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Abstract: In the present work, mathematical modeling combined with measurement of the velocities
near mold surface with rod deflecting method at the high temperature was carried out to optimize
the flow field of slab continuous casting mold with medium width of 1230 mm for the production of
an automobile exposed panel. The results show that the measured results of the velocities near the
mold surface are in good agreement with the calculated results. The velocities near the mold surface
increase with increasing the casting speed and decreasing the argon gas flow rate. When the casting
speed is increased from 1.0, to 1.3, 1.5, and 2.0 m/min, the flow pattern in the mold is changed from
single-roll flow (SRF), to unstable flow (UF), and then to double-roll flow (DRF), the top surface level
fluctuations has the smallest value at 1.5 m/min. When the argon gas flow rate is 1 and 4 L/min, the
velocity near the mold surface has a moderate value, and the flow pattern in the mold is DRF and
the top surface level fluctuation is small and symmetrical. When the submerged entry nozzle (SEN)
submergence depth is increased to 200 mm, the velocities near the mold surface decrease, and the
top surface level fluctuation becomes small. The optimized flow field in the mold can be judged to
be favorable to the surface quality of the automobile exposed panel; if the velocities near the mold
surface are relatively small, the flow pattern in the mold is DRF and the top surface level fluctuation
is small and symmetrical.

Keywords: high temperature measurement; surface velocity; flow pattern; top surface level
fluctuation; continuous casting mold; automobile exposed panel

1. Introduction

The production of automobile exposed panel covers different processes, including steelmaking
processes, such as hot metal pretreatment, converter blowing, secondary refining, continuous casting,
as well as processes after steelmaking, such as hot rolling, cold rolling, and hot-dip galvanizing. The
surface defects of the automobile exposed panels caused by the steelmaking process usually can’t be
detected until the final quality inspection process of the hot-dip galvanizing sheet. The defects caused
by steelmaking are interwoven with the defects caused by the multiple processes after steelmaking,
making them difficult to be identified, judged, and improved.
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The surface defects of automobile exposed panels caused by steelmaking are mainly classified
into inclusion defects [1–3], mold powder entrapment defects [3,4] and bubble defects [3,5], which are
all mainly formed in the continuous casting molds. Therefore, the flow field in the mold has a great
impact on the surface quality of automobile exposed panel.

It is now widely accepted by the steelmaking researchers that there are three flow patterns in the
mold with bifurcated submerged entry nozzle (SEN). The first flow pattern is classic double-roll flow
(DRF). The second flow pattern is single-roll flow (SRF) was firstly reported by Andrzejewski et al. [6]
and Kohler et al. [7]. The last one is the unstable flow (UF), which is a kind of complex flow between
DRF and SRF [8]. By comparison to DRF, many studies have shown that SRF and UF can increase the
probability of forming surface defects on slabs [9–13].

The influence of continuous casting process parameters on the flow field has been extensively
studied. Gupta et al. [14] studied the flow oscillation frequency for different mold dimensions, SEN
positions and its configurations, and casting speeds using water modeling and found that an upward
SEN port angle and increase of casting speed increase the frequency of flow oscillation significantly.
Using particle image velocimetry (PIV) and mold flow control (MFC), Dauby et al. [15] reported that
the incidence of surface defects on the slab under unstable flow is four times that of steady flow.
Using numerical simulation, Kubo et al. [16] indicated that injection of argon gas from SEN reduces
molten steel flow momentum at the nozzle exit and the surface velocity, and the direction of surface
velocity changes at a large argon gas flow rate. Zhang et al. [12] found that the SRF is generated under
the conditions of large gas injection, small SEN submergence depth, and low casting speed using
water modeling. Using PIV, ultrasound velocimetry (UV) and computational fluid dynamics (CFD)
simulation, Ramos et al. [17,18] demonstrated that shallow SEN submergence depth is beneficial to
form SRF, which tends to induce unstable meniscus fluctuation. Asad et al. [19] showed that reduction
of the casting speed leads to a decrease in the mean wave amplitude on the mold surface, and the
presence of the SRF leads to the occurrence of large-scale standing waves by use of Unsteady Reynolds
Average Navier–Stokes (URANS) modeling. Deng et al. [20] concluded that the casting speed/mold
width ratio index (CMI) and argon injection rates are the dominant factors that determine the flow
pattern in the slab mold.

About the measurement of the velocities near the mold surface at high temperature,
Cho et al. [21–23] made use of the nail board dipping measurement method to validate the model
calculation results of CFD and found that the surface level profile is the lowest with the highest stability
at 1/4 width of mold, and surface flow mostly moves towards to the SEN, which means only the DRF
was taken into consideration. However, based on the small and unstable height of the slope on the
nail to deduce the velocity, the measurement accuracy is relatively low with the nail board dipping
measurement of the velocities near the mold surface.

Although a great deal of investigation on flow field in the mold of continuous casting has been
done, the top surface fluctuation features of mold associated with flow patterns have received much
less attention, which are the direct causes of surface defects on the steel sheet product. Furthermore,
it is urgently required to measure the velocities near the mold surface in the practical continuous
casting process with much-elevated accuracy to help control the flow field in the mold and verify the
numerical calculated results.

In the present work, for optimizing the flow field in the continuous casting mold of slab with
medium width of 1230 mm for automobile exposed panel production, a rod deflecting method for
directly measuring velocities near the mold surface at a high temperature was used to quantify the
velocities near the mold surface, confirm the flow patterns, and verify the numerical simulation results.
The influence of casting speeds, argon gas flow rates, and SEN submergence depths on the velocities
near the mold surface, the flow pattern, and the top surface level profile in the mold were investigated
using the verified mathematical model.
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2. Rod Deflecting Method for Measuring Velocities near the Mold Surface

A rod deflecting method for measuring velocities near the mold surface is a new method for
directly measuring the velocity near mold surface at the high temperature, which is composed of the
velocity measuring rod, the deflection bearing, the deflection angle indicator, the deflection pointer,
and the equilibrator. This method can measure the magnitudes and directions of velocities at the
different positions on the mold surface, and then can determine the flow pattern of the molten steel
in the mold according to the direction of the surface velocities. The details about the rod deflecting
method for measuring velocities near mold surface can be referred to in our previous work [24]. In the
present work, the velocities at two locations on the mold top surface are measured. One is 1/4 of the
width of the mold and the other is 10 cm from the narrow wall both at the thickness centerline. The
velocity measuring rod made of stainless steel can stay in the molten steel for about 30 s before it is
melted, and about 10 pieces of data can be collected for each measuring rod. Under each experimental
condition, three velocity measuring rods are used to measure the velocity of molten steel near the
surface and over 30 pieces of data are consecutively collected for one heat to ensure the reliability of
the measurement results.

3. Numerical Simulation

3.1. Fluid Flow Model

The flow of an incompressible fluid is described by mass balance (continuity) and momentum
balance (Navier–Stokes) equations, which are expressed as follows:
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where ρ is the fluid-phase density; u is the fluid-phase average velocity; p is the pressure; µl is the
dynamic viscosity of molten steel; µt is the turbulent viscosity; Fi in Equation (2) is the source term
for momentum exchange with the bubbles, representing the drag force, the gravitational force, the
buoyancy force, the lift force, the virtual mass force, and the pressure gravity force, respectively; k is
the turbulent kinetic energy; ε is the turbulent kinetic energy dissipation rate; Cµ is a constant, 0.9.

The standard k-ε model is used to model turbulence [25], the following transport equations of k
and ε are solved:

∂(ρk)
∂t

+
∂
(
ρui

)
∂xi

=
∂
∂xi

[(
µl +

µt

σk

)
∂k
∂x j

]
+Gk−ρε, (4)

∂(ρε)

∂t
+
∂
(
ρuiε

)
∂xi

=
∂
∂xi

[(
µl +

µt

σε

)
∂ε
∂x j

]
+C1

ε
k

Gk −C2ρ
ε2

k
, (5)

Gk= µt

(
∂ui, j

∂x j
+
∂ui, j

∂xi

)
∂ui, j

∂x j
. (6)

In the above equations, σk, σε, C1, and C2 are constants, whose values are 1.0, 1.3, 1.44, and
1.92, respectively.
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3.2. Lagrangian DPM Model

To calculate Fi for Equation (2), the Lagrangian discrete phase model (DPM) model solves a force
balance on each argon bubble:

mAr
duAr

dt
= Fd + Fg+Fb+FL+Fvm + FP. (7)

The terms on the right-hand side of Equation (7) are the drag force (Fd), the gravitational force
(Fg), the buoyancy force (Fb), the lift force (FL), the virtual mass force (Fvm), and the pressure gravity
force (Fp). The details about all forces can be referred to in our previous work [24].

3.3. Simulation Details

The computational mold domain is a full real caster, including SEN and the top 3000 mm of
liquid pool in the mold and strand as shown in Figure 1a. This domain consists of about 0.52 million
hexahedral cells. The details of the SEN, the mold dimensions, and the process parameters are given
in Table 1.
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Figure 1. Computation domain for full mold simulation: (a) geometry and mesh for mold; (b) mesh
for SEN.

According to the molten steel flow rate and the surface area of inlet, constant velocity is fixed as the
inlet condition at the top surface of SEN. Small values of the turbulent kinetic energy of 10−5 m2/s2 and
the turbulent kinetic energy dissipation rate of 10−5 m2/s3 are fixed at the inlet. An outflow condition
is chosen on the domain bottom at the mold exit. The top surface of the slab mold is assumed to have
a fixed and free-slip condition. In addition, all the walls of the mold are assumed to be stationary
and no-slip. The unsteady simulations are chosen to describe the movement of molten steel in the
mold because of the time-varying flow field in the actual mold. For the present work, the time step
for the simulation is 0.005 s, and the total time of calculation for casting process is 30 s since the flow
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field in the mold has reached a relatively stable state. Thus, the values for the simulated results after
calculation for 30 s are presented in this paper.

Table 1. Continuous caster dimensions and process conditions.

Parameters Values Parameters Values

Mold width (mm) 1230 SEN inside diameter (mm) 78
Mold thickness (mm) 230 Steel density (kg/m3) 7020

SEN submergence depth (mm) 110, 140, 170,200 Steel dynamic viscosity
(kg/(m·s)) 0.0056

Casting speed (m/min) 1.0, 1.3, 1.5, 2.0 Argon gas flow rate (L/min) 1, 4, 10, 15
SEN port angle −20◦ Argon gas density (kg/m3) 0.27

SEN port area of width ×
height (mm ×mm) 75 × 75 Argon bubble diameter (mm) 2.5

For DPM mold calculation, the argon gas is injected through inlet with uniform bubble size of
2.5 mm [26–29]. An escape condition is adopted at the domain bottom exit and the top surface. A trap
condition is employed at the walls of mold. Furthermore, a reflection condition was defined for the
walls of SEN.

4. Results and Discussion

4.1. Effect of Casting Speeds

Figure 2 is the comparison of the calculated and measured surface velocities at different casting
speeds under the fixed conditions that the mold width is 1230 mm, the argon gas flow rate is 4 L/min,
the SEN submergence depth is 170 mm, and SEN port angle is −20◦. Figure 2a shows the effect of the
different casting speeds on the velocities of molten steel near mold surface along the mold thickness
center plane. The results show that the velocities near mold surface increase with increasing casting
speed because of increasing mean velocity of molten steel exiting SEN ports and lowering the argon
gas volume fraction, which encourage higher surface velocities [28].

Under the same process parameters, the transient model of molten steel and argon gas using
coupled the URANS model and Lagrangian DPM model was validated by comparing the predicted
surface velocities with the measured values from the rod deflecting method for measuring velocities
near the mold surface. The comparison of calculated and measured velocities near the mold surface
with different casting speeds at 10 cm from a narrow wall is shown in Figure 2b, and the comparison at
1/4 width of mold is shown in Figure 2c. In the figure, the red symbols are the mean velocities from
the rod deflecting method, and the error bars indicate the standard deviation. Because it is difficult
to increase the casting speed to over 1.5 m/min in the actual field, the maximum casting speed in
measurement is 1.5 m/min. The results show that a very good match is obtained between simulated
surface velocities and the measured results from the rod deflecting method near the mold surface.

Figure 3 shows the flow patterns of simulated molten steel along the mold thickness center plane
at the different casting speeds. When the casting speed is 1.0 m/min, an SRF can be seen in Figure 3a.
Molten steel jet exiting from the SEN port is divided into two parts, A and B. Part A is so weak that it
does not have enough energy to impact the narrow wall of the mold. Under the action of the bubble
floatation, part B moves up to the meniscus where it splits into two parts. A recirculation region is
found near the narrow wall, which is easy to entrap mold powder into the molten steel and forming
serious surface defects if captured by the solidified shell.
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The result in Figure 3b indicates that, when the casting speed is increased to 1.3 m/min, the flow
pattern transforms from SRF to UF. Part A has enough energy to impact the narrow wall and splits
into two parts. Part B moves to the meniscus, but the impact point is just close to 1/4 width of mold.
In addition, the recirculation region at the corner of mold becomes small.

When the casting speed exceeds 1.3 m/min as shown in Figure 3c,d, the flow pattern l in the mold
is the typical DRF under the present process parameters. There are some subtle differences in the
flow field between 1.5 m/min and 2.0 m/min. For the slower speed of 1.5 m/min, the steel jet has a
smaller inclination and the upper recirculation zone shrinks to a very small region near the nozzle.
The flow pattern of molten steel in the mold tends to be stronger DRF with the higher casting speeds of
2.0 m/min.

The top surface level of mold is important because it can reflect the stability of the flow field in
the mold and affect the ability of the molten mold powder to fill into the interfacial gap between the
mold copper plate and solidified shell, which has a great influence on the surface quality of the final
product. Figure 4 shows the top surface levels of mold obtained from the surface pressure results of
the simulation. The top surface liquid displacement (h) was estimated from a simple potential energy
balance [30]:

h =
Pi−Pmean

(ρ steel−ρslag)g
, (8)

where Pi is the pressure at the top surface; Pmean is the mean value of the pressure across the entire top
surface; ρsteel is the density of molten steel; ρslag is the density of top slag whose value is 3000 kg/m3 [31];
and g is the gravitational acceleration rate.
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As indicated in Figure 4, when the casting speed is 1.0 m/min and 1.3 m/min, the flow patterns
are SRF and UF, respectively. In addition, the fluctuation of the liquid level is large asymmetrically,
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especially at the position where the up flow molten steel jet impacts the meniscus. When the casting
speed is 1.5 m/min with the flow pattern of DRF, the top surface level is flat symmetrically. However,
when casting speed increases to 2.0 m/min with strong DRF, the top surface level near narrow walls is
over 5 mm, which means that the liquid slag layer near the narrow surface tends to become thinner [8],
so that hinders slag to enter the interfacial gap between the mold copper plate and solidified shell,
thereby affecting the surface quality of the slab.

It is seen from Figures 2–4 that, when the casting speed is 1.0 m/min, the velocity near the mold
surface has a negative value both at 1/4 width of mold and at 10 cm from the narrow wall. This means
that the velocity near the mold surface is from a narrow wall to the SEN. The flow pattern is SRF and
the fluctuation of the liquid level is large asymmetrically. When the casting speed is 1.3 m/min, the
velocity near the mold surface has a negative value at 10 cm from the narrow wall. The flow pattern is
UF and the fluctuation of the liquid level is also large asymmetrically. At the casting speed of 1.5 m/min,
the flow pattern is DRF and the top surface level is flat symmetrically. Therefore, this casting speed is
favorable [13] to the good surface quality of automobile exposed panel under the conditions that the
mold width is 1230 mm, the argon gas flow rate is 4 L/min, the SEN submergence depth is 170 mm,
and SEN port angle is −20◦.

4.2. Effect of Argon Flow Rates

Argon gas is injected into the mold by SEN, which prevents clogging of the SEN ports, homogenizes
the temperature of the molten steel, and promotes the flotation of inclusions in the mold [32,33].
Meanwhile, argon gas also affects the flow pattern of molten steel in the mold. Figure 5 is a comparison
of the calculated and measured surface velocities at the different argon gas flow rates under the
conditions that the mold width is 1230 mm, the casting speed is 1.5 m/min, and the SEN submergence
depth is 170 mm.
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Figure 5a shows the simulated velocities near the surface with the different argon gas flow rate.
The results show that the velocities of molten steel near the mold surface decrease with increasing
the argon gas flow rate. When the argon gas flow rate was as large as 15 L/min, it was so large that
the velocity measuring rod deflects greatly to adhere to the narrow wall of mold, and the top surface
level fluctuation was also so large that the serious problems of slab surface quality might be arisen,
so the surface velocities at 10 cm from the narrow wall was unable to be measured according to the
requirement of the steel plant. The calculated results are in good agreement with the measured results
as shown in Figure 5b,c.
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When the argon gas flow rate is increased from 1 L/min to 4 L/min, the velocity near mold surface
has changed inconspicuously. The reason is that the molten steel jet has larger inclination with the
smaller argon gas flow rate as shown in Figure 6a, b, which means that the molten steel jet needs to
travel a longer distance to reach the meniscus with more dynamic energy dissipation. When the argon
gas flow rate is 10 L/min and 15 L/min, the velocities near the mold surface become negative values
which mean the flow direction is from SEN to the narrow wall, and indicate that the flow pattern of
molten steel in the mold is changed from DRF to SRF.
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Figure 6 shows the simulated flow patterns of molten steel in the mold at the different argon gas
flow rates. When the argon gas flow rate is 1 L/min and 4 L/min, the flow pattern in the mold is DRF.
However, when the argon gas flow rate is increased to 10 L/min, a significant transformation from DRF
to SRF is observed in the flow pattern as shown in Figure 6c. Figure 6d presents a stable SRF, when
argon gas flow rate is further increased to 15 L/min. It is noted that a stronger SRF pushes the liquid
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slag towards the narrow walls and entraps slag droplets, which tend to bring about the sliver and
blister defects in the final cold rolled product [6].

Figure 7 is the top surface level profile with the different argon gas flow rates. The top surface
level fluctuation symmetrically increases with increasing the argon gas flow rate. The top surface level
fluctuation is small and symmetrical when the argon gas flow rate is 1 L/min as shown in Figure 7a,
but too small argon flow rate is disadvantageous for preventing nozzle clogging and the removal of
the inclusions by bubble floatation. Figure 7c shows that, when argon gas flow rate is 10 L/min, the
level fluctuation at the position of near the SEN and up flow molten steel jet impact point is over 5 mm.
Figure 7d shows that, when the argon gas is 15 L/min, the liquid level fluctuation near SEN exceeds
8 mm, which not only causes the molten slag to be entrapped into the molten steel, but, more seriously,
it may cause the secondary oxidization of the molten steel by opening the slag layer near the nozzle.
The liquid level fluctuations on the left and right sides of the mold show severe asymmetry.
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From Figures 5–7, under the conditions that the mold width is 1230 mm, the casting speed is
1.5 m/min and the SEN submergence depth is 170 mm, when the argon gas flow rate is 1 L/min and
4 L/min, the velocity near the mold surface has a moderate value, and the flow pattern in the mold
is DRF and the top surface level fluctuation is small and symmetrical, which is favorite to the good
surface quality of automobile exposed panel [8,34–37].

4.3. Effect of SEN Submergence Depths

The SEN submergence depth is also an important parameter that influences the fluid flow patterns.
Figure 8 is a comparison of the calculated and measured surface velocities at 1/4 width of mold with the
different SEN submergence depths under the conditions that the mold width is 1230 mm, the casting
speed is 1.5 m/min, and the argon gas flow rate is 4 L/min. Because it is easy to cause defects in the
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surface quality of the slab with the shallow submergence depths of SEN, the minimum submergence
depth of SEN is 140 mm during the measurement according to steel plant requirements. In addition,
there was not also enough time to measure the surface velocities at 10 cm from the narrow wall due to
the production planning. The results show that the velocities near mold surface firstly increase and
then decrease with increasing SEN submergence depth. The calculation results are in good agreement
with the measurement results, both in trend and value.Metals 2019, 10, x FOR PEER REVIEW 11 of 15 
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Figure 8. (a) Simulated velocities near mold surface at different SEN submergence depths;
(b) comparison of calculated and measured velocities near mold surface with different SEN submergence
depths at 1/4 width of mold.

Figure 8a shows the simulated velocities near mold surface with the different SEN submergence
depths. The results show that the surface velocities firstly increase and then decrease with increasing
SEN submergence depth from 110 mm to 200 mm. This can be argued that the higher velocities
near mold surface are obtained when the SEN submergence depth is increased from 110 mm to
170 mm because of the incomplete development of the flow field in the upper circulation zone under
the influence of bubble floatation at the shallower immersion depth [38]. However, when the SEN
submergence depth is further increased from 170 mm to 200 mm, the velocities near the mold surface
decrease. This is because, when the SEN submergence depth is over 170 mm, there is enough room for
upward flow to fully develop a complete circulation zone.

As shown in Figure 9, DRF is obtained when the SEN submergence is 200 mm, 170 mm, and
140 mm, but the DRF is weak with the SEN submergence depth of 140 mm because the upper circulation
zone and the velocities near mold surface are small. The flow pattern of molten steel in the mold
transforms from DRF to UF when the SEN submergence depth is further decreased to 110 mm. The
incomplete upper circulation zone not only reduces the velocities near the mold surface but also
changes the flow pattern of molten steel in the mold.
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The results in Figure 10 show that the top surface level fluctuation become flat and symmetrical
with the SEN submergence depth increased to 200 mm. The SEN submergence depth should be
reasonably controlled to form a stable DRF of the molten steel in the mold.
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From Figures 8–10, under the conditions that the mold width is 1230 mm, the casting speed is
1.5 m/min and the argon gas flow rate is 4 L/min, when the SEN submergence depth is 110 mm, the flow
pattern is UF, which is not beneficial to the surface quality of automobile exposed panel [15]. When
the SEN submergence depth is changed from 110 mm to 140 mm, the top surface level fluctuation
becomes large. When the SEN submergence depth is changed from 140 mm to 170 mm, the top surface
level fluctuation becomes larger, and the velocities near the mold surface increase. When the SEN
submergence depth is increased to 200 mm, the velocities near the mold surface decrease, and the top
surface level fluctuation become small, which is most likely to favor the surface quality of automobile
exposed panel in the present conditions.

5. Conclusions

In the present paper, the effects of the casting speeds, the argon gas flow rates, and the submergence
depths of the submerged entry nozzle (SEN) on the velocities near the mold surface, the flow patterns
and the top surface level fluctuation in the mold with the medium width of 1230 mm were investigated
with the mathematical modeling and high-temperature measurements of the velocities near the mold
surface. The conclusions are summarized as follows:

(1) The rod deflecting method for measuring velocities near the mold surface is a simple and effective
method to investigate the velocities near the mold surface and the flow patterns of molten steel.
The measured results of the velocities near the mold surface are in good agreement with the
calculated results for the different casting speeds, argon gas flow rates, and submergence depths
of the SEN.

(2) The velocities of molten steel near the mold surface increase with increasing the casting speeds.
When the casting speed is 1.0 and 1.3 m/min, the flow pattern in the mold is single-roll flow (SRF)
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and unstable flow (UF), respectively, both with the large top surface level fluctuations. When the
casting speed is 2.0 m/min, although the flow pattern in the mold is double-roll flow (DRF), there
are large top surface level fluctuations near the narrow wall. At the casting speed of 1.5 m/min,
the flow pattern is DRF and the top surface level is small and symmetrical.

(3) The velocities near the mold surface decrease with increasing the argon gas flow rates. When
argon gas flow rate is 10 and 15 L/min, the flow patterns in the mold are both SRF with the large
top surface level fluctuations near the SEN. When the argon gas flow rate is 1 and 4 L/min, the
velocity near the mold surface has a moderate value, and the flow pattern in the mold is DRF and
the top surface level fluctuation is small and symmetrical.

(4) When the SEN submergence depth is 110 mm, the flow pattern is UF. When the SEN submergence
depth is increased to 200 mm, the velocities near the mold surface decrease, and the top surface
level fluctuation becomes small.

(5) The optimized flow field in the mold can be judged to be favorable to the surface quality of the
automobile exposed panel, if the velocities near the mold surface is relatively small, the flow
pattern in the mold is DRF, and the top surface level fluctuation is small and symmetrical.
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