Effects of Paracetamol (Acetaminophen) Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria
2.3. Data Extraction
2.4. Methodological Quality
2.5. Statistical Analysis
3. Results
3.1. Search Results
3.2. Summary of Studies
3.3. Methodological Quality
3.4. Meta-Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sood, S.; Howell, J.; Sundararajan, V.; Angus, P.W.; Gow, P.J. Paracetamol overdose in Victoria remains a significant health-care burden. J. Gastroenterol. Hepatol. 2013, 28, 1356–1360. [Google Scholar] [CrossRef]
- Dear, J.W.; Antoine, D.J.; Park, B.K. Where are we now with paracetamol? BMJ 2015, 351, h3705. [Google Scholar] [CrossRef]
- Graham, G.G.; Davies, M.J.; Day, R.O.; Mohamudally, A.; Scott, K.F. The modern pharmacology of paracetamol: Therapeutic actions, mechanism of action, metabolism, toxicity and recent pharmacological findings. Inflammopharmacology 2013, 21, 201–232. [Google Scholar] [CrossRef]
- Garcin, M.; Mille-Hamard, L.; Billat, V.; Imbenotte, M.; Humbert, L.; Lhermitte, Z. Use of acetaminophen in young subelite athletes. J. Sports Med. Phys. Fitness 2005, 45, 604–607. [Google Scholar]
- Garcin, M.; Mille-Hamard, L.; Billat, V.; Humbert, L.; Lhermitte, M. Influence of acetaminophen consumption on perceived exertion at the lactate concentration threshold. Percept. Mot. Skills 2005, 101, 675–683. [Google Scholar] [CrossRef]
- Esh, C.J.; Mauger, A.R.; Palfreeman, R.A.; Al-Janubi, H.; Taylor, L. Acetaminophen (paracetamol): Use beyond pain management and dose variability. Front. Physiol. 2017, 8, 1092. [Google Scholar] [CrossRef][Green Version]
- Burtscher, M.; Gatterer, H.; Philippe, M.; Krüsmann, P.; Kernbeiss, S.; Frontull, V.; Kofler, P. Effects of a single low-dose acetaminophen on body temperature and running performance in the heat: A pilot project. Int. J. Physiol. Pathophysiol. Pharmacol. 2013, 5, 190–193. [Google Scholar]
- Chagas, T.P. Efeito Agudo do Paracetamol na Temperatura Corporal, Amonemia e Desempenho em Ciclistas Durante Exercício em Ambiente Termoneutro; Universidade Federal de Sergipe: São Cristóvão, Brazil, 2018. [Google Scholar]
- Jessen, S.; Eibye, K.; Christensen, P.M.; Hostrup, M.; Bangsbo, J. No additive effect of acetaminophen when co-ingested with caffeine on cycling performance in well-trained young men. J. Appl. Physiol. 2021, 131, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Mauger, A.R.; Jones, A.M.; Williams, C.A. Influence of acetaminophen on performance during time trial cycling. J. Appl. Physiol. 2010, 108, 98–104. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mauger, A.R.; Taylor, L.; Harding, C.; Wright, B.; Foster, J.; Castle, P.C. Acute acetaminophen (paracetamol) ingestion improves time to exhaustion during exercise in the heat. Exp. Physiol. 2014, 99, 164–171. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Morgan, P.T.; Vanhatalo, A.; Bowtell, J.L.; Jones, A.M.; Bailey, S.J. Acetaminophen ingestion improves muscle activation and performance during a 3-min all-out cycling test. Appl. Physiol. Nutr. Metab. 2019, 44, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Pagotto, F.D.; Zacharogiannis, E.; Paradisis, G.; Argeitaki, P.; Pilianidis, T. Influence of acute acetaminophen ingestion on time limit at VO2max velocity. Med. Sci. Sports Exerc. 2015, 47, 338. [Google Scholar] [CrossRef]
- Pagotto, F.D.; Paradisis, G.; Maridaki, M.; Papavassiliou, T.; Zacharogiannis, E. Effect of acute acetaminophen injestion on running endurance performance. J. Exerc. Physiol. Online 2018, 21, 106–118. [Google Scholar]
- Tomazini, F.; Santos-Mariano, A.C.; Andrade-Souza, V.A.; Sebben, V.C.; De Maria, C.A.B.; Coelho, D.B.; Bertuzzi, R.; Silva-Cavalcante, M.D.; Lima-Silva, A.E. Caffeine but not acetaminophen increases 4-km cycling time-trial performance. PharmaNutrition 2020, 12, 100181. [Google Scholar] [CrossRef]
- Zandonai, T.; Holgado, D.; Ciria, L.F.; Zabala, M.; Hopker, J.; Bekinschtein, T.; Sanabria, D. Novel evidence on the effect of tramadol on self-paced high-intensity cycling. J. Sports Sci. 2021, 39, 1452–1460. [Google Scholar] [CrossRef]
- Delextrat, A.; O’Connor Ellis, M.; Baker, C.E.; Matthew, D.; Sum, A.; Hayes, L.D. Acetaminophen ingestion improves repeated sprint cycling performance in females: A randomized crossover trial. Kinesiology 2015, 47, 145–150. [Google Scholar]
- Foster, J.; Taylor, L.; Chrismas, B.C.; Watkins, S.L.; Mauger, A.R. The influence of acetaminophen on repeated sprint cycling performance. Eur. J. Appl. Physiol. 2014, 114, 41–48. [Google Scholar] [CrossRef]
- Morgan, P.T.; Bowtell, J.L.; Vanhatalo, A.; Jones, A.M.; Bailey, S.J. Acute acetaminophen ingestion improves performance and muscle activation during maximal intermittent knee extensor exercise. Eur. J. Appl. Physiol. 2018, 118, 595–605. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lundberg, T.R.; Howatson, G. Analgesic and anti-inflammatory drugs in sports: Implications for exercise performance and training adaptations. Scand. J. Med. Sci. Sports 2018, 28, 2252–2262. [Google Scholar] [CrossRef]
- O’Connor, P.J.; Cook, D.B. Exercise and pain: The neurobiology, measurement, and laboratory study of pain in relation to exercise in humans. Exerc. Sports Sci. Rev. 1999, 27, 119–166. [Google Scholar]
- Astokorki, A.H.; Mauger, A.R. Tolerance of exercise-induced pain at a fixed rating of perceived exertion predicts time trial cycling performance. Scand. J. Med. Sci. Sports 2017, 27, 309–317. [Google Scholar] [CrossRef]
- Stevens, C.J.; Mauger, A.R.; Hassmèn, P.; Taylor, L. Endurance Performance is Influenced by Perceptions of Pain and Temperature: Theory, Applications and Safety Considerations. Sports Med. 2018, 48, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef][Green Version]
- Grgic, J.; Pickering, C. The effects of caffeine ingestion on isokinetic muscular strength: A meta-analysis. J. Sci. Med. Sport 2019, 22, 353–360. [Google Scholar] [CrossRef]
- Grgic, J. Caffeine ingestion enhances Wingate performance: A meta-analysis. Eur. J. Sport Sci. 2018, 18, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Deeks, J.J.; Altman, D.G.; Higgins, J.P.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. Chapter 16.1.3.2: Imputing Standard Deviations for Changes from Baseline; The Cochrane Collaboration: Chichester, UK, 2011. [Google Scholar]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155. [Google Scholar] [CrossRef]
- Forrest, J.A.; Clements, J.A.; Prescott, L.F. Clinical pharmacokinetics of paracetamol. Clin. Pharmacokinet. 1982, 7, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Prescott, L.F. Kinetics and metabolism of paracetamol and phenacetin. Br. J. Clin. Pharmacol. 1980, 10, 291S–298S. [Google Scholar] [CrossRef][Green Version]
- Bejder, J.; Breenfeldt Andersen, A.; Bonne, T.C.; Piil, J.F.; Hagen, L.C.H.; Dehnes, Y.; Eibye, K.H.; Nybo, L.; Nordsborg, N.B. Tramadol Does Not Improve Performance or Impair Motor Function in Trained Cyclists. Med. Sci. Sports Exerc. 2020, 52, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Holgado, D.; Zandonai, T.; Zabala, M.; Hopker, J.; Perakakis, P.; Luque-Casado, A.; Ciria, L.; Guerra-Hernandez, E.; Sanabria, D. Tramadol effects on physical performance and sustained attention during a 20-min indoor cycling time-trial: A randomised controlled trial. J. Sci. Med. Sport 2018, 21, 654–660. [Google Scholar] [CrossRef][Green Version]
- Ryder, S.D.; Beckingham, I.J. ABC of diseases of liver, pancreas, and biliary system. Other causes of parenchymal liver disease. BMJ 2001, 322, 290–292. [Google Scholar] [CrossRef] [PubMed]
- D’Lugos, A.C.; Patel, S.H.; Ormsby, J.C.; Curtis, D.P.; Fry, C.S.; Carroll, C.C.; Dickinson, J.M. Prior acetaminophen consumption impacts the early adaptive cellular response of human skeletal muscle to resistance exercise. J. Appl. Physiol. 2018, 124, 1012–1024. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Sanchis-Gomar, F. Acetaminophen and sport performance: Doping or what? Eur. J. Appl. Physiol. 2014, 114, 881–882. [Google Scholar] [CrossRef] [PubMed]
- Saunders, B.; de Oliveira, L.F.; da Silva, R.P.; de Salles Painelli, V.; Gonçalves, L.S.; Yamaguchi, G.; Mutti, T.; Maciel, E.; Roschel, H.; Artioli, G.G.; et al. Placebo in sports nutrition: A proof-of-principle study involving caffeine supplementation. Scand. J. Med. Sci. Sports 2017, 27, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J. Effects of Caffeine on Resistance Exercise: A Review of Recent Research. Sports Med. 2021. [Google Scholar] [CrossRef]
- Currell, K.; Jeukendrup, A.E. Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008, 38, 297–316. [Google Scholar] [CrossRef]
Study | Participants | Paracetamol Dose | Timing of Ingestion before Exercise | Endurance Test | Main Findings |
---|---|---|---|---|---|
Burtscher et al. 2013 | 7 male sport science students | 500 mg | 120 min | Running to exhaustion at 70% of VO2max | ↔ between conditions |
Chagas 2018 a | 8 male endurance-trained cyclists | 500 mg | 60 min | 30 min cycling followed by cycling to exhaustion at power output of 80 W, which was increased by 25 W every minute (cadence of 80 rpm) | ↔ between conditions |
Jessen et al. 2021 a | 14 males competing in cycling, triathlon, running, or swimming | 1500 mg | 60 min | 6 min cycling | ↔ between conditions |
Mauger et al. 2010 a | 13 trained male cyclists | 1500 mg | 60 min | 16.1 km cycling time trial | ↑ in performance following paracetamol ingestion |
Mauger et al. 2014 a | 11 recreationally active male participants | 20 mg/kg of lean body mass | 60 min | Cycling to exhaustion at power output recorded at 70% of VO2max | ↑ in performance following paracetamol ingestion |
Morgan et al. 2019 a | 16 active male participants | 1000 mg | 60 min | 3 min all-out cycling | ↑ in performance following paracetamol ingestion |
Pagotto et al. 2015 | 12 male runners | 20 mg/kg of body mass | 45 min | Running to exhaustion at velocity recorded at VO2max | ↑ in performance following paracetamol ingestion |
Pagotto et al. 2018 a | 20 male recreationally active runners | 1500 mg | 45 min | 3 km running time trial | ↑ in performance following paracetamol ingestion |
Tomazini et al. 2020 a | 11 male recreational cyclists | 20 mg/kg of body mass | 60 min | 4 km cycling time trial | ↔ between conditions |
Zandonai et al. 2021 a | 29 moderately trained male participants | 1500 mg | 120 min | 40 min constant-work-rate cycling followed by 20 min cycling time trial | ↔ between conditions |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grgic, J.; Mikulic, P. Effects of Paracetamol (Acetaminophen) Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis. Sports 2021, 9, 126. https://doi.org/10.3390/sports9090126
Grgic J, Mikulic P. Effects of Paracetamol (Acetaminophen) Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis. Sports. 2021; 9(9):126. https://doi.org/10.3390/sports9090126
Chicago/Turabian StyleGrgic, Jozo, and Pavle Mikulic. 2021. "Effects of Paracetamol (Acetaminophen) Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis" Sports 9, no. 9: 126. https://doi.org/10.3390/sports9090126