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Abstract: The micro/macro magnetic properties, local element distribution, martensite transformation,
and mechanical properties of 304H stainless wires are determined for two cold drawing chains.
Finite element simulations are used to analyse the local strain and heat generation. The results
show that there is obvious inhomogeneity in the magnetic properties, strain/stress relationship,
and strain-induced heat within the drawn wires. Comparing wires with the same total strain, a larger
area reduction of previous drawing processes contributes to a higher volume of the martensite
phase, while a smaller area reduction of the first process results in an inhibited phase transformation.
A higher single strain in the first drawing process leads to additional heat generation at the subsurface
of the wire, which would eventually retard the martensite transformation. The inhomogeneous
deformation-induced differences in the grain size affect the stability of austenite and transform the
final martensite.

Keywords: cold drawing; 304H stainless steel wire; martensite transformation; magnetic property

1. Introduction

Austenite series stainless steel wires have earned a reputation for their outstanding corrosion
resistance, weldability, and good mechanical properties and surface finish that have made them
widely applicable in the petroleum industry, chemical instrumentation, and nuclear engineering [1].
Cold drawing is the most common wire processing technology and results in refined and fiberized
austenite phases due to dramatic deformations. However, the relatively low stacking fault energy of
austenite allows martensite transformations due to cold drawing [2,3]. The existence of martensite
may cause the assembly to deviate or some other unexpected situations to occur due to its magnetic
properties. Therefore, it is important to perform both theoretical and production research on the regular
deformation-induced martensite (DIM) transformation.

The factors that affect the metastable austenite phase transformation are the chemical composition,
microstructure, temperature, stress/strain characteristics, and their combination [4]. The martensite
transformation criteria rely on the stacking fault energy (SFE) of austenite and the phase transformation
temperature of martensite Ms [5]. Several works have reported that the low SFE (<20 mJ/m?) favours the
phase transformation from austenitic to martensitic (e- or «’-martensitic transformations). Moderate SFE
(20-45 m]J/m?) yield deformations through twinning mechanisms, which leads to twinning-induced
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plasticity (TWIP) [6-8]. Zhang et al. [9] applied the Mossbauer spectrum method and found that when
there are high contents of carbon and carbide-forming elements, a larger driving force is needed for
DIM. Lee et al. [10] studied DIM of Fe-18Cr-10Mn-N austenite steel and concluded that a higher
nitrogen content could inhibit the DIM. Furthermore, DIM is eliminated at nitrogen concentrations
above 0.5 wt%.

In addition, the grain size of austenite (and other factors) can significantly influence SFE.
Kisko et al. [11] demonstrated that when the grain size is larger than 1.5 pm, the strain-induced
martensitic transformation rate decreases for smaller grain sizes. Shin et al. [12] discussed the
relationship between the strain rate and DIM to show that the volume ratio of martensite is positively
related to the strain. A higher strain rate produces more fault intersections in austenite grains,
which increases the number of nucleation sites of martensite and promotes the transformation of
o’-martensite [13-15]. Nakada et al. [16] studied the content of DIM in 316L austenitic stainless steel
after cold drawing. They found that there is a significantly greater volume fraction of martensite
produced by cold drawing compared with cold rolling due to the differences in the deformation mode
and the number of martensite nucleation sites.

Jayahari et al. [17] compared the DIM for ASS-304 stainless steel under different temperatures and
strain rates. They concluded that higher deforming temperatures suppress the martensite transformation.
In addition, the amount of transformed martensite first increases before decreasing with the deformation
rate. However, the complexity of the cold drawing process necessitates more detailed information about
the microscale deformation of wires. Pouyan et al. [18] reported that there are significant differences
between the axis and subsurface of drawn wires. Therefore, a relationship is found between the
configuration of the drawing pass deformation rate and the local uneven deformation in the steel wire,
while the final martensitic phase variable and magnetic properties need further exploration.

This paper took 304H austenitic stainless steel wire to determine the influence of the drawing strain
on the martensitic transformation in the microzone of austenitic stainless steel. Two drawing chains
were designed with the same total strain and number of passes but different pass strain rates. The phase
and mechanical properties of steel wire were studied using metallographic microscopy, field emission
scanning electron microscopy (SEM), energy dispersive spectrometry, X-ray diffraction (XRD), and a
mechanical testing machine. The macro/micro magnetic properties of drawn steel wires were analysed
using a magnetic flux-meter and magnetic force microscope (MFM). The non-uniform deformation
characteristics of drawn steel wires were analysed via the finite element method (FEM) with the
ABAQUS software (2018, Dassault, Paris, France). The effects of the pass strain rate on martensitic
transformations in stainless steel wires were discussed.

2. Materials and Methods

The commercial 304H stainless steel wire was selected with a chemical composition as shown in
Table 1. The area reduction (AR) is defined as [19]:

Al —A

AR = L % 100% 1)

i-1
where A;_; is the cross-sectional area before the drawing sequence i and A; is the cross-sectional area
after the drawing sequence i.
The true strain ¢ is defined as [19,20]:

e =2In (2—?) 2)

where d) is the diameter of the base wire and d; is the diameter of the wire after the drawing sequence
i. The double-process drawing procedures with different single area reductions were conducted on
the same wire. The drawing die was made of synthetic diamond with an equipped water-cooling
device. At the beginning of the drawing procedures, the base wire was solution-treated at 1100 °C
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for 1 min. The wire was then air-cooled and submerged in an isothermal cleaning solution before
drawing. The wire moving speed remained at 50 m/min. The actual strain, AR, diameter of each wire,
and detected temperature (laser thermometer) are given in Table 2.

Table 1. Chemical composition of 304H stainless steel.

C Cr Ni Si Mn P S Mo N
0.06 17.88 8.11 0.44 1.30 0.032 0.006 0.035 0.1

Table 2. Drawing chains with their deformation parameters and temperatures.

Drawing Chain Sequences Parameters Base Steel 1st Drawn Wire 2nd Drawn Wire
Diameter/mm 2.6 2.14 1.94
Area reduction (AR) 0 32% 18%
Chain A True strain ¢ 0 0.39 0.59
Temperature before and
after drawing/°C 2 44— 186 B8-175
Diameter/mm 2.6 2.35 1.94
Area reduction (AR) 0 18% 32%
Chain B True strain ¢ 0 0.20 0.59
Temperature before and 25 45— 180 31 5 210

after drawing/°C

The cross-sections of each wire were mechanically flattened and polished before etching with a
1.5 wt% CuCl, solution. The microstructure and radial elemental distribution on the wire cross-sections
were observed using optical microscopy, field emission scanning electron microscopy (SEM, FEI Nova
400), and energy dispersive spectrometry (EDS). A Bruker D8-ADVANCE XRD system was used for
the phase analysis, and a LAKE SHORE 480 magnetic meter determined the saturation magnetization
Ms. The tensile properties of the drawn wires were tested on an INSTRON 8801 series machine
equipped with a BLUEHILL module. The microstructures of the drawn steel wire cross-sections were
characterised using the tapping mode of a 5500 atomic force microscope (AFM, Agilent) and a Co-Cr
coated MFM magnetic probe (<60 nm, NSC18, Coercivity 300-400 Oe).

The local deformation and deformation heat of the steel wires during drawing were analysed in
ABAQUS. The two-dimensional axisymmetric model was adopted, the drawing die was constrained
as a rigid body, the steel wires adopted an elastic-plastic model, and the steel wires and die were
treated as hourglass elements with a reduced integral form (CAX4RT). For the input parameters,
the Young’s modulus of the wires was 200 GPa, Poison’s ratio was 0.3, the wire density was 7890
kgm™3, the thermal conductibility was 17 W-m~1-K~1 [21], the specific heat capacity was 500 ]-kg™1-K~!,
and the inelastic coefficient of heat production was 0.9.

3. Results

3.1. Microstructure and Mechanical Properties of Steel Wires During Drawing

Figure 1 shows the microstructure of the base wire after the solution treatment. It is seen that the
wire consists primarily of austenite with an average size of 32 um. Itis also noted that the twin crystal is
inserted in the austenite which formed after solidification. Figure 2 displays the microstructure located
at the 1/4 diameter of the wires after different drawing processes. The increased area reduction caused
the deformation to become more apparent and the number of deform-induced twin crystals increased
in both drawing chains. Specifically, after a one-time drawing pass, the output wire A-1 presented
significantly narrowed and proliferated deformation twins with an average width of 2.6 um. After the
second drawing pass, the output wire A-2 showed a finer grain width of 0.75 pm. For the drawing
chain B, the lower area reduction of the first drawing pass caused undeformed austenite to remain
after a certain number of deformation twins, as seen in wire B-1. However, after the second drawing
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pass, the wire B-2 had a dramatically refined shear band with a mean width of 0.82 pm. Thus, a larger
strain creates more and finer deformation twins, and the obtained microstructures of the wires from
the two drawing chains vary subtly.

Figure 2. Cross section OM micrographs of drawn wires, 1st drawn wire of process A (A-1), 2nd drawn
wire of process A (A-2), 1st drawn wire of process B (B-1), 2nd drawn wire of process B (B-2).

Figure 3 shows the XRD spectrums of the processed wires. The results show that there are four
main diffraction peaks amongst all of the tested wires as v (111), v (220), vy (311), and y (200) [22,23].
At larger AR, the intensity of peaks y (111), v (311), and y (220) diminished for both drawing chains.
Nonetheless, the intensity of the peak y (111) for specimen B-1 was larger than that of A-1 after the first
pass but was comparable after the second pass. In addition, the intensity of peak vy (220) for drawing
chain A was larger than chain B for all passes.
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Figure 3. XRD patterns of two sets of drawn wires, XRD patterns of drawing process A (a) and B (b).

The strength of the wires during the drawing process varied with changes in the area reduction.
As shown in Figures 4 and 5, the nominal tensile strengths of the wires in both processes A and B
increased for larger AR, which is the same trend as the true tensile stress.
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Figure 4. The engineering strain-stress curves of two sets of drawn wires, engineering stress-strain
curves of drawing process A (a) and B (b).

The Hall-Petch formula is 6% = 5 + kyD_l/ 2 [24,25], where 0 is the friction stress of the lattice
(MPa), ky is the Hall-Petch coefficient (Mpa-mml/z), and D is the mean grain size (mm). However, it is
widely accepted that the rheological stress (or yield strength) of metal is positively related to the square
root of the dislocation density [26-28],i.e., 7= Tr+a-Gy pl/ 2 where Tris the frictional coefficient between
the moving dislocation and the lattice defect; a is the coefficient related to the material properties,
dislocation structure, and distribution; G is the shear modulus of the material; b is the Burgess vector;
and p is the dislocation density. Meanwhile, wires made from the two drawing chains had similar
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grain sizes. Thus, it is assumed that the primary reason for changes in the mechanical properties is the

refinement of the austenite grains and increased number of dislocations during drawing.
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Figure 5. The true strain-stress curves of two sets of drawn wires, true strain-stress curves of drawing

process A (a) and B (b).

3.2. Elemental Redistribution on Cross-Sections

The cross-sections of the steel wire after drawing were analysed using SEM and EDS, and the
distributions of the cross-sectional elements in the drawing process were explored. Figure 6 shows
the line scan energy spectrum after smoothing. Table 3 displays the maximum values of the elements
corresponding to the centre and the minimum values corresponding to the edge of the samples.
The figure indicates that the base materials and the drawn steel wires differed. The concentrations of
Cr, Mn, Ni, and Si were unevenly distributed where the contents in the centre were greater than that at
the edges. Among the base metal and the four groups of samples after drawing, the largest difference

between the centre and edge elements was in the B-1 sample.

Sampling counts

Figure 6. Liner scanning of the element distribution on cross section. (The red arrow line

scanning routine).

Sampling counts

is the
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Table 3. The maximum and minimum values of the EDS results for the tested samples.

The Maximum or Minimum Detected

Sample Counting Number of Elements Cr Mn Ni Si
, Max. 1846 134 788 056

Base wire Min. 1788 1.4 752 055
Max. 1830 128 775 056

A-l Min. 1756 104 736 054
Max. 1845 133 756 056

A2 Min. 1765 107 715 056
Max. 1856 124 771 061

B-1 Min. 1771 098 727 059
Max. 1841 113 772 058

B-2 Min. 1779 092 733 057

3.3. FEM Simulation on Drawing Induced Heat Distribution

Figures 7 and 8 show the explicit analysis and simulation using the ABAQUS software.
The simulation curve and cloud diagram of the radial temperature distribution are shown from
the centre to the edge for the drawn steel wire during the deformation stage for the die sizing area. It is
seen in Figure 7 that the contact temperature between the steel wire and the mould was the largest at
the steel wire surface. A larger single-pass strain leads to a higher strain heat and local equivalent strain
amplitude. At a single-pass wire drawing reduction rate of 32%, the maximum surface temperature
reached ~222 °C. At a single-pass reduction rate of 18%, the maximum temperature of the mould
contact surface was ~190 °C. After the second drawing, the yield plasticity parameter of the steel wire
was derived from the uniaxial tensile test, and the stress-strain curve of the steel wire reflects the work
hardening effect. The maximum temperatures of the mould contact surface of the steel wire in the
forming stage under scenarios A and B were ~213 and ~262 °C, respectively. It is noted that when the
steel wire is formed in the mould, the temperature near its core showed little change. The highest
temperature at the centre was for the B-2 sample at ~134 °C, and the smallest was for the B-1 sample at
~68 °C.
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Figure 7. Radial variation of temperature in wires.

Figure 9 illustrates the equivalent plastic strain cloud diagram for the steel wire drawing stage.
The figure indicates that the equivalent plastic strain rate of the drawn steel wire gradually increased
from its core and along the radial direction. For drawing plan A, the maximum equivalent effect on
the side near the A-1 wire drawing contact surface became 0.47 at a wire drawing reduction rate of
32%. During the second drawing, the maximum equivalent effect on the side of the A-2 wire drawing
surface became 0.24. For drawing plan B, the maximum equivalent strain near the B-1 wire drawing
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contact surface was only 0.27 at a wire drawing reduction rate of 18%. When the reduction rate of the

second drawing was 32%, the maximum equivalent effect near the drawing contact surface of the B-2
steel wire became 0.44.

+0.000% 1

B-1 B-2 \

Figure 9. Axisymmetric cloud diagrams of equivalent plastic strain distribution in wires.

It is seen from Figure 10 that the Von Mises stress was concentrated during the wire forming stage.
When the steel wire entered the sizing area, the drawing reduction ratio was 32% and the Von Mises
stress acted on the entire steel wire forming area. When the drawing reduction area rate was 18%, the
steel wire entered the sizing area at the initial Von Mises force, which acted on the full-diameter area.

However, at the latter part of the sizing area, the Von Mises force only acted on the outer 1/2 radius
annulus of the wire.
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A-2

Figure 10. Axisymmetric cloud diagrams of Von Mises stress distribution in wires.
3.4. Magnetic Property Deviation and Local Distribution

Figure 11 shows the relationship between the saturation magnetic induction strength Bs and
the true strain under the two drawing schemes measured using a flux meter. For drawing chains A
and B, as the true drawing strain increased, the saturation magnetic induction strength of the A-1
sample drawn with a second large strain was greater than for the B-1 sample. This suggests that a
larger deformation strain for the single pass leads to a higher saturation magnetic intensity. In the
subsequent second pass drawing process, although the strain variables were different, the A-2 sample
under drawing scheme A had a greater saturation magnetic induction intensity.

w
o

—=— prrocess A
—e— prrocess B

N
©
1

NN
R NI
1 1 1

Saturation magnetic induction (emu/g)
© 5
1 1

T
0.0 0.1 0.2 0.3 0.4 0.5 0.6
strain ¢

Figure 11. Deviation of saturation magnetic induction Bs with the change of strain.

Magnetic force microscopy (MFM) can effectively detect the transformation-induced magnetic
phase in steel and distinguish the untransformed non-magnetic austenite phase [26,27]. The MFM test
was performed using an AFM. A magnetic coated probe was used to measure the surface morphology
of the sample in the tapping mode (AC mode) of the AFM. The needle tip was then raised by 60 nm
and the scanning process was repeated. The core and edge parts of the cross-sections of the steel wires
drawn using the A and B processes were measured in each pass.
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As shown in Figure 12, the austenitisation of the base material after solution treatment was
sufficient as there was no obvious magnetic phase found after the MFM scan. The steel wires drawn
with different deformations in a single pass are compared in Figure 13. The A-1 steel wire drawn with
a reduction of 32% in a single pass possessed a clear magnetic area in the MFM results. No apparent
magnetic phase was observed at the edge of the A-1 steel wire, there were intersecting deformation
twins in the cross-section of steel wire B-1 in the AFM mode. No apparent magnetic phase was found
in the core and edge of the cross-section of the steel wire, and the characteristics of the deformed twins
were observed on the B-1 edge.
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Figure 12. The AFM topography and MFM images of different region in base wire.
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Figure 13. The AFM topography and MFM images of the 1st drawn wires.

4. Discussion

4.1. Effect of Elements on Phase Transformations

SFE is detrimental to austenite phase transformations during deformation. In general, DIM tends to
occur when the SFE is less than 18-20 mJ/m?2 and is entirely inhibited when larger than 18-20 mJ/m? [8,29].
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The deformation is sufficient for the proliferation of partial dislocations and nucleation sites for
o’-martensite when the SFE is low [8,16]. In contrast, a higher SFE in the austenite prefers to generate
intragranular twins during deformation [30,31]. The formula proposed by Schramm-Reed [7] suggests
the element related to the SFE expression is defined as SFE = =53 + 6.2 (%Ni) + 0.7 (%Cr) + 3.2 (%Mn) +
9.3 (%Mo). The maximum and minimum SFE of the wires can be deduced by introducing the detected
elemental deviations from the EDS into this formula (see Table 3). Due to relatively small elemental
deviations, the SFE of all tested wires were within the range to trigger martensite transformation [8,29].

4.2. Synergistic Effects of Grain Size and Temperature on Martensitic Phase Transitions

Austenitic grains undergo severe deformation during wire drawing, and the rapid friction and
extrusion between the drawing die and the wire generate significant heat. Changes in temperature
inevitably lead to changes in the SFE during the drawing process. In addition, as the internal grain
of the wire is significantly refined after the first drawing deformation, the SFE of the steel wire also
changes correspondingly during the second drawing.

Mosecker et al. [32] noted that increases to the deformation temperature promote SFE and
complicate the DIM. Talonen et al. [33] stated that the SFE of austenite materials is linear with
temperature with a slope of 0.1 mJ/(m?-K~!) when temperatures are above ambient. This work applies
the slope and the element-deduced SFE to determine the relationship between the SFE and temperature,
as shown in Figure 14. Saeed et al. [34] proposed the austenite grain size-based SFE formula as:

SFE = 2pAG + 20 + 2pAGey 6)

where p = % #’ is the specific atomic surface density of the crystal plane y (111) [32], N is Avogadro’s
constant, a is the lattice constant, ¢ is the interface energy of austenite and martensite, AG is the
Schramm-Reed [7] solution element-based SFE, and AG,y is the additional grain size-related SFE
expressed as:

AGex = 170.06 exp( 4)

4
18.55
where d is the mean grain size of austenite. Thus, for the same austenite material, a finer grain size
contributes to a larger SFE, which makes it more difficult to transform martensite [35].

[6)]
o
T
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N
o
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Stacking fault energy (mJ/m2)
w
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o
T

0 100 200 300 400
Temperature (°C)

Figure 14. Variation of SFE with the change of temperature.

The grain size affects the phase transformation temperature Ms of martensite as well.
Souza et al. [35] established the relationship between the SFE and Ms as:
370.6

ME(°C) = (364.8 + SF—E) _273.15 5)
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Substituting Equations (3) and (4) into Equation (5), the sigmoid relationship between grain size
and Ms is obtained as shown in Figure 15.

140

135+

130

125

M§ (°C)

120

115 1

110 L L L
1 10 100

Grain size (um)

Figure 15. Variation of Ms with the change of grain size.

When the temperature for austenite deformation is above 100 °C, the value of SFE is greater
than 20 mJ/m?. In this case, forming the deformation-induced martensite on the wire subsurface
becomes difficult [29-33,36]. According to the FEM results, the maximum temperature of wire A-1
reached ~222 °C (Figures 7 and 8). At these temperatures, the DIM in austenite is still hindered
though it experienced a dramatic deformation. Nevertheless, the centre part of wire A-1 underwent a
considerable deformation rate (>0.39, Figure 9) and was the same level of stress as the edge of wire
A-1. However, the deformation-induced heat was relatively low (<110 °C). Meanwhile, the initial
grain size of the base material at the first drawing was approximately 32 um, which corresponds to a
martensite transition temperature Ms of ~135 °C. Therefore, some austenite structures in the core were
transformed into martensite under strain, as shown in Figure 13.

The strain level of wire B-1 was low (<0.2). According to Olson and Talon [31,33], the austenite
cannot readily transform into martensite when the temperature is above 50 °C and the strain is <0.2.
Thus, the high temperature at the centre of the wire B-1 and relatively low strain level (~0.24) gives
a negligible magnetic phase measurement. This is the same as the edge part of wire B-1. The XRD
results show that during the first drawing pass, the decrement of the 'y (111) phase peak intensity for
chain B was larger than that for A (see Figure 3). Some reports have demonstrated that the stacking
faults of face centred cube materials were strongly dependent on the y (111) plane [6,7]. This implies
that a larger decrease in the vy (111) phase intensity reflects additional crystal twin formations rather
than martensite [33]. Furthermore, after drawing twice, the grain size of wire A-2 was below 10 um.
The calculated relationship depicted in Figure 15 and the FEM simulated temperature show that the
relatively low deformation heat increased the feasibility of the DIM in wire B-2. Under drawing plan
B, the internal grain size of the B-1 steel wire was larger after the first pass, which still satisfied the
martensite transformation temperature but the second pass strain was greater (the area reduction rate
is 32%). This results in a greater deformation temperature, which suppresses a portion of the martensite
transformation. Thus, the B-2 steel wire had lower macroscopic magnetic properties than the A-2.

It is noted that although the drawing temperature satisfies the condition that no martensite was
produced, both A-2 and B-2 steel wires showed some macro-magnetism. The relationship between the
austenite martensite transformation and temperature and the deformation stress can be represented
with the schematic diagram shown in Figure 16 [5]. The figure shows that there are two transformation
mechanisms for martensite: stress and strain-induced transformation of martensite. A stress-induced
martensite transformation will occur when the stress is less than the yield stress and the transition
temperature is between Ms and Ms (0). A strain-induced martensite transformation occasionally occurs
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when the stress is greater than the austenite yield strength and the temperature is between Ms (¢) and
Md. Although the finite element simulation results show that the second pass temperature condition
inhibits the martensite transformation, in the actual wire drawing processes, the grain distribution
inside the wire is uneven, especially after one pass. The actual strain of the grains at the inner part of
the wire is also much greater than in the simulations, causing strain-induced martensite transformation.
Thus, there was martensite could be detected in the wires A-2 and B-2.

p Strain Induced Martensite
¥

- Stress
g Induced
@ Martensite
Ms Ms (o) Md
| | |
Temperature

Figure 16. The simplified schematic representation of the different phase transformations that occur
under either an applied constant or increasing stress as a function of the deformation temperature.
The stress where the phase transformation begins is at the yield strength, oy.

5. Conclusions

This paper focused on 304H austenitic stainless steel and designed a pair of two-pass drawing
schemes using the same total drawing variable but at different strain rates per pass. The microstructures,
elemental distributions, mechanical properties, and micro/macro magnetic properties for all output
wires were analysed. The effects of the drawing deformation and deformation heat on the phase
transformation of the steel wires were studied using finite element simulations. The main conclusions
are as follows:

1. The order of the strain rate configuration for the second pass affects the micro-region martensitic
transformation behaviour of the steel wire. The first pass had a larger area reduction rate, while
the later pass was smaller and more o’-Martens occurred inside the wire. The smaller former
pass inhibited the «’-martensite phase transformation.

2. The temperature of the drawing contact surface was significantly higher than that of the centre
area, and the drawing equivalent strain rate also followed the same law. The unevenness of
the local drawing strain caused a greater single-pass drawing strain rate. Thus, there was more
surface deformation heat when the steel wire was formed in the mould, which significantly
suppressed the transformation of austenite to martensite on the steel wire surface.

3. The difference in the radial element distribution of the steel wire was not the primary factor that
affected the uneven transformation of martensite inside steel wires. Instead, the inhomogeneous
thermal distribution of the deformation during the drawing process of the steel wires and the
grain refinement that affects the austenite SFE were the main reasons.

4. In the production of steel, reducing the area reduction of the first drawing pass will be effective
and efficient during the process of producing austenitic wire with a low level of magnetism.
On the contrary, enlarging the area reduction of the first drawing pass will also result in the
detectable magnetism of wires.
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