the scarce influence of the election of the tube selected for tensile and
fracture characterization. As long as the two possible thicknesses (5 mm vs. 6 mm) generate fully
plane stress conditions, the influence of this dimension on the resulting fracture resistance may be
considered to be negligible.

KPlane Stress = σY(πB)1/2 (3)
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Table 4. Experimental results obtained in SENB specimens. KN
mat in cracked specimens correspond to

the material fracture toughness Kmat.

Material Specimen ρ (mm) Defect Length
(mm)

Critical Load
(N)

KN
mat

(MPa·m1/2)

AL6060-T66

0-1 0 4.23 1208.8 51.89
0-2 4.62 1341.6 59.42
1-1 1 5.00 1235.8 96.53
1-2 5.00 1236.2 92.62
1-3 5.00 1226.7 103.56
2-1 2 5.00 1296.1 125.49
2-2 5.00 1259.2 116.47
2-3 5.00 1259.2 130.03
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The load–displacement curves of the structural tests performed on the notched cantilever beams
are shown in Figure 9, while the corresponding values of the critical load (in terms of the experimental
load-bearing capacity, LBCexp) are presented in Table 5.
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Table 5. Values of L and σo obtained from calibration, together with the experimental and the estimated
values of load-bearing capacity (LBC).

Tube L (mm) σo (MPa) LBCexp (kN) LBCest (kN)

AL1
0.22 920

72.65 76.67
AL2 72.75 87.62
AL3 42.86 39.15

Concerning the FE simulations, the stress–distance curves obtained in the fracture section of the
SENB specimens are shown in Figure 10. When the PM is applied in more than two geometries, and
the number of tests is limited, it can be observed that the different curves do not necessarily cross
each other at the same point, as shown in Figure 6. Following the PM, and considering the inherent
scatter of fracture processes, a much larger number of specimens per notch radius would be needed to
obtain a single crossing point. For this reason, the material parameters, gathered in Table 5, have been
obtained in this work as the average of the different cutoff points, the essential assumption of the PM
being reasonably fulfilled. Analogously, Figure 11 shows the stress–distance curves corresponding to
the different tubular beams when a load of 1 N is applied in the free edge.
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Once the experimental results and the FE modeling have been presented, Table 5 also shows the
estimations of the load-bearing capacity (LBCest) for each tube.

Figure 12 compares the experimental results and the corresponding TCD-FE estimations, showing
acceptable predictions of the load-bearing capacity. All the results are basically in the ±20% scatter
band, which is generally accepted in fracture research [19,28–30], with an average overestimation of
the LBC of +5.7%. This is also understandable, taking into consideration that this approach does not
include any safety factor, something commonly used in structural integrity assessments. It can be
noticed that the maximum deviation (+20%) occurs in the tube with the largest notch radii (ρ = 1.5 mm),
which has the more pronounced nonlinear behavior (see Figure 9). It seems that although the TCD
compensates nonlinearities with the calibration process (through σ0 values larger than σu), the resulting
LBC estimations may lose accuracy when the material’s nonlinear behavior becomes more developed.
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4. Conclusions

In this paper, a methodology for the estimation of critical loads in tubular beams containing
U-notches has been validated. The methodology is based on the application of the theory of
critical distances (TCD) through the point method (PM) and finite element (FE) linear elastic
simulations. The methodology has been validated in three Al6060-T66 cantilever beams containing
circumferential through thickness U-notches, providing specific validation beyond that reported in
fracture mechanics specimens.

Tensile and fracture tests allowed the corresponding material mechanical properties to be estimated,
and the combination of fracture tests on notched SENB specimens and FE analyses allowed the material
critical distance and inherent strength to be calibrated.

With all this, FE simulations of the notched cantilever beams were performed, determining the
estimations of the critical loads (or load-bearing capacities) as those loads for which the PM criterion
was fulfilled.

The predicted critical loads represent acceptable estimations of the experimental critical loads,
almost within the typical accepted scatter band for fracture processes (± 20%), and with an average
overestimation of + 5.7% (without any use of safety factors). The largest deviation (+ 20.4%) was
observed in the beam developing the most evident nonlinear behavior, thus being further away from
the initial linear elastic nature of the TCD, which makes it harder to compensate by the calibration
process of the material critical distance.

The methodology may be applied to other structural components containing any kind of notches.
However, further validation is required to establish general conclusions about its accuracy.
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