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Abstract: The microstructure and micromechanical properties of the constitutive phases of a particular
duplex stainless steel in various processing conditions have been characterized. Hardness (H),
elastic modulus (E) and H/E cartography maps were obtained by using a high-speed nanoindentation
mapping technique. Small-scale H and E evolution at different processing conditions has been
investigated by statistical analysis of a large number of nanoindentations (10,000 imprints per sample).
Two mechanically distinct phases, ferrite (α) and austenite (γ), were deconvoluted from this dataset
using Ulm and Constantinides’ method, with the remaining values assigned to a third mechanical
phase linked to composite-like (containing α/γ interphase boundaries) regions. These mechanical
property phase assessments were supplemented by overlaying crystallographic phase maps obtained
by electron backscattered diffraction. An excellent correlation between microstructure and small-scale
mechanical properties was achieved, especially when considering the ratio H/E.

Keywords: duplex stainless steel; cold work; mechanical and crystallographic phase mapping;
high-speed nanoindentation; statistical analysis; H/E ratio

1. Introduction

Duplex stainless steel (DSS) is a two-phase alloy in which the proportion of constitutive elements
(chemical composition) modifies the volume fraction and properties of austenite (γ phase) and ferrite
(α phase). DSSs are typically twice as strong as single-phase austenitic or ferritic stainless steels.
The combination of mechanical properties (high yield strength and ductility) and corrosion resistance
of DSSs demonstrates better overall performance than expected from a simple average of the two
phases and surpasses those exhibited by γ and α phases separately. It makes DSSs suitable for many
industrial applications involving stringent service conditions, e.g. offshore, chemical, oil industries,
etc. [1–5]. The content of individual elements, such as Cr, Mo and N, within DSSs results in an elevated
pitting corrosion resistance. Nitrogen plays a similar role as carbon, i.e. an effective solid solution
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strengthening agent. In this regard, it is intentionally added to DSSs, as it can significantly increase the
strength of austenitic alloys [6–9].

It is well known that, for a given chemical composition, the mechanical properties of DSSs are
primarily modified by microstructural parameters, such as the phase fraction and crystallographic
texture of each phase. These microstructural parameters can be regulated by the processing
conditions [10–18]. Due to the two-phase nature of these alloys and the distinct mechanical behaviour
between austenite and ferrite, some damage and failure (edge cracks) may be induced during the
processing of DSS components. Hence, studies of the plastic compatibility between the constitutive
phases become necessary [19].

Although the mechanical properties of DSSs have been extensively studied from a macroscopic
perspective, the number of works involving small-scale characterization is quite limited for these
materials. In this regard, the reported results of micromechanical properties of constitutive phases
(γ or α) are diverse. Austenitic phase could have higher, lower or equal hardness/elastic modulus
compared with ferritic phase, depending on different variables such as specific processing route under
consideration [20,21], chemical compositions (N content) [22–26], and microstructural/crystallographic
texture of the individual phases [27–29].

It is evident that the mechanical behaviour of constitutive phases at the micro-scale is a key
parameter for optimising the microstructural design of DSSs. In order to attain reliable values of the
hardness and elastic modulus of each constitutive phase, massive nanoindentation combined with
statistical analysis [30–33] is here proposed as a methodology for assessing small-scale mechanical
properties. This method can assess the mechanical properties of predefined constitutive phases.
Alternatively, it may provide information about the content and distribution of constitutive phases
by linking different discerned responses exhibited by distinct mechanical phases [30–33]. Recently,
this methodology has been validated for several multiphase systems [34–40], where indentations were
performed to determine the mechanical properties of predefined phases [34,36,39], and/or constitutive
phases were distinguished on the basis of obtained mechanical properties maps [37,38,40]. In both
cases, mechanical properties of each phase were inherently constant and had significant difference with
those assessed for the other phases. However, applying this methodology on DSS is challenging since,
as mentioned before, mechanical properties (i.e. hardness (H) and elastic modulus (E)) of –α and –γ
phases within DSS) are not stable and can be tailored by different factors. Therefore, austenite or ferrite
could not be defined by massive indentation technique, unless those phases were already determined by
microstructural characterization techniques. On the other hand, in some cases, depending on alloying
elements and processing conditions, austenite and ferrite show relatively similar mechanical properties
(H and E) [21–29]; thus, assigning/correlating the obtained H or E to/with an austenite or ferrite phase
would be complicated. Attempting to address satisfactorily this challenge for DSSs, a novel high-speed
nanoindentation mapping technique in conjunction with microstructural characterization techniques
were here employed. This led us to acquire a persistent correlation between microstructure and
micromechanical properties (hardness H, elastic modulus E, and H/E) as a function of the processing
conditions in a particular DSS.

2. Materials and Methods

2.1. Materials and Sample Preparation

The material used in this study is a commercial EN 1.4462 DSS, equivalent to AISI S31803,
provided by UGINE and ALZ (ArcelorMittal Group, Luxembourg C, Luxembourg). Three different
specimens were supplied after each industrial processing step (schematically illustrated in Figure 1).
They are designated as: S1–hot rolled (HR), S2–cold rolled (CR) and S3–final product (FP).
More information about the industrial processes employed and the resulting microstructures in
terms of texture can be found elsewhere [23]. The chemical composition of the DSS studied is
summarized in Table 1.
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Figure 1. Schematic diagram of industrial processing steps associated with the duplex stainless steel 
(DSS) specimens investigated in this study. 

Table 1. Chemical composition of the studied DSS (wt. %). 

C Mn P S Si Cr Ni Mo N Fe 

0.023 2.55 0.026 0.006 0.45 22.62 5.92 3.02 0.158 Bal. 

Prior to microstructural and micromechanical characterization, the different specimens were 
initially ground using silicon carbide paper, followed by sequential polishing with diamond 
suspensions, with decreasing particle size down to 1 µm. Finally, all the samples were polished for 4 
hours with a 0.03 silica suspension using a vibratory polisher unit (VibroMet 2, Buehler, Lake Bluff, 
IL, USA). This last step was taken in order to achieve a high-quality polished surface and diminish 
the work hardening induced during the grinding and polishing process.  

The microstructures of the processed samples were characterized using electron backscatter 
diffraction (EBSD) in a field emission scanning electron microscope (FESEM, 7100F model, JEOL, 
Tokyo, Japan). EBSD maps were collected with a 250 nm scanning step size at an acceleration voltage 
of 20 kV and probe current of 9 nA. Various parameters, such as image quality (IQ) (Figure 2), phase 
map, volume fraction and grain size of each phase were evaluated using Channel 5.0 software 
(Oxford instruments PLC, Abingdon, UK). 

 
Figure 2. Image quality (IQ) of the different DSS samples studied. 

2.2. Assessment of Small-Scale Mechanical Properties and Statistical Analysis 

Hardness and indentation elastic modulus measurements were performed using an iNano® 
nanoindenter (KLA, Milpitas, CA, USA) equipped with a diamond, Berkovich indenter. H and E 
cartography maps were acquired using a high-speed mechanical property mapping technique called 
NanoBlitz. In doing so, each test can be accomplished in less than a second, which includes 

Figure 1. Schematic diagram of industrial processing steps associated with the duplex stainless steel
(DSS) specimens investigated in this study.

Table 1. Chemical composition of the studied DSS (wt. %).

C Mn P S Si Cr Ni Mo N Fe

0.023 2.55 0.026 0.006 0.45 22.62 5.92 3.02 0.158 Bal.

Prior to microstructural and micromechanical characterization, the different specimens were
initially ground using silicon carbide paper, followed by sequential polishing with diamond suspensions,
with decreasing particle size down to 1µm. Finally, all the samples were polished for 4 h with a 0.03 silica
suspension using a vibratory polisher unit (VibroMet 2, Buehler, Lake Bluff, IL, USA). This last step was
taken in order to achieve a high-quality polished surface and diminish the work hardening induced
during the grinding and polishing process.

The microstructures of the processed samples were characterized using electron backscatter
diffraction (EBSD) in a field emission scanning electron microscope (FESEM, 7100F model, JEOL,
Tokyo, Japan). EBSD maps were collected with a 250 nm scanning step size at an acceleration voltage
of 20 kV and probe current of 9 nA. Various parameters, such as image quality (IQ) (Figure 2),
phase map, volume fraction and grain size of each phase were evaluated using Channel 5.0 software
(Oxford instruments PLC, Abingdon, UK).
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2.2. Assessment of Small-Scale Mechanical Properties and Statistical Analysis

Hardness and indentation elastic modulus measurements were performed using an
iNano®nanoindenter (KLA, Milpitas, CA, USA) equipped with a diamond, Berkovich indenter.
H and E cartography maps were acquired using a high-speed mechanical property mapping technique



Metals 2020, 10, 1352 4 of 15

called NanoBlitz. In doing so, each test can be accomplished in less than a second, which includes
positioning the testing region under the indenter, surface approach, loading, unloading and retracting
process of the indenter. This relatively new technique can provide mechanical mapping over relatively
large (within the micrometric range) areas by performing arrays of thousands of imprints, each evaluated
by the Oliver and Pharr method [41,42]. Three large maps of 30,000 imprints (10,000 per specimen) were
performed under load control mode at 4 mN, which corresponded to an indentation penetration depth
ranging between 180 and 200 nm. This minimum required penetration depth was evaluated on the basis
of the dependence of the ratio between the applied load and the stiffness squared on the penetration
depth, by applying 16 imprints under an applied load of 45 mN (see Section 3.2.1). Indentations
were spaced at an interval of 2 µm to avoid any overlapping effect from neighbouring indentations,
according to the indentation depth/spacing ratio of 10 suggested by Phani and Oliver [43]. This margin
allows each imprint to be treated as an independent statistical value to assess the micromechanical
properties. The Poisson ratio was fixed at 0.3, which is representative of DSS and various other
metals [44].

The statistically analysis proposed by Ulm and co-workers [30–33] was employed to evaluate
the H and E response of each phase. In this statistical method, it is considered that the investigated
samples contain different constitutive phases (i) with distinct mechanical properties. Furthermore,
the Ulm method assumes that the distribution of mechanical properties of each constitutive phase (Pi)
follows a Gaussian distribution:

Pi =
1√

2πσ2
i

e
(−

[P−Pi ]
2

2σ2i
)

(1)

where Pi is the arithmetic mean for number of indentations exerted on different constitutive
phases (i), and σi is the standard deviation. The obtained H or E values (P) were plotted
by cumulative distribution function (CDF), while density functions were fitted by Gaussian
distributions. Consequently, the corresponding CDF using a sigmoidal shaped error function could be
fitted by the following equation:

CDF =
n∑
i

1
2

fier f
[

P− Pi
√

2σi

]
(2)

where fi is the relative volume fraction occupied by each individual phase. The total volume fraction of
constitutive phases was fixed at 1. The fitting process was set to finalize when the χ2 tolerance was
less than 1 × 10−15. Finally, experimental CDFs were deconvoluted, yielding then mean and standard
deviation of hardness and elastic modulus for each mechanical phase. Details of the statistical method
employed on different system may be found elsewhere [30–38].

3. Results and Discussions

3.1. Microstructural Characterization

The mean grain size and distribution of each constitutive phase (γ and α) were measured in each
processing condition using the linear intercept method [45]. In doing so, four separate micrographs
obtained by means of FESEM/EBSD were analysed per condition. Grain boundaries as well as both γ
and α phases are shown in Figure 3a,b respectively. In addition, the volume fraction of each constitutive
phase for all studied samples was measured—Figure 3c.



Metals 2020, 10, 1352 5 of 15

Metals 2020, 10, 1352 5 of 15 

 

 
Figure 3. (a) Microstructure of the hot rolled (HR) sample illustrated by IQ; (b) phase map which 
illustrates the surface fraction of the γ and α phases; and (c) volume fractions of both constitutive 
phases for all the studied samples. 
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phase after each processing step. Hence, it may be expected that grain boundary strengthening would 
also play a relevant role. In this regard, grain sizes were measured for both constitutive phases. Figure 
4a displays the histogram of the measured grain sizes with a constant bin size of 250 nm, obtained 
from an average of at least 2000 grains from the HR sample (Figure 2). Qualitatively similar 
histograms were obtained for the other studied samples and are not shown here. The measured grain 
sizes for both phases were found to be effectively the same, with no statistically significant 
differences. Therefore, the obtained histograms show the combined results from both phases. Three 
main distributions illustrate the accumulation of grains within the defined ranges (see Figure 4a), 
which relatively can be classified in low, medium and high ranges. The first peak corresponds to a 
relatively lower range (less than 2 µm), the second one corresponds to a medium-range (between 2 
and 5 µm), and the final rectangular region represents the higher range (greater than 5 µm). The 
reason behind this classification is given in Section 3.2.1.  

Despite the number of high-range (coarser) grains being relatively small compared with the 
measured low-range ones, the surface fraction occupied by the former is larger (see Figure 4b). Grain 
refinement occurred during the cold rolling process. It consequently raised the surface fraction of 
medium-sized grains dramatically. This resulted from the elongation and fragmentation of grains 
during cold work induced at room temperature [49–51]. Finally, significant grain growth took place 
after the final annealing process in the FP sample, as a result of the recrystallization and recovery of 
deformed grains of both phases in the CR sample [23,47,52–57].   

Figure 3. (a) Microstructure of the hot rolled (HR) sample illustrated by IQ; (b) phase map which
illustrates the surface fraction of the γ and α phases; and (c) volume fractions of both constitutive
phases for all the studied samples.

According to the general literature observation, for DSSs with medium and high N contents
(i.e. above 0.15%), the γ phase is harder than the α phase [23,24,46–49]. It is clear that the overall
hardness of the DSS depends on the volume fraction and intrinsic hardness of each constitutive phase
within the bulk material. This work focuses on the evaluation of the intrinsic mechanical properties of
each phase after each processing step. Hence, it may be expected that grain boundary strengthening
would also play a relevant role. In this regard, grain sizes were measured for both constitutive phases.
Figure 4a displays the histogram of the measured grain sizes with a constant bin size of 250 nm,
obtained from an average of at least 2000 grains from the HR sample (Figure 2). Qualitatively similar
histograms were obtained for the other studied samples and are not shown here. The measured
grain sizes for both phases were found to be effectively the same, with no statistically significant
differences. Therefore, the obtained histograms show the combined results from both phases. Three
main distributions illustrate the accumulation of grains within the defined ranges (see Figure 4a),
which relatively can be classified in low, medium and high ranges. The first peak corresponds to a
relatively lower range (less than 2 µm), the second one corresponds to a medium-range (between 2 and
5 µm), and the final rectangular region represents the higher range (greater than 5 µm). The reason
behind this classification is given in Section 3.2.1.

Despite the number of high-range (coarser) grains being relatively small compared with the
measured low-range ones, the surface fraction occupied by the former is larger (see Figure 4b).
Grain refinement occurred during the cold rolling process. It consequently raised the surface fraction
of medium-sized grains dramatically. This resulted from the elongation and fragmentation of grains
during cold work induced at room temperature [49–51]. Finally, significant grain growth took place
after the final annealing process in the FP sample, as a result of the recrystallization and recovery of
deformed grains of both phases in the CR sample [23,47,52–57].
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3.2. Micromechanical Properties

3.2.1. Micromechanical Properties–Microstructure Correlation: Cartography Maps

Prior to performing the indentation mapping, testing conditions such as penetration depth
and spacing parameters were assessed and analysed. These parameters were optimized to achieve
nanoindentation results independent of both indentation size (ISE) and overlapping effects. In order
to attain this, 16 imprints were performed under an applied load of 45 mN. Figure 5 displays the
ratio between the applied load and the stiffness squared (P/S2) as a function of penetration depth (h).
It shows the minimum penetration depth, where the micromechanical properties will remain constant
and unaffected by ISE, tip defect or scale effect. As evidenced in Figure 5, P/S2 reaches a plateau as
penetration depth reaches values greater than 175 nm. This implies that for h ≥ 175 nm, it is possible to
assess the intrinsic H and E for each constitutive phase. Thus, in the current study, the penetration
depth was fixed at ≈200 nm. On the other hand, plastic flow induced by the indentation is known to be
about 10 times the penetration depth [43]. Hence, for indentations performed on grains smaller than
2 µm, the plastic flow might not be confined within them, and it might be affected by the surrounding
ones. However, as mentioned before, surface fractions occupied by grains finer than 2 µm are very
small compared with those of grains whose size is within the medium and large ranges defined
previously. Therefore, the effect of obtained hardness values from imprints performed in fine grains on
the results are statistically negligible.

A high magnification EBSD micrograph of one indented area and the corresponding phase map is
given in Figure 6. Similarly, another (at lower magnification) EBSD micrograph and the corresponding
property maps: H, E and H/E ratio, obtained from the 10,000 (matrix of 100 by 100) imprints are shown
in Figure 7 for HR and CR samples. Both γ (red) and α (green) phases are clearly differentiated in the
EBSD maps of the indented regions. Meanwhile, within Figure 7, three distinct colour gradients (red,
green and yellow) may be seen in the cartography maps. A qualitative visual comparison between
EBSD and H-cartography maps demonstrates that red shades (ranges of 3.9–4.1 and 5.6–5.8 GPa for
HR and CR respectively) correspond to the γ phase, while green tones (ranges of 3.5–3.7 GPa and
4.5–4.9 GPa for HR and CR respectively) are related to the α phase. From the obtained H-maps, it is
evidenced that, as expected for the DSS studied, γ is harder than α. This might be related to the lower
stacking fault energy (SFE) of γ phase, which in turn, promotes dislocation multiplication and more
uniform dislocation distribution [22,23,49,58]. Moreover, it could be associated with the influence of the
nitrogen on stabilizing the γ phase and promoting the deformation by planar glide, which strengthens
γ grains [24,46].
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This situation is different for elastic modulus. In Figure 7, α and γ are shown by red and green
shades, respectively, in the E cartography map. It is observed that α phase has a higher elastic modulus
than γ one. Moreover, yellow tinges (in both H and E maps) between γ and α phases can be considered
as a composite response. It results from the indentations whose plastic zones include both α and γ
phases; thus, α/γ interphase boundaries (see white dashed circles in Figure 6b).
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Figure 6. (a) Field emission scanning electron microscope (FESEM) micrograph of a region of the
indented surface. (b) Phase map of the same region overlaid with the original micrograph.

As shown in Figure 7, limits between γ and α phases can only be faintly discerned from the H-
and E-maps. On the other hand, phase contrast is more pronounced in the H/E ratio map. Although H
and E represent different mechanical phenomena, the H and E values are interrelated in such a way
that the corresponding H/E ratio demonstrates more consistent values. It highlights the differences of
crystal structure and partition of chemical elements for each phase. Therefore, the H/E ratio yields
a clearer map of γ and α phases [40], in which the austenitic phase manifests a higher plasticity ratio
compared with the ferritic one.
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3.2.2. Small-Scale Mechanical Properties of Each Constitutive Phase: Statistical Analysis

The evaluation of the mechanical properties of each constitutive phase in the studied DSS specimens
under different processing conditions is quite challenging, since conventional nanoindentation results
show only slight differences in hardness between the phases. Moreover, it has been reported that the
hardness of each phase is anisotropic [29]. In order to overcome these challenges, statistical sampling
was employed by the effective implementation of novel high-speed nanoindentation techniques.
This allowed the collection of significant amounts of H and E data for each condition. Such a large
amount of data enhances the accuracy of statistical analysis and enables one to discriminate relative
differences for the mechanical properties of each phase.

As was indicated above, the H/E ratio offers higher accuracy for discrimination of mechanical
response of the constitutive phases of DSSs, as shown in Figure 7. Aiming to sustain this statement,
a novel data analysis graph where H and E values are simultaneously displayed as a 2D histogram [40]
is shown in Figure 8. It includes the H and E values obtained from 10,000 imprints performed on each
HR and CR sample (a similar trend is also observed in FP condition, not shown here). In this image,
the colour of each pixel represents the number of indentations that are included within a range of H and
E, which is defined as a 2D bin size. Particularly, for CR, two clear peaks can be immediately identified
in these plots. They correspond to the two major phases: one located at H~5.5 GPa and E~210 GPa,
and another at H~5.0 GPa and E~240 GPa. The tail of pixels below these main peaks corresponds to
blue and white traces within the H/E cartography map (Figure 7). It resulted from indentations into
surface contamination that effectively reduce the penetration depth of the indentation, yielding lower
values along the same H/E ratio as the underlying material. As depicted in Figure 7, the γ phase has a
higher H/E ratio than the α phase. Therefore, the peaks with higher H (~3.8 GPa for HR and 5.5 GPa
for CR) and lower E (~190 and 210 GPa for HR and CR respectively) values are attributed to the γ
phase (FCC peak within Figure 8). Meanwhile, the other peaks with lower H (~3.6 GPa for HR and
~5.0 GPa for CR) and higher E (~210 GPa for HR and 240 GPa for CR) are attributed to the α phase
(BCC peak in Figure 8). These peaks have overlapping property distributions. If the distributions were
Gaussian and sufficiently separated, it would be expected to produce a saddle between the two peaks
in the 2D histogram. However, the intensity of values between the two peaks is higher than might be
expected—producing rather a ridgeline between them. This additional intensity may be rationalised
by considering the indentations performed on the phase boundaries, and whose plastic zones included
both phases (Figure 6), then yielding a composite-like (containing α/γ interphase boundaries) response.
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indentations on each HR and CR sample.

In order to obtain the mean values of H and E for each constitutive phase, the statistical analysis
proposed by Ulm and co-workers [30–33] was implemented. Figure 9 shows separate H and E
histograms calculated from the experimental data from HR and CR samples. Three peaks were fitted
on each histogram. They correspond to γ, α, and composite-like (interphase) phases. By using the
phase information from EBSD mapping (Figure 7), the different peaks could be clearly assigned to their
respective phases for each investigated sample. These findings were further supported by relative
differences discerned among experimental p-h curves. Representative examples of them are given in
Figure 10, corresponding to discrete imprints examined and located within individual phase grains
(ferrite and austenite) and regions containing phase boundaries.
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ferrite and interphase.

These statistically derived results are in agreement with values previously reported in the literature,
for DSSs with similar chemical compositions [22–24]. The obtained values for each constitutive phase
for each processing condition are summarized in Table 2.

Table 2. Summary of H and E values of the defined phases in each processing condition of DSS
determined from statistical analysis.

Samples
Hardness, H (GPa) Elastic modulus, E (GPa)

α α/γ Interphase γ α α/γ Interphase γ

HR 3.6 ± 0.2 3.8 ± 0.1 3.9 ± 0.2 213 ± 8 201 ± 8 190 ± 10

CR 4.9 ± 0.2 5.2 ± 0.2 5.6 ± 0.2 240 ± 8 220 ± 10 208 ± 15

FP 3.7 ± 0.2 3.9 ± 0.2 4.2 ± 0.2 215 ± 10 202 ± 7 190 ± 10

Figure 11a illustrates the influence of the processing conditions on the hardness of each constitutive
phase, as well as on the surface fraction of coarse grains. As expected, H increased dramatically after
cold working (CR) in both phases, due to dislocation glide, which in turn promoted an increment in
the dislocation densities within the grains causing strain hardening [49,50]. Finally, after the annealing
treatment (FP), the hardness value decreases as a consequence of the recovery and recrystallization
mechanism within the deformed microstructure formed during the cold rolling step [59–61].

As shown in Table 2 and Figure 11b, the α phase exhibits a higher E (20 GPa) due to its BCC
crystal structure, which has a lower interatomic distance (smaller lattice parameter) than the FCC
crystal structure of the γ phase [22]. Hardness and elastic modulus differences must be taken into
account to prevent crack appearance after intense plastic forming. More interestingly, and partially
unexpected, the elastic modulus E of both phases changed after the cold-rolling step. Traditionally,
the elastic modulus is considered a characteristic parameter, which remains constant irrespective of
the grain size, phase morphology and chemical composition. For instance, the elastic modulus of
plain carbon steels is assumed to be 210 GPa, while this value is 200 GPa in an AISI-304 (i.e., a highly
alloyed steel). However, recent studies [62–66] carried out at macro-scale have shown that the elastic
modulus has a minor but not irrelevant dependence on strain hardening. Account of this phenomenon
allows having better predictions of the spring back character of most metallic alloys, which is indeed
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of enormous industrial interest. Although a detailed explanation of the observed response is out of the
scope of this study, besides the strain hardening effect commented, crystallographic texture induced by
the deformation itself could also be recalled as possible reason for explaining the above experimental
findings. This hypothesis is supported by the fact that, once work hardening and deformation texture
are removed by annealing (FP sample), elastic modulus values recover those assessed for the HR
condition (Figure 11b).Metals 2020, 10, 1352 11 of 15 
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4. Conclusions

The microstructure and micromechanical properties of each constitutive phase of a duplex
stainless steel were investigated as a function of processing condition. According to the obtained
results, the following conclusions may be drawn:

1. The surface fraction occupied by medium- and large-sized grains demonstrated a high sensitivity
to cold work. Grains were significantly refined during cold work via the elongation and
fragmentation of grains. Subsequent annealing treatment activated recovery and recrystallization
of the grains, which caused a higher surface fraction of coarser grains.

2. Hardness and elastic modulus cartography maps provided a satisfactory correlation between
micromechanical properties and constitutive phases (confirmed by EBSD analysis). The accuracy
and definition of such a relationship were increased by using H/E maps. Therefore, the H/E ratio
is proposed as an appropriated and reliable parameter for mechanically distinguishing between
phases with relatively similar properties.

3. The different processing routes investigated here have similar effects on the mechanical properties
of both phases. For the DSS here studied (with an intermediate N content of 0.15 in %wt),
the austenitic phase demonstrated higher hardness and lower elastic modulus compared with
the ferritic one.

4. Cold work resulted in higher values of hardness and elastic modulus for both austenite and ferrite
phases, as compared to the hot-rolled as well as the annealed (final product) ones. Such relative
changes assessed in the small-scale properties are expected to be related to work hardening
and deformation texture effects. Further research is here recalled for a deeper understanding of
these correlations.
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