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Abstract: A novel chamfered mold is developed to solve the problem of corner transverse cracking
in micro-alloyed steel slabs. The shape of the slab was changed from four corners and sides to
eight corners and sides due to the use of a chamfered mold. Based on numerical simulation,
the solidification and heat transfer of different steel grades in the mold are studied. The results reveal
rapid solidification shrinkage of molten steel in the upper area of the mold and slow solidification
shrinkage in the lower area; thus, a double-taper mold is designed according to these results. The first
area of the variable taper falls in the range of 250–400 mm from the top of the mold, and the design
method of double inclined water channels in the chamfered face is found to be the most helpful
for the formation of a uniform initial shell and reducing hotspots of the mold. Actual production
results show that the quality of the slab is better when the heat flux of the narrow face is larger than
that of the broad face. Corner transverse cracking in micro-alloyed steels is greatly reduced from an
incidence of 4.2% to less than 0.3%. In addition, the chamfered mold is applied in IF (interstitial free)
steel production, and the edge quality of hot rolled sheets is found to also be dramatically improved.
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1. Introduction

Corner transverse cracks, which usually occur in the slab continuous casting and appear along
vibration marks at the corners of slabs, have attracted global attention regarding the formation
mechanism of this defect [1,2]. The deformation is induced by thermal contraction during the δ-to-γ
transformation [3], and the plasticity of the slab is poor due to the transformation from austenite to
ferrite at approximately 900 ◦C. In addition, corner transverse cracks can easily arise from vibration
marks. Toishi et al. [4] studied the critical strain for crack generation as measured by high-temperature
tensile tests and simulation and found that the depth of the oscillation marks had a greater influence
on crack formation than changes in the width. Tanaka et al. [5] found that positive and negative
segregation at the vibration marks also aggravated the generation of corner transverse cracks.

Corner transverse cracks of Nb, V, and Ti micro-alloyed steel slabs with a carbon content
of 0.07–0.17% are more serious than those of other alloys due to precipitation at austenite grain
boundaries [6]. The hot ductility of typical steels has been measured; the temperatures in the third
brittle zone are concentrated mostly between 700 and 900 ◦C, and the actual temperatures of slabs
at the stage of bending and straightening measured by infrared temperature probes lie within this
temperature range [7–9]. Some scholars have also studied the obvious correlations between the surface
microstructures of slabs and cracks. They found that coarser austenite grains reduce the hot ductility

Metals 2020, 10, 1289; doi:10.3390/met10101289 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
http://www.mdpi.com/2075-4701/10/10/1289?type=check_update&version=1
http://dx.doi.org/10.3390/met10101289
http://www.mdpi.com/journal/metals


Metals 2020, 10, 1289 2 of 18

and promote cracking. For hypo-peritectic steels in particular, the uneven solidification front leads to
grain coarsening, which aggravates crack generation [10–12].

To solve these problems, Toru KATO developed the technique of SSC (surface structure control
cooling); this method prevents transverse cracking and enables microstructure control by a dispersion
of uniform fine precipitates, such as (Ti, Nb) (C, N) [13]. However, to realize SSC cooling, the equipment
must be reconfigured, which does not only affect production but also increases the required
facility investment.

According to the above analysis, it is challenging to solve the problem of corner transverse
cracking during the slab continuous casting using traditional measures. In response, some studies
have implemented chamfered mold technology. Analyses have indicated that when a chamfered face
is designed with a single water channel, the cooling effect of the face is insufficient and cannot meet
the requirements of slab production at a high casting speed [14]. The variable taper of the narrow face
of the mold is 240 mm from the top of the mold, while the variable taper actual contact area of the
narrow face with molten steels is only 140 mm from the top of the mold, which cannot completely
cover the area with large shrinkage during the continuous casting process of medium carbon steels
and hypo-peritectic steel. Moreover, when the chamfered face is cooled by two or three water holes
and one water channel, the cooling effect of the face remains insufficient and still fails to meet the
requirements of slab production at high casting speeds [9,15–18].

Based on the above analysis, the solidification and heat transfer behavior of different molten steels
in a chamfered mold were studied in the present study, and a new water channel in the chamfered
faces and a variable taper area were designed. As a result, the flawless production of ultralow carbon,
low carbon, medium carbon, and hypo-peritectic steels under high speed was realized.

2. Mathematical Models

2.1. Calculation Model of Thermal Shrinkage

To establish a reasonable taper of a narrow face in a mold, this paper studies the thermal shrinkage
behavior of different steel grades in a mold, and a two-dimensional slice model with a moving
coordinate system is used to evaluate the thermal shrinkage of a slab in a mold.

2.1.1. Mesh Division

Considering the symmetry of the structure and boundary conditions, one quarter of the slab is
modeled to save the calculation time, the average mesh size is 0.0043 m. The calculation domain and
mesh division details of the model are shown in Figure 1.
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2.1.2. Heat Transfer Equation

According to the two-dimensional slice hypothesis, the simplified equation of slab solidification
heat transfer is expressed by Equation (1) [19,20].
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where T is the temperature, keff is the effective thermal conductivity, ρ is the material density, L is the
latent heat of fusion, fs is the solid phase rate, Cp is the specific heat capacity of the material, and t is
the time.

2.1.3. Heat Transfer Boundary Conditions

Center of the Slab:
Heat transfer in the slab is symmetrical about the central axis, and the heat transfer boundary

of the central symmetrical axis can be regarded as an adiabatic boundary, which is expressed by
Equations (2) and (3).

− k
∂T
∂x

= 0, (2)

Surface of the Slab:

−k
∂T
∂x

= A− B
√

t, −k
∂T
∂y

= A− B
√

t, (3)

A, B is the constant of instantaneous heat flux calculation at different positions in the casting
direction in the mold.

A = 2680000 W/m2 (4)

B = 1.5(2680000− q)/

√
Lm

v
(5)

q is the average heat flux of the mold, which is expressed by Equation (6):

q = Cw ×w× ∆T/
(
Se f f × 60

)
W/m2 (6)

Here, Cw—Specific heat capacity of water, J/kg ◦C;
w—Amount of water for mold, L/min;
∆T—Water temperature difference between inlet and outlet of mold, ◦C;
Seff—Effective heat transfer area of mold, m2;
v—Casting speed, m/min;
Lm—Effective heat transfer length of mold, m.
The instantaneous heat flux is calculated according to relevant process data from the broad and

narrow faces, as shown in Table 1.

Table 1. The related process of the mold.

Item Numerical Value

Amount of water for broad face, (L/min) 4800
Water temperature difference of the broad face of the mold, ◦C 5.5

Amount of water for narrow face, (L/min) 510
Water temperature difference of the narrow face of the mold, ◦C 7.0

2.2. Thermomechanical Coupling Model

To study the influence of the cooling water channel design in the chamfered mold during the
slab continuous casting, a thermo-mechanical coupling model based on the 2D slice hypothesis is
established to evaluate the uniformity of narrow face cooling in the mold.
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2.2.1. Mesh Division

The model includes a copper plate and slab. Based on the symmetry of physical conditions and
boundary conditions, 1/4 of the slab is selected for calculation in the domain of the model. There are
10,650 units with an average size of 0.002 m and 3765 of mold units with an average size of 0.004 m,
which is shown in Figure 2.
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2.2.2. Thermomechanical Boundary Conditions

Symmetrical Boundary:
According to the symmetry, the center of symmetry between the slab and the copper plate should

be an adiabatic boundary, meaning that the perpendicular heat flux should be zero, which can be
expressed by Equation (7).

q = 0, (7)

If no heat transfer boundary condition is applied to the boundary, it is automatically treated as an
adiabatic boundary in the finite element calculation. In addition, a fixed displacement boundary is
applied in the direction perpendicular to the symmetry line, which can be expressed by Equation (8).

ux = 0, (8)

Outer Surface of the Mold:
The convective heat transfer occurs between the external surface of the mold and the cooling

water, and the heat flux can be determined by Equation (9).

Q = hw(TM−out − Tw), (9)

Here, Q is the heat flux; TM-out is the temperature at the surface of the copper channel; and Tw is
the cooling water temperature of the mold; hw is the heat transfer coefficient of the cooling water of the
mold, which is determined through Equation (10).

hw ×DH

kw
= 0.023×

(
ρwuwDH

µw

)0.8(CPwµw

kw

)0.4

(10)

Thermophysical data to calculate the hw are given in Table 2.
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Table 2. Physical property data of primary cooling water.

Item Numerical Value

Hydraulic diameter of cooling channel (DH), mm 5
Thermal conductivity of cooling water (kw), Wm−1 K−1 0.614

Density of cooling water (ρw), kg m−3 1 × 103

Flow velocity of cooling water (uw), m s−1 7.0
Viscosity of cooling water (µw), N s m−2 7.92 × 10−4

Specific heat of cooling water (CPw), J kg−1 K−1 4.178 × 103

Heat Transfer between the Slab and the Copper Plate:
Obtaining the interface state between the shell and hot surface of the mold copper plate is the key

point of coupling the temperature field and the stress field in the continuous casting mold. In the model,
the heat transfer between the mold and the copper plate is coupled by the secondary development
subroutine according to the contact state.

The thermal boundary condition between the solidified shell surface and the mold wall is modeled
using the interfacial heat transfer coefficient which is a function of air gap thickness and temperature of
slab surface [21]. The heat flux transferred from the solidified shell to the mold wall could be described
by the following equation:

q = h f × (Tb − Tm−in) (11)

In which, q is the heat flux transferred from the solidified shell to mold wall, W·m−2; Tb is the
temperature of solidified shell surface, K; Tm-in is the temperature of mold wall inner surface, K; hf is
the interfacial heat transfer coefficient between the solidified shell and mold wall depending on the air
gap size, W·m−2

·K−1, which is calculated through the self-developed subroutine.

2.3. Steel Grade Parameters

2.3.1. Composition of Different Steel Grades

In the study, 510L and Q345X are selected as the research materials. The compositions are shown
in Table 3.

Table 3. Compositions of the different steels (wt%).

Steel Grade C Si Mn P S

Q345X 0.16 0.35 1.3 0.012 0.016
510L 0.10 0.20 1.2 0.014 0.008

The liquidus temperature and solidus temperatures are shown in Table 4.

Table 4. Liquidus and solidus temperatures of the steels.

Steel Grade Liquidus Temperature (◦C) Solidus Temperature (◦C)

Q345X 1511 1449
510L 1519 1479

2.3.2. Coefficient of Thermal Expansion

According to the transformation law of steel in solidification processes, the linear expansion of
the slab within the solidification temperature range can be calculated [22], which is shown in Figure 3.
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2.3.3. Constitutive Equation of Slab Deformation

The deformation behavior of the slab in the model is described by a constitutive equation based on
the stress, inelastic strain, temperature, and time as proposed by Kozlowski et al. [23], and expressed
as Equations (12)–(16).

.
ε = Cexp( −

Q
T
)σntm (12)

C = 0.3091 + 0.2090(%C) + 0.1773(%C)2 (13)

Q = 17160 (14)

n = 6.365− 4.521× 10−3T + 1.439× 10−6T2 (15)

m = −1.362 + 5.761× 10−4T + 1.982× 10−8T2 (16)

where σ and ε represent the equivalent stress and creep rate, respectively.
The elastic modulus and Poisson ratio of the slab and copper plate are described by nonlinear

functions of temperature.

3. Results and Discussion

The solidification and heat transfer of molten steel in the chamfered mold change when the slab is
changed from four corners and faces to eight corners and faces. The narrow face of chamfered mold
and common mold are shown in Figure 4.

With this change, it becomes more difficult to ensure the uniform cooling of each face in the mold.
Since the thickness of the copper plate at the chamfered face is thicker than that at the narrow face,
the design of the water channel at the chamfered face is very important. Therefore, it is necessary to
optimize the taper of the narrow face.
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3.1. Taper Design of the Narrow Face

3.1.1. Thermal Shrinkage of Typical Steel Grades

To save the calculation time, 1/4 of the slab is selected for calculation in the model, and the
surface mesh size is smaller than the center mesh size. The medium carbon alloy steel (Q345X) and
hypo-peritectic steel (510L) are 230 mm × 1800 mm in actual production, and the casting speed is 1.1
m/min. The results are as follows.

Figure 5 shows the trend of thermal shrinkage during solidification of the slab for the same casting
speed of Q345X and 510L. The lines in the figure show the trends of thermal shrinkage at different
positions from the surface. The heat flux close to the meniscus is large, the shell is thin, and the thermal
shrinkage of the slab increases with the increasing distance from the meniscus. The areas with large
shrinkage lie 150–300 mm from the meniscus of the mold, and the corresponding larger taper than the
common mold should be used.
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In the solidification process, there is an air gap between the mold and the shell, and the thermal
shrinkage is small, so a smaller taper should be used. It can be found from the calculation that the
solidification characteristics of different steel grades in the mold are different. The shrinkage of the
hypo-peritectic steel in the mold is greater than that of the medium carbon steel. The maximum
shrinkage of the hypo-peritectic steel at 1.24 mm from the surface of slab is approximately 10.0 mm,
and the maximum shrinkage of the medium carbon steel is approximately 7.6 mm.
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3.1.2. The Thermal Shrinkage of Typical Steel Grades with Different Casting Speeds

The thermal shrinkage of Q345X and 510L at different casting speeds are calculated. As shown
in Figure 6, with the increasing casting speed, the thermal shrinkage of the slab gradually decreases,
and the trends of thermal shrinkage at different positions from the surface are essentially consistent.
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The thermal shrinkage coefficient of 510L is larger than that of Q345X. The maximum surface
thermal shrinkages of the Q345X and 510L slabs at different speeds are shown in Figure 7. With the
increasing casting speed, the maximum surface thermal shrinkages of the slabs decrease gradually;
correspondingly, a smaller taper should be adopted. The maximum shrinkage range of Q345X is
7.1–8.5 mm, and that of 510L is 9.5–11.2 mm.
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3.1.3. Taper Design

According to the simulation analysis of Q345X and 510L, considering the design requirements of
the different sections, different casting speeds and different steel grades, the first taper area is 350 mm
from the top of the mold, the second taper area is below the first taper area, the double mold is shown
in Figure 8.
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Through numerical simulation, the narrow face of the mold is designed with a self-taper of
0.6–3 mm. The test results of Q345X are shown in Table 5.

Table 5. Test results of different molds.

Experiment Scheme Distance from the Mold Top/mm Self-Taper/mm Results

1 350 0.8 Good
2 350 1.2 Good
3 350 1.5 Good
4 350 2.2 Longitudinal crack
5 240 1.2 Longitudinal crack
6 0 0 Longitudinal crack

Through a lot of experiments, it is found that the taper of the belt is better than 1.2 mm.

3.2. Design of Chamfered Face Water Channels

3.2.1. Current Situation

The narrow face includes straight and chamfered faces, first, the narrow face of the mold is
designed. There is an inclined water channel in the chamfered face, and the width of the water channel
is 6 mm; the chamfered mold is shown in Figure 9.Metals 2020, 10, x FOR PEER REVIEW 10 of 17 
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The different tapers, casting speeds, and water flowrates of the mold were experimentally tested.
Longitudinal cracks appeared at the corners of the slabs, and the experimental results were not ideal.
The chamfered mold was dissected and observed, and the chamfered face is shown in Figure 10.
There are clearly different colors at the dotted line area, indicating that the copper plate at the dotted
line area exhibits hotspots and therefore that the cooling strength is insufficient.
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3.2.2. Optimal Design of the Water Channels

To analyze the influence of the water channel design of the chamfered mold, different cooling
schemes of the narrow face water channel are designed. The water channel design scheme is shown
in Table 6.

Table 6. Water channel design schemes of the mold.

Scheme Description

1 One single water channel
2 Double inclined water channels

3 One inclined water channel joint and two
round cooling holes

4 Three inclined water channels

The model is simplified to 1/4 of the model. Assuming a good lubrication condition of the powder
at the meniscus and a good contact condition between the molten steel and the copper plate, the thermal
state of the copper plate is calculated. The temperature of the copper plate reflects differences in the
heat transfer capacity at different positions of the mold, which can indirectly reflect the uniformity
of the primary shell of the slab. The simulation results of different molds are shown in Figure 11.
A hotspot (A) appears close to the broad face of the mold. To analyze the difference of each scheme,
the hotspot temperatures are shown in Figure 12. The scheme using one single water channel has the
highest hotspot temperature, and the scheme using double inclined water channels has the lowest
hotspot temperature. The hotspot temperatures of Schemes 3 and 4 lie between these two extremes.

In summary, the heat transfer of the mold near the hotspot area is greatly improved over that
of Scheme 1, and Scheme 2 is expected to better prevent the corner longitudinal cracking than the
other schemes.
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4. Industrial Application

4.1. Heat Transfer Process of the Chamfered Mold

To study the heat flux of the chamfered mold, the heat flux, which is expressed by Equation (5),
industrial tests are carried out. The chamfered mold is applied to one strand, and the common mold is
applied to the other strand. The results are shown in Figure 13. First, the heat flux of the chamfered
mold is studied. The average heat flux of the narrow face (1.58 MW/m2) is larger than that of the broad
face (1.43 MW/m2). The range of ratios of narrow face heat flux to broad face heat flux is 0.96~1.18,
and the average value is 1.1.

Next, the heat flux of the common mold is studied. The heat flux of the narrow face (1.44 MW/m2)
is smaller than that of the broad face (1.51 MW/m2), the range of ratios of narrow face heat flux to
broad face heat flux is 0.86–1.08, and the average value is 0.94. We conclude that the average value of
the chamfered mold and common mold are different.

Based on the analysis of the heat flux value of the narrow face to that of the broad face of the
chamfered mold and common mold, we conclude that the heat flux of the two chamfered faces is
applied to the narrow face, the contact area with the shell increases due to the increase in the chamfered
face area. An air gap exists between the narrow face and the broad face, so the heat flux of the increased
area is transmitted mostly from the narrow face. In addition, due to the increase in the chamfered face
area, the contact area between the broad face and the shell is reduced, so the heat flux from the broad
face is reduced. A 230 mm × 1600 mm section is taken as an example; the contact lengths of the shells
of the chamfered mold and common mold are shown in Table 7.
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Table 7. The contact lengths of the shells of the chamfered mold and common mold.

Mold Length of the Broad Face (mm) Length of the Narrow Face (mm)

Common mold 1600 244
Chamfered mold 1540 264

Chamfered mold/common mold 0.96 1.08

4.2. Study on Cooling of the Chamfered Mold

The relationship between the amount of water for the narrow face and the water difference
between inlet and outlet of mold is studied. The operating conditions as shown in Figure 14 are given
in Table 8.
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Table 8. Operation conditions of continuous casting.

Steel Grade Slab Width Slab Thickness Casting Speed

Q345X 1600 mm 230 mm 1.1 m/min

As shown in Figure 14, the water temperature difference of the narrow face gradually decreases
from 9.35 to 6.58 ◦C as the amount of water for the narrow face increases from 460 to 600 L/min. Notably,
as the amount of water for the narrow face increases from 540 to 600 L/min, the water temperature
difference does not change much. Thus, the longitudinal crack control benefits from 540 to 600 L/min.

4.3. Research on Taper Control of the Chamfered Mold

The taper control of a double-taper mold is different from that of a common mold. The average
taper can reflect the shrinkage of molten steel better when molten steel solidifies in the mold, so the
same average taper is adopted for different slab widths. The taper control of different widths is shown
in Figure 15.
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4.4. Application Effect of the Chamfered Mold

The chamfered mold is used for the production of the steels with carbon content below 0.8%,
including ultra-low carbon steel, low carbon steel, hypo-peritectic steel, medium carbon steel, and high
carbon steel.

The chamfered mold is shown in Figure 16a, and the slab produced by the chamfered mold is
shown in Figure 16b.Metals 2020, 10, x FOR PEER REVIEW 15 of 17 
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Figure 16. Chamfered mold and chamfered slab. (a) Chamfered mold; (b) Chamfered slab

Through the use of chamfered mold, the corner temperature of chamfered slab is increased by
30–80 ◦C compared with that of the common mold. The increase of temperature is closely related to
the continuous casting parameter, the design of chamfered mold water channels, and the size design.
The increase of corner temperature is beneficial to the control of transverse corner crack and edge
defect of the hot rolled sheet.

Figure 17 shows the corner transverse cracks of the slab and the edge defects of the hot rolled
sheet obtained with the common mold.
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Figure 17. Production defects using the common mold. (a) Corner transverse cracks; (b) Edge defects
of the hot rolled sheet.

(1) The incidence of transverse corner cracks is the number of slabs with corner cracks detected
divided by the total number of slabs detected.

(2) The incidence of edge defects is the number of the hot rolled sheet with edge defects detected by
the total number of hot rolled sheet detected.

The transverse corner cracks are checked by scarfing, and then by visual inspection. When the
transverse corner crack appears on the slab, it is recorded as the slab with transverse corner crack.
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The edge defects are detected by the Pepsi Instrument, when the edge defects appear at the edge of the
sheet, it is recorded as the edge defect of the sheet.

The corner transverse cracks of the slab and the edge defects of the hot rolled sheet are substantially
improved by application of the chamfered mold.

The steels of carbon content from 0.07% to 0.20% with the chamfered mold technology, the incidence
of corner transverse cracks decreases from 4.2% to 0.4%, as shown in Figure 18.Metals 2020, 10, x FOR PEER REVIEW 16 of 17 
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Figure 18. The incidence of corner transverse cracks.

When the chamfered mold is applied to the IF steel (carbon content below 0.02%) casting, the edge
defects of the hot rolled sheet are notably improved; the incidence of hot rolled sheet edge defects
decreases from 4.7% to 0.6%. The maximum casting speeds of the ultralow carbon and hypo-peritectic
steel are 1.6 and 1.4 m/min, respectively.

5. Conclusions

(1) The shrinkage of hypo-peritectic steel in a mold is larger than that of medium carbon steel.
A double-taper mold is designed according to experimentally obtained characteristics. The first
area of the variable taper falls in the range of 250–400 mm from the top of the mold, the best area
is 350 mm and the self-taper is within the range of 0.6–3 mm.

(2) The design method of double inclined water channels in the chamfered face is the most helpful
for the formation of a uniform initial shell and for reducing mold hotspots.

(3) The average heat fluxes of the broad and narrow faces are 1.43 and 1.58 MW/m2, respectively.
The heat flux of the narrow face is larger than that of the broad face. The range of heat flux ratios
of the narrow face to the broad face is 0.96–1.18.

(4) When the amount of water for the narrow face increases from 460 to 600 L/min, the water
temperature difference between the inlet and outlet of mold decreases from 9.35 to 6.58 ◦C.
When the amount of water increases from 540 to 600 L/min, the water temperature difference
does not change much.

(5) After the chamfered mold technology is applied, the incidence of corner transverse cracks
decreases from 4.2% to 0.4%, and the incidence of hot rolled sheet edge defects decreases from
4.7% to 0.6%.
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