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Abstract: The deformation mechanisms of Ti-10Mo (wt.%) alloy subjected to different
quasi-hydrostatic pressure values were investigated under constrained compression using stage of
high-pressure torsion apparatus. Deformation products contain {332}<113> mechanical twinning,
stress-induced α” martensitic phase and stress-induced ω phase. A volume expansion accompanied
stress-induced α” martensitic phase transformation is 2.06%. By increasing the applied pressure from
2.5 GPa to 5 GPa, the dominant deformation mechanism underwent a transition from stress-induced
α” martensitic phase transformation to {332}<113> mechanical twinning.

Keywords: titanium alloys; quasi-hydrostatic pressure; deformation structure; martensitic phase
transformation; twinning

1. Introduction

Metastable β titanium alloys are potentially attractive for applications in several industrial
fields, such as aerospace applications and biomedical devices, thanks to their unique combination
of high specific strength-to-density ratio, low elastic modulus, excellent corrosion resistance, good
biocompatibility and good formability [1–3]. One characteristic of metastable β titanium alloys is
that the mechanical properties can be greatly influenced by the deformation mechanisms during
loading. There are several possible deformation mechanisms in metastable β titanium alloys, including
dislocation slip, mechanical twinning, stress-induced martensitic (SIM) transformation or a combination
of these, as a function of β phase stability [4–11]. In general, deformation by SIM α” or mechanical
twinning results in a lower yield stress, improved work hardening responses and a higher elongation
to failure when compared with the deformation by slip [6–8,12].

The β phase stability, which is a function of its composition, is commonly gauged by the Moeq,
an equivalent binary Ti-Mo alloy concentration. It is reported that, in order to obtain a full β phase
structure in a binary Ti-Mo alloy, a minimum of 10wt.% Mo is required to prevent the martensitic
transformation upon quenching to ambient temperature [13]. In recent years, the phase-stability
diagram based on the mean bond order (Bo) and the mean d-orbital energy (Md) has been applied to
predict the β phase stability and the plastic deformation behavior [14,15]. The decrease in the β phase
stability is reflected by the decrease in the Moeq value and the decrease in the Bo value or increase in
the Md value. The dominant deformation mechanisms will change from dislocation slip to mechanical
twinning and then to SIM transformation with decreasing levels of β phase stability. However, there is
some overlap in the activity of deformation mechanisms because of some microstructural features,
such as grain size or the presence of metastable phases, which can promote or suppress a particular
mechanism. In addition, some studies about the temperature sensitivity and strain rate sensitivity
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of deformation mechanisms activated in metastable β titanium alloys have been published [16–18].
Zhan et al. [16] reported that the dynamic deformation mechanism in Ti-25Nb-3Zr-3Mo-2Sn (wt.%)
alloy changes from a combination of mechanical twinning, stress-induced phase transformation and
slip to only slip by increasing the temperature from 293 K to 873 K. Ahmed et al. [17] reported that the
compressive deformation mechanism of Ti-10V-3Fe-3Al (wt.%) alloy changes from SIM α” and slip to
mechanical twinning and slip by increasing the strain rate from 10−3 s−1 to 102 s−1. However, relatively
little work has been carried out to date to investigate the hydrostatic pressure sensitivity of deformation
mechanisms activated in metastable β titanium alloys. In the present study, the deformation modes in
Ti-10Mo (wt.%) alloy at different quasi-hydrostatic pressures was investigated.

2. Materials and Methods

An ingot with a weight of around 1 kg was prepared by cold crucible levitation melting (CCLM)
under Ar gas atmosphere. After solidification, the ingot was homogenized at 1273 K for 3.6 ks, hot
forged at 1273 K into a block of 90 mm (l) × 40 mm (w) × 40 mm (t), and then hot rolled into a plate
of 290 mm (l) × 50 mm (w) × 10 mm (t) at 1173 K followed by air cooling. The plate was cut into
40 mm (l) × 50 mm (w) × 10 mm (t) pieces and solution treated at 1173 K for 3.6 ks followed by water
quenching. All such treatments were carried out in air. Disc samples with a diameter of 10 mm
and a thickness of 0.85 mm were cut by electro discharge machine and processed by high-pressure
torsion (HPT) equipment (RIKEN ENTERPRISE Co. Ltd., Fukuoka, Japan). HPT refers to processing
which consists of half-constrained compression stage and compression-torsion stage under a high
quasi-hydrostatic pressure [19]. In the present study, only the compression stage was carried out. Two
nominal pressure values of 2.5 GPa and 5 GPa were imposed on the disc samples at room temperature.
Compression loading time was set as 5 min. Edalati et al. reported that the real hydrostatic pressure in
HPT sample is somewhat lower than the applied pressure, which is due to the outflow of the sample
between the two anvils [20]. However, disc samples of Ti-10Mo alloy in the present study exhibited
very limited outflow and almost retained their original dimensions, because there is no a rotation
stage. The real hydrostatic pressure can be considered as similar level to the nominal hydrostatic
pressure. Planar samples were mechanically polished to mirror surface for X-ray diffraction (XRD)
characterization which was performed on a RIGAKU RINT-TTR3 diffractometer (Rigaku, Tokyo, Japan)
with Cu-Kα radiation (40 kV, 150 mA). Electron backscatter diffraction (EBSD) scans were performed
on the cross-section using a Zeiss Sigma field emission gun scanning electron microscope (Carl Zeiss
AG, Jena, Germany) equipped with a TSL Orientation Imaging Microscopy (OIM) EBSD system and
operated at 20 kV. The observed region was located at around 2 mm away from the edge of the disc
sample. Transmission electron microscopy (TEM) was performed on a JEOL-2100/2800 microscope
(JEOL Ltd., Tokyo, Japan) operated at 200 kV. Disc samples with a diameter of 3 mm were cut for
TEM observation. TEM foils were prepared by twin-jet polishing using an electrolyte containing 5%
perchloric acid (Fujifilm Wako Pure Chemical Co., Tokyo, Japan), 35% methanol (Kanto Chemical Co.
Inc., Tokyo, Japan) and 60% butanol (Junsei Chemical Co. Ltd., Tokyo, Japan) at −35 ◦C.

3. Results and Discussion

The EBSD inverse pole figure (IPF) map of Ti-10Mo alloy after solution treatment is shown in
Figure 1a. It exhibits a typical equiaxed microstructure with a single β phase. The β grains exhibit
different colors based on their crystallographic orientation. Here it should be noted that, in the present
research, the crystallographic orientation is presented based on a cylindrical coordinate (Thickness,
Radial, and Hoop direction) instead of the ordinary Cartesian coordinate (i.e., ND, TD, RD), as shown
in Figure 1a. The EBSD observations were carried out on the cross-section of the disk sample, which
can be described as the observed plane is parallel to the Hoop direction. The TEM dark field (DF)
image shown in Figure 1b and inserted selected area electron diffraction (SAED) pattern taken from
[011]β zone axis suggest the formation of a certain amount of nano-sized athermalω particles in the
βmatrix.
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Figure 1. (a) EBSD inverse pole figure map of Ti-10Mo alloy after solution treatment, (b) dark field 
image of athermal ω phase and the corresponding SAED pattern along [011]β zone axis. 

Figure 2 presents the XRD patterns. Diffraction peaks are indexed to be β phase and athermal ω 
phase in the solution treated specimen. Diffraction peaks from orthorhombic α″ phase can be 
identified in the specimens after compression, suggesting that SIM α″ phase transformation occurs 
during deformation. The intensities of the diffraction peaks related to ω phase become significantly 
stronger after compression, indicating the occurrence of stress-induced ω phase. By increasing the 
compressive pressure from 2.5 GPa to 5 GPa, the diffraction peaks for SIM α″ become weaker, but 
the diffraction peaks for ω phase become stronger. The lattice parameters of the β phase and SIM α″ 
were determined by the XRD experiments. The lattice parameter of the β phase is aβ = 3.266 ± 0.004 
Å, while that of the SIM α″ is ao = 3.040 ± 0.001 Å, bo = 4.979 ± 0.002 Å and co = 4.697 ± 0.006 Å. 

 

Figure 2. XRD spectrums for specimens compressed at different hydrostatic pressures. 

Figure 1. (a) EBSD inverse pole figure map of Ti-10Mo alloy after solution treatment, (b) dark field
image of athermalω phase and the corresponding SAED pattern along [011]β zone axis.

Figure 2 presents the XRD patterns. Diffraction peaks are indexed to be β phase and athermal
ω phase in the solution treated specimen. Diffraction peaks from orthorhombic α” phase can be
identified in the specimens after compression, suggesting that SIM α” phase transformation occurs
during deformation. The intensities of the diffraction peaks related toω phase become significantly
stronger after compression, indicating the occurrence of stress-induced ω phase. By increasing the
compressive pressure from 2.5 GPa to 5 GPa, the diffraction peaks for SIM α” become weaker, but the
diffraction peaks for ω phase become stronger. The lattice parameters of the β phase and SIM α” were
determined by the XRD experiments. The lattice parameter of the β phase is aβ = 3.266 ± 0.004 Å,
while that of the SIM α” is ao = 3.040 ± 0.001 Å, bo = 4.979 ± 0.002 Å and co = 4.697 ± 0.006 Å.
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A general view of the deformation microstructure after compression at 2.5 GPa is displayed by
EBSD orientation maps which are shown in Figure 3a,b. Deformation bands can be indexed as twins or
SIM α”. Figure 3b shows that most of the deformation bands can be indexed as SIM α”. The twins have
been identified as {332}<113> twins with characteristic 50.5◦ misorientation angle [16,21], as shown in
Figure 3c. The area fractions of SIM α” and {332}<113> twins are calculated to be 14.2% and 5.4%,
respectively. The TEM dark-field (DF) image of SIM α” and its corresponding selected area electron
diffraction (SAED) pattern are presented in Figure 3d,e, respectively. The thickness of the shown SIM
α” is around 0.45 µm. Plate-like structures can be seen inside the SIM α” and they are considered to be
β phase.
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Figure 3. EBSD and TEM analysis of the specimen compressed at a hydrostatic pressure of 2.5 GPa: (a)
EBSD inverse pole figure map of β phase, (b) EBSD inverse pole figure map of SIM α” phase, (c) line
traces across the region indicated by white arrows in (a) showing the misorientation angle, (d) dark
field image of SIM α” phase and (e) the corresponding SAED pattern.

Figure 4 shows EBSD and TEM analysis of the deformation microstructure after compression
at 5 GPa. EBSD analysis shown in Figure 4a–c suggests that most of the deformation bands can be
indexed as {332}<113> twins. The area fractions of SIM α” and {332}<113> twins are calculated to be
1.2% and 13.0%, respectively. For the EBSD analysis, it should be noted that, some deformation bands,
as indicated by red arrows in Figures 3a and 4a, cannot be indexed. This is considered to be due to the
extensive distortions of the lattice by the deformation. The finer features of a {332}<113> twin in the
specimen compressed at 5 GPa were characterized by TEM analysis. The DF image in Figure 4d shows
that the deformation band is around 1 µm in thickness and contains some parallel plate-like structures.
The {332}<113> twinning relationship between the matrix and the deformation band can be confirmed
by the SAED pattern along the [011]β zone axis, as shown in Figure 4e. The SAED pattern shown in
Figure 4e also confirms the presence of ω phase in the matrix and in the twin. The DF image of the
plate-like structures in the {332}<113> twin is shown in Figure 4f. The SAED pattern (Figure 4f) taken
from the plate-like structures {332}<113> twin boundary suggests that these plate-like structures are
secondary {332}<113> twins. The DF image in Figure 4h shows that a large amount of nano-sized
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ω phase uniformly distributed in the β matrix. The DF image in Figure 4i shows the formation of
plate-likeω phase in the primary {332}<113> twin. It is evident from the DF images that the plate-like
ω phase formed in the twin are much coarser than theω phase formed in the βmatrix, although it is
quite difficult to calculate the accurate size ofω phase. The TEM and XRD results suggest that a high
pressure can promote the nucleation and growth ofω phase. The mechanism of phase transformation
from β toω has under high-pressure has been well documented [22].
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Figure 4. EBSD and TEM analysis of the specimen compressed at a hydrostatic pressure of 5 GPa:
(a) EBSD inverse pole figure map of β phase, (b) EBSD inverse pole figure map of SIM α” phase, (c)
line traces across the region indicated by white arrows in (a) showing the misorientation angle, (d) dark
field image of primary {332}<113> twin, (e) the corresponding SAED pattern illustrates twinning plane
and twinning axis of primary {332}<113> twin, (f) dark field image of secondary {332}<113> twins, (g)
the corresponding SAED pattern illustrates twinning plane and twinning axis of secondary {332}<113>

twins, (h) dark field image ofω phase in the matrix and the corresponding SAED pattern and (i) dark
field image of ω phase in the primary {332}<113> twin and the corresponding SAED pattern. The
subscripts “M”, “Pt” and “St” denote βmatrix, primary twin and secondary twin, respectively.

For Ti-10Mo alloy, the average values of Bo and Md are calculated to be 2.805 and 2.421 based
on the equation proposed in [15]. It locates at the region where SIM α” phase transformation is the
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dominant deformation mechanism in the Bo-Md diagram. Min et al. [8] reported that the tensile
deformation modes of Ti-10Mo alloy underwent a transition from SIM α” phase transformation to
{332}<113> mechanical twinning and further to dislocation slip by increasing the oxygen addition. In
the present study, the deformation-induced products in Ti-10Mo alloy contain {332}<113> mechanical
twinning, SIM α” phase and stress-inducedω phase. The dominant deformation mechanism is SIM α”
phase transformation at the hydrostatic pressure of 2.5 GPa. This is consistent with the previous studies
mentioned above. However, the SIM α” phase transformation is suppressed at the hydrostatic pressure
of 5 GPa and {332}<113> mechanical twinning becomes the dominant deformation mechanism.

Martensitic transformation is generally accompanied by some volume change, expansion or
contraction. Because the shear strain associated with martensitic transformation has not only a
component parallel to, but also one perpendicular to the shear plane, it is not pure shear but quasi shear.
The effects of hydrostatic pressure on martensitic transformation were discussed by some previous
studies based on the volume change caused by martensitic transformation [23–26]. Hydrostatic
pressure may oppose the volume expansion accompanied martensitic transformation, suppressing the
martensitic transformation and lowering the martensite start temperature (Ms), such as in an Invar
Fe-29.9Ni (at.%) alloy and a non-Invar Fe-24.6Ni-1.8C (at.%) alloy [23]. On the contrary, hydrostatic
pressure may assist the volume contraction accompanied martensitic transformation, promoting the
martensitic transformation and raising the Ms, such as in a Cu-28.8Al-3.8Ni (at.%) alloy [24]. During
the SIM α” phase transformation in metastable β titanium alloys, the crystal lattice of α” can be
derived from the crystal lattice of β by {011}<011> shuffles with a certain shuffle amplitude [27–29].
According to the lattice correspondence between bcc β phase and orthorhombic α” martensite, the
lattice parameters of the α” martensite, ao, bo and co, correspond to aβ,

√
2aβ and

√
2aβ, respectively.

The shuffle processing leads to three principal transformation strains, the lattice strains due to α”
martensite transformation, which are defined as ε1 = (ao−aβ) / aβ, ε2 = (bo−

√
2aβ) /

√
2aβ and ε3

= (co−
√

2aβ) /
√

2aβ. The substitution of the lattice parameters measured by XRD into the above
equations gives ε1 = −6.91%, ε2 = 7.80% and ε3 = 1.70% for the current Ti-10Mo alloy. These strain
values are quite high and correspond to a change in the shape and volume. The volume of SIM α”
martensite is expanded by 2.06% compared with the β phase. Therefore, it is considered that the high
hydrostatic pressure of 5 GPa can oppose the volume expansion more effectively during compression,
suppressing the SIM α” phase transformation.

4. Conclusions

In the present study, the deformation modes in Ti-10Mo (wt.%) alloy at different quasi-hydrostatic
pressures had been investigated. Two quasi-hydrostatic pressure values of 2.5 GPa and 5 GPa were
imposed on the samples by the compression stage of HPT processing. The deformed microstructures
were analyzed by XRD, EBSD and TEM. The following conclusions were drawn from the results:

1. The deformation-induced products in Ti-10Mo alloy contain {332}<113> mechanical twins, SIM
α” phase and stress-inducedω phase.

2. The dominant deformation mechanism changes from SIM α” phase transformation to {332}<113>

mechanical twinning by increasing the quasi-hydrostatic pressure from 2.5 GPa to 5 GPa.
3. The volume of SIM α” martensite is expanded by 2.06% compared with that of β phase. A

higher quasi-hydrostatic pressure of 5 GPa can oppose this kind of volume expansion during
compression, suppressing the SIM α” phase transformation.

For future works, quantitative evaluation of amount of ω phase and SIM α” phase should
be helpful to assess the thermodynamic stability of these phases and to gain deeper insight on
transformation mechanism under hydrostatic pressure.
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