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Abstract: In this study we examined changes to the human gut microbiome resulting from an
eight-week intervention of either cardiorespiratory exercise (CRE) or resistance training exercise
(RTE). Twenty-eight subjects (21 F; aged 18–26) were recruited for our CRE study and 28 subjects
(17 F; aged 18–33) were recruited for our RTE study. Fecal samples for gut microbiome profiling
were collected twice weekly during the pre-intervention phase (three weeks), intervention phase
(eight weeks), and post-intervention phase (three weeks). Pre/post VO2max, three repetition max-
imum (3RM), and body composition measurements were conducted. Heart rate ranges for CRE
were determined by subjects’ initial VO2max test. RTE weight ranges were established by subjects’
initial 3RM testing for squat, bench press, and bent-over row. Gut microbiota were profiled using 16S
rRNA gene sequencing. Microbiome sequence data were analyzed with QIIME 2. CRE resulted in
initial changes to the gut microbiome which were not sustained through or after the intervention
period, while RTE resulted in no detectable changes to the gut microbiota. For both CRE and RTE,
we observe some evidence that the baseline microbiome composition may be predictive of exercise
gains. This work suggests that the human gut microbiome can change in response to a new exercise
program, but the type of exercise likely impacts whether a change occurs. The changes observed in
our CRE intervention resemble a disturbance to the microbiome, where an initial shift is observed
followed by a return to the baseline state. More work is needed to understand how sustained changes
to the microbiome occur, resulting in differences that have been reported in cross sectional studies of
athletes and non-athletes.
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1. Introduction

The human microbiota, the trillions of microbes living in and on the human body,
play an important role in human health and disease. Humans begin life nearly sterile,
and are rapidly colonized by microbes from their mother and their environment. As we
age our microbiota composition is impacted by our diets, our habitats, and other aspects
of our lifestyle. Many recent studies of the human gut microbiota have suggested that
these microbial communities play a key role in human health, impacting metabolism [1],
inflammation and mucosal barrier integrity [2,3], efficacy of drugs [4], and maintenance of
host immune function [5]. There is growing interest in understanding how we can maintain
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a healthy microbial community or restore a dysbiotic one, and the relationship to overall
health [6]. To achieve this, it is critical to understand factors that impact the microbiome
and their respective effect sizes.

The effects of exercise on human health have been well studied [7]. Several research
groups, primarily working in mice and humans, have recently explored how the verte-
brate gut microbiome is impacted by exercise [8,9]. At least six studies have specifically
explored the impact of exercise on the microbiome in humans through intervention stud-
ies with longitudinal microbiome profiling and these have shown differing results [10].
Allen et al. reported a 14-week study period with a six-week exercise intervention involv-
ing 18 obese and 14 lean individuals [11]. The composition of the microbiome in lean
and obese individuals were different at the beginning of the study, but those differences
were reduced following exercise intervention. Taniguchi et al. [12] performed a cross-over
experiment where men between the ages of 62–76 were put on a five-week exercise pro-
gram. The authors reported no observable changes in the gut microbiome composition
or richness with exercise, though the abundances of Clostridium difficile, Oscillospira, and
some functional (KEGG) pathways differed across exercise and control periods. Similarly,
Munukka et al. [13] observed only modest changes in overall community composition
following a six-week exercise intervention in 18 overweight women, and reported several
taxa that appear to change in relative abundance with exercise. Cronin et al. [14] performed
an eight-week combined aerobic and resistance training intervention study splitting par-
ticipants (N = 90) into three groups: exercise-only, exercise with whey protein dietary
supplement, and whey protein dietary supplement. They detected no significant changes
in the microbiome due to exercise.

Exercise is often prescribed as a concomitant approach to treat metabolic diseases
in general, and in diabetes management specifically. Liu et al. [15] conducted a 12-week
intervention to determine the efficacy of exercise on the human gut microbiome as it relates
to glucose homeostasis and insulin sensitivity in men with pre-diabetes. This exercise
intervention consisted of a high intensity exercise training protocol that included both
aerobic and strength training segments (three 10-min stations of treadmill, strength training
and calisthenics, and stationary bicycling). The design of the exercise protocol incorporated
a strength training aspect delivered in an aerobic modality. Therefore, the study findings
were a result of aerobic training at a high intensity and not an anaerobic resistance training
program per se. While cardiorespiratory fitness improvements were noted in the whole
exercise group, the team identified high interpersonal variability in the alteration of fasting
glucose, insulin, and glucose homeostasis and insulin sensitivity. Because of this, the
investigators broke out the intervention group into responders and non-responders. A
non-response was defined as a failure to demonstrate a decrease of homeostatic model as-
sessment of insulin resistance (HOMA-IR; levels at 12-week against those at zero-week) that
was greater than two-fold technical error from zero [16]. Examination of the microbiome in
the full exercise group showed some significant changes in taxonomic composition and
microbial functional pathways with exercise in responders. Furthermore, fecal transplants
from exercise responders into obese mice reduced insulin resistance while fecal transplants
from exercise non-responders did not.

Mailing et al. suggested that future inquiries should be designed to examine change
in gut microbiota as a result of other modalities of exercise such as resistance training [8].
Energy metabolism during aerobic exercise differs from that of anaerobic metabolism
and the metabolic pathway and fuel source utilized may impact human gut microbiome
response. While Cronin et al. [14] incorporated limited resistance training within their
weekly exercise intervention design, the focus of the exercise intervention was primarily
aerobic, and the resistance training portion was not able to be analyzed independently.
Previous studies did not separate resistance and aerobic training modalities, and had a
very limited number of fecal samples which is needed to more closely examine change in
microbial community over time as a result of exercise.
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The aim of the present work was to examine potential change in the human gut
microbiome as a result of different modes of exercise. Toward that end, we conducted
two separate intervention studies with the same research design. The first, which we
refer to as EXMP-CRE (Exercise Microbiome Project, Cardiorespiratory Exercise—CRE),
focused on an eight-week cardiorespiratory exercise intervention. The second, which we
refer to as EXMP-RTE (Exercise Microbiome Project, Resistance Training Exercise—RTE),
focused on an eight-week hypertrophy-based resistance training exercise intervention.
We hypothesized that an eight-week intervention of either modality of exercise would
promote a change in the richness and composition of the human gut microbiota but that
the gut microbiota would revert to its pre-intervention state after a wash out period, when
study subjects resumed their sedentary behavior. We additionally explored whether an
individual’s initial gut microbiota composition was predictive of their fitness gains in
response to exercise intervention.

2. Materials and Methods
2.1. Subject Population and General Design

Students (18–33 years in age) enrolled at Northern Arizona University were recruited
for participation in both studies via Institutional Review Board (IRB) approved recruitment
fliers and emails (IRB approval EXMP-CRE: 899828-8 and EXMP-RTE: 1071194-5). The
American Heart Association (AHA) and American College of Sports Medicine (ACSM)
Health/Fitness Facility Preparticipation Screening Questionnaire were used to determine
if subjects were healthy enough to participate in moderate to vigorous exercise prior to
enrollment in either study. Exclusion criteria included screening subjects for historical
factors that could impact their respective microbiome compositions, such as non-topical
antibiotic use within the past six months, as well as current pregnancy status and whether
they planned to become pregnant during either study period. Subjects were questioned
about general dietary information (i.e., special dietary restrictions or food allergies) and
home environment characteristics (i.e., whether pets are present or if they had recently
completed a major geographical move). Additionally, subjects completed the International
Physical Activity Questionnaire (IPAQ) Short Form (version 2.0). The Guidelines for Data
Processing and Analysis of the IPAQ categorical scoring were used to determine subjects’
current level of physical activity. This information was not used as the exclusion criteria.

Subjects with AHA/ACSM Preparticipation Screening Questionnaire results indicat-
ing a need to seek medical consultation before engaging in exercise were excluded from
participation in either study. All subjects provided written informed consent prior to taking
part in either study. Upon inclusion into the studies, subjects were assigned a unique four-
or five-digit alphanumeric code that was used for personal identification, exercise session
attendance, and gut microbiome sample tracking. All subject data was de-identified prior
to data analysis.

Study subjects provided two fecal swab samples per week over each 14-week study
period. Fecal samples were self-collected by swabbing used toilet paper with sterile
polyester swabs provided to subjects by study staff. Fecal samples were placed into
containment tubes and submitted to study staff wrapped in an additional plastic bag.

Subjects also completed an online per-sample questionnaire via Research Electronic
Data Capture (REDCap™; Vanderbilt University, Nashville, TN, USA) that accompanied
each fecal sample. Fecal samples were tracked using each subjects’ alphanumeric code
and a barcode printed on each sample collection tube. Items queried in the per-sample
questionnaire included whether or not subjects had significant changes to diet and exercise,
antibiotic use, multivitamin and other nutritional supplementation, onset of illness and
associated symptoms, and menstruation (see Spreadsheet S1, which lists questionnaire
items). All subjects were instructed to maintain their normal dietary practices and physical
activities throughout the length of both studies.

Both studies consisted of a three-week pre-intervention phase, an eight-week inter-
vention phase, and a three-week post-intervention wash out phase (Table 1). We abbreviate
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these three phases as Pre, Int, and Post, respectively. Pre-intervention fitness and anthro-
pometric measurements were conducted during the Pre phase. During the Int phase, all
exercise sessions lasted 60 min and were attended three times per week. Exercise sessions
ceased immediately prior to the Post phase of both studies, but subjects continued to submit
twice weekly fecal samples. Post-intervention fitness and anthropometric measurements
were conducted during the Post phase. No injuries were reported by subjects during either
study period.

Table 1. General study design.

Pre-Intervention Phase
(Study Weeks 1–3; Pre Weeks 1–3)

Intervention Phase
(Study Weeks 4–11; Int Weeks 1–8)

Post-Intervention Phase
(Study Weeks 12–14; Post Weeks 1–3)

• Initial subject meeting for informed
consent, exercise sessions
scheduling.

• Baseline fitness and anthropometric
measurements.

• Subjects begin twice weekly fecal
sample collection. a

• Exercise sessions performed 3x per
week.

• Subjects continue twice weekly fecal
sample collection.

• Exercise sessions cease.
• Post-intervention fitness and

anthropometric measurements.
• Subjects continue twice weekly fecal

sample collection.

a Average number of fecal samples collected per subject was 13.61 (SD = 1.81) over EXMP-CRE and 7.44 (SD = 1.33) over EXMP-RTE
study periods.

Both studies were conducted at an elevation of 2133 m which may have affected the
results observed. However, all subjects lived at this elevation during the full durations of
both studies, and performed both pre- and post-intervention testing at this elevation.

As has been typical in other human microbiome exercise intervention studies [15,17],
we did not directly control for diet. However, subjects in both studies were formally
instructed to maintain their typical dietary practices during the entirety of each study
period, and were asked to report any major deviations in the per-sample questionnaire that
accompanied each fecal sample submission. Neither the CRE nor the RTE subjects reported
major changes in diet on their per-sample questionnaires during either study period.

2.2. Procedures
2.2.1. EXMP-CRE—Cardiorespiratory Fitness

The EXMP-CRE study sought to explore the effects of cardiorespiratory exercise on
one’s gut microbial composition. During the eight-week Int phase, subjects attended three
weekly cardiorespiratory exercise (CRE) sessions that lasted 60 min each. In accordance
with ACSM guidelines for cardiorespiratory activity [18], subjects maintained an intensity
between 60–90% maximal heart rate (HRmax) during CRE sessions, as measured by Polar™
A300 HR monitors (Polar Electro; Kempele, Finland). Subjects’ heart rate ranges were
established based on the maximal heart rate observed during pre-intervention maximal
aerobic capacity (VO2max) treadmill testing. Subjects were frequently reminded by study
staff to check their heart rate monitors during each CRE session to maintain the prescribed
intensity range. To ensure exercise variability and maintain subjects’ engagement in the
intervention, CRE intervention weeks consisted of two days of group cycling followed by
one day of rotating CRE activity. These end-of-the-week sessions consisted of step aerobics,
circuit training, non-contact kickboxing, stadium running, and other CRE activities. One
certified group fitness instructor and one research assistant were present for all exercise
sessions. Subjects repeated VO2max treadmill testing during the three-week Post phase of
the study.

2.2.2. EXMP-RTE—Resistance Training

The EXMP-RTE study aimed to observe the effects of resistance training (RTE) on
subjects’ gut microbial composition. Similar to EXMP-CRE, subjects attended three weekly
exercise sessions that lasted 60 min each during the Int phase. RTE sessions implemented
National Strength and Conditioning Association (NSCA) guidelines to improve muscular
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hypertrophy with subjects working at 70–85% one repetition maximum (1RM) over 3–6
sets of 6–12 total repetitions [19]. Subject weight ranges were based on pre-intervention
three repetition maximum (3RM) testing for squat, bent-over barbell row, and bench press
exercises in accordance with procedures outlined by the NSCA [19]. These specific lifts
were selected to assess subjects’ muscular strength of the hips and legs, “pull” musculature
of the posterior thorax and arms, and “push” musculature of the anterior thorax and arms,
respectively.

Sessions began with a warm-up period of dynamic stretching and full body move-
ments and ended with static stretching focused on the major muscle groups employed
during the workout. The three RTE sessions emphasized full, lower, and upper body
exercises, respectively, and all included exercises stressing abdominal core musculature
(see Spreadsheet S2, which provides subjects’ lifting cards used in the RTE intervention).
Full body exercises included the three lifts performed during 3RM testing, as well as
medicine-ball wall toss, hamstring curls using a stability ball, knee tucks using a stability
ball, and Romanian deadlifts. Lower body exercises included sumo squats, glute bridges,
traditional deadlifts, side lunges, and box jumps. Upper body exercises included bench
press, bent-over barbell rows, reverse flies, pull-ups (assisted with resistance bands if
needed), and mountain climbers.

All RTE sessions were supervised by one certified exercise physiologist and at least
two research assistants. Subjects were provided with RTE session-specific lifting cards
displaying pre-assigned weight and repetition values for each exercise. They were in-
structed to record their actual weight lifted and repetitions performed on these cards to
allow study staff to better track and adjust weekly RTE intensities. Subjects’ weight values
were collectively increased after the Int phase weeks 4 and 6 in the RTE study. Increases
in weight were based on NSCA guidelines [19]. Subjects repeated 3RM testing during the
Post phase of the study.

2.3. EXMP-CRE Measures
2.3.1. Maximal Aerobic Capacity

The Bruce Protocol Treadmill Test was employed to establish subjects’ pre- and post-
intervention VO2max in mL·kg−1·min−1, respiratory exchange ratio (RER), and HRmax
in beats per minute. The Bruce Protocol utilizes 3-min stages and begins at a speed of
2.7 km·h−1 and grade of 10% [20]. Stages incrementally increase both speed and grade
to equate to increases of roughly three metabolic equivalents (METs) per stage. Subjects’
heart rates were recorded every 60 s and rate of perceived exertion (RPE) was recorded
at the end of each completed stage. Test termination criteria included volitional fatigue,
observation of subject heart rate at or above 90% of one’s age predicted HRmax, RER of 1.10
or higher, and an RPE of 18 or higher (using Borg’s 6–20 scale) [18].

The COSMED K4b2 portable metabolic system (COSMED; Rome, Italy) was utilized to
measure subjects’ heart rate, RER, and pulmonary gas exchange values. The K4b2 is a 1.2 kg
research grade portable system worn on the backs of subjects for breath-by-breath analysis
of pulmonary gas exchange. The system’s bidirectional digital turbine (28 mm diameter)
was calibrated before the start of each testing date using a three-liter SensorMedics syringe
(SensorMedics Corp.; Yorba Linda, CA, USA). The K4b2 gas analyzers were also calibrated
before the start of each test date with ambient air and a proprietary gas mixture of 15%
oxygen (O2) and 5% carbon-dioxide (CO2) composition. Heart rate was measured using a
Polar™ heart rate monitor chest strap (Polar Electro; Kempele, Finland). Subjects’ VO2max
were recorded as the highest average value during one 15-s interval corresponding with
one’s peak RER and HR values.

Although not indicative of CRE performance gains, we did observe change in RER
during post-intervention treadmill testing. RER values were grouped with other exercise
intervention outcome measures due to its inclusion as criteria for establishing maximal
aerobic capacity among subjects. Subsequent analyses of microbiome change accounting
for significant difference in Pre and Post measures of RER do so as an observation. This is a
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reflection of this significant change and should not be regarded as causal or predictive of
physiological changes that occurred in subjects from the eight-week CRE intervention.

2.3.2. Ventilatory Threshold

To further investigate changes in aerobic capacity across the study period, subjects’
ventilatory thresholds (VT) were identified post hoc by V-slope plots [21] of O2 uptake
(VO2) and CO2 output (VCO2) in mL·min−1 over pre- and post-test treadmill test times (s).
Breath-by-breath sampling was averaged over 15 time-points in accordance with VO2max
procedures described above. The time-point where VCO2 crossed over VO2, indicating an
increase in glucose over fatty acid metabolism, reliance on anaerobic metabolic pathways,
and maxing out of aerobic pathways (i.e., nearing aerobic capacity), and its associated
VO2 value in mL·min−1 were used to establish VT [21]. Subjects’ VT were confirmed
by ventilatory equivalents plots of O2 (VE/VO2) and CO2 (VE/VCO2) by corroborating
the time-point and mL·min−1 where VE/VO2 overtook VE/VCO2. After confirming all
times of crossover, mL·min−1 values were converted to mL·kg−1·min−1 by dividing by
subjects’ body weight in kg taken immediately prior to treadmill testing to align with
relative VO2max data.

2.3.3. Anthropometric Measurements

Subjects’ height, weight, body mass index (BMI), fat-free mass (FFM), and percent
body fat (%BF) were measured using a seca mBCA 514 Medical Body Composition An-
alyzer (seca; Hamburg, Germany) via bioelectrical impedance analysis (BIA). The seca
514 mBCA is a validated eight-electrode, segmental multifrequent device for measuring
body composition in healthy adults of different ethnic populations. The test requires
subjects to place each foot on two large electrodes while grasping two electrodes in each
hand at waist height. Subjects were advised to avoid caffeine and alcohol intake within the
24 h time frame prior to testing. Study staff input subjects’ height, weight, age, gender, and
ethnicity into the machine via touchscreen interface before the BIA commenced. Subjects’
deidentified data were then saved and sent to a desktop computer using a study-specific
PIN. Subjects were tested during the Pre and Post phases.

2.4. EXMP-RTE Measures
2.4.1. Submaximal Muscular Strength

Subjects performed pre- and post-intervention 3RM tests to estimate their 1RM weight;
specifically, the greatest amount of weight that can be lifted with correct technique for
only one repetition. Since many subjects did not have resistance training experience, 3RM
tests were used to estimate maximal muscular strength to avoid musculoskeletal injury
from overexertion or improper technique. Estimated 1RM (e1RM) values were derived by
inputting subjects’ 3RM weight into the Brzycki equation [22] and were used as the central
value upon which all training loads were calculated. All subjects were supervised during
3RM testing by multiple study staff and spotters.

Each subject began the 3RM tests with a warm-up set at a light resistance that easily
allowed for 5–10 repetitions (reps). Following a 1-min rest period, resistance was increased
by 4.5–9 kg or 5–10% for upper body exercise, and 13–18 kg or 10–20% for lower body
exercises, to allow for a second warm-up set of 4–8 reps. Following a 2-min rest period,
resistance was again increased by 4.5–9 kg or 5–10% for upper body exercise, and 13–18 kg
or 10–20% for lower body exercises, and the subject performed a set of 4–6 reps at an
estimated, conservative, near-maximal load. Following a 2–4 min rest period, the load was
again increased by 4.5–9 kg or 5–10%, and the subject attempted to lift the weight for three
reps. The subject then underwent another 2–4 min rest period.

If the subject was able to perform three reps without failure, the previous weight was
again increased by 4.5–9 kg or 5–10%, and the subject again attempted to lift the weight for
three reps after 2–4 min of rest. If the subject failed to perform three reps, the weight was
decreased by 2.2–4.5 kg or 2.5–5%, and the subject again attempted to lift the weight for
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three reps after 2–4 min of rest. This process was repeated over 3–5 testing sets until the
subject could complete no more, or less, than three reps with proper technique. The 3RM
weight was then recorded and used to estimate the subject’s 1RM via the Brzycki equation.
Subjects were tested on bench press, bent-over barbell row, and squat exercises to establish
a baseline in push and pull upper body strength, and lower body strength, respectively.
Prior to the pre-intervention 3RM test, all study subjects underwent a training session to
ensure knowledge and practice of proper lifting technique during submaximal testing.

2.4.2. Anthropometric Measurements

Subjects’ anthropometric measurements directly paralleled those of the EXMP-
CRE study.

2.5. Statistical Analysis of Fitness and Anthropometric Measures

Descriptive statistics, paired-samples t-tests, and post hoc Pearson correlations evalu-
ating relationships and differences in subjects’ fitness and anthropometric measurements
were performed using IBM SPSS version 26.0 (SPSS Inc.; Chicago, IL, USA). Differences
between study samples at baseline were assessed using independent t-tests. Our statistical
significance threshold (alpha) was set at p ≤ 0.05 for all two-tailed statistical tests regarding
exercise-related outcome variables. The fitness and anthropometric data presented in this
study are available in Spreadsheet S3.

2.6. DNA Extraction and Microbiome Sequencing

Fecal samples were self-collected using BBL CultureSwabs (Becton, Dickinson, and
Company; Sparks, MD, USA).

2.6.1. EXMP-CRE

Total DNA was extracted from fecal swabs using DNeasy PowerSoil Kit (Qiagen,
Hilden, Germany) using manufacturer’s protocol with one modification; to facilitate micro-
bial lysis, swabs were incubated in lysis buffer for 10 min at 65 ◦C before mechanical lysis
by vortexing in the PowerSoil Bead Solution. Resulting DNA samples were quantified on
the Nanodrop 8000 Spectrophotometer (ThermoFisher; Waltham, MA, USA). For amplicon
sequencing, barcoded 806R reverse primers and forward primer 515F were used to amplify
the V4 region of the 16S rRNA gene [23,24]. Library preparation was done at the Pathogen
and Microbiome Institute and sequencing was performed at the Translational Genomics Re-
search Institute (TGen) Pathogen and Microbiome Division at Northern Arizona University.
Each PCR reaction contained 2.5 µL of PCR buffer (TaKaRa, 10× concentration, 1× final),
1 µL of the Golay barcode tagged forward primer (10 µM concentration, 0.4 µM final), 1 µL
of bovine serum albumin (ThermoFisher, 20 mg·mL−1 concentration, 0.56 mg·µL−1 final),
2 µL of dNTP mix (TaKaRa, 2.5 mM concentration, 200 µM final), 0.125 µL of HotStart
ExTaq (TaKaRa, 5 U·µL−1, 0.625 U·µL−1 final), 1 µL reverse primer (10 µM concentration,
0.4 µM final), 16.375 µL PCR grade water (Sigma-Aldrich, St. Louis, MO, USA), and 1 µL
template DNA. PCR conditions were as follows: 2 min at 98 ◦C for 1 cycle; 20 s at 98 ◦C,
30 s at 50 ◦C, and 45 s at 72 ◦C for 30 cycles; and 10 min at 72 ◦C for 1 cycle. Extraction
blank negative controls were included in each extraction set and sequenced with the pool
of fecal samples. A negative control for each barcoded primer was also run and visualized
on a gel. If contamination was observed in the negative well, the sample was run with a
new barcoded primer. PCR product was purified using AMPure XP for PCR Purification
(Beckman Coulter; Indianapolis, IN, USA), quantified using Qubit dsDNA HS Assay Kit
(ThermoFisher; Waltham, MA), and pooled at 25 ng per sample for sequencing on an
Illumina MiSeq using MiSeq. Pooled amplicons were sequenced 251 × 12 × 251 using a
MiSeq reagent kit v3 (Illumina; San Diego, CA, USA).
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2.6.2. EXMP-RTE

DNA extractions and microbiome sequencing were performed at the Environmental
Sample Preparation and Sequencing Facility at the Argonne National Laboratory. To-
tal DNA was extracted from fecal swabs using a MoBIO 96-well PowerSoil kit (Qiagen,
Hilden, Germany) using the manufacturer’s protocol. Mechanical lysis was performed
by vortexing samples in 96-well plates using the Powersoil Bead Solution. For amplicon
sequencing, barcoded 806R reverse primers and forward primer 515F were used to amplify
the V4 region of the 16S rRNA gene [23,24], PCR reactions contained 9.5 µL of MO BIO
PCR Water (Certified DNA-Free), 12.5 µL of QuantaBio’s AccuStart II PCR ToughMix
(2× concentration, 1× final), 1 µL Golay barcode tagged Forward Primer (5 µM concen-
tration, 200 pM final), 1 µL Reverse Primer (5 µM concentration, 200 pM final), and 1 µL
of template DNA. PCR conditions were as follows: 94 ◦C for 3 min to denature the DNA,
with 35 cycles at 94 ◦C for 45 s, 50 ◦C for 60 s, and 72 ◦C for 90 s; with a final extension of
10 min at 72 ◦C to ensure complete amplification. Extraction blank negative controls were
included in each extraction set and sequenced with the pool of fecal samples. PCR product
was purified using AMPure XP for PCR Purification (Beckman Coulter; Indianapolis, IN,
USA), quantified using Qubit dsDNA HS Assay Kit (ThermoFisher; Waltham, MA, USA),
and pooled at equimolar concentrations for sequencing on an Illumina MiSeq using MiSeq.
Pooled amplicons were sequenced 151 × 12 × 151 using a MiSeq reagent kit v3 (Illumina;
San Diego, CA, USA).

2.7. Microbiome Bioinformatics

Microbiome bioinformatics was performed with QIIME 2 [25]. Our bioinformatics
workflow was designed to facilitate the direct comparison of data from both of our studies.
Denoising, paired-end read joining, and definition of amplicon sequence variants (ASVs)
was performed using DADA2 [26] via the q2-dada2 QIIME 2 plugin. Because the reads
from our two studies were of different lengths, we denoised using different trimming
and truncation parameters for each (EXMP-CRE: trim_left_f/r = 0, trunc_len_f = 210,
trunc_len_r = 160; EMXP-RTE: trim_left_f/r = 0, trunc_len_f/r = 151), and then merged the
resulting joined paired-end ASV feature tables (which had the same start and end positions,
so were fully overlapping). We reasoned that using more high-quality data would allow
us to generate better taxonomic assignments downstream. We built a phylogenetic tree
for computation of phylogenetic composition metrics using SEPP [27] in the q2-fragment-
insertion plugin, which inserts ASV sequences into a tree generated from full-length
sequences (the Greengenes tree by default). The feature table was filtered to remove any
ASVs whose sequences could not be inserted into the reference tree with SEPP. Taxonomy
was assigned using the naive Bayes classifier in q2-feature-classifier [28] trained on the
Genome Taxonomy Database (GTDB) bacterial database release 89 [29]. Composition
metrics were computed at an even sampling depth of 5000 sequences per sample.

Because denoising is generally performed with the same trimming and truncation param-
eters, we additionally experimented with that approach (trim_left_f/r = 0, trunc_len_f/r = 151),
and with using the same trimming and truncation parameters using single-end reads only
(trim_left_f = 0, trunc_len_f = 151). We compared weighted and unweighted UniFrac distances
between samples using all three of these approaches, and found that the distance matrices
were strongly correlated in all cases. We thus chose to proceed using our paired-end reads
that used run-specific trimming and truncation parameters.

2.8. Statistical Analysis of Microbiome Measures

Longitudinal analysis of the microbiome was performed using the q2-longitudinal
QIIME 2 plugin as well as custom visualization code provided in the project’s GitHub
repository (https://github.com/caporaso-lab/exmp-paper1). Mann–Whitney U tests were
performed to compare paired microbiome timepoints (e.g., distances from week 1) as im-
plemented in SciPy. Associations between baseline microbiome composition and exercise
performance changes were performed using ordinary least squares (OLS; as implemented

https://github.com/caporaso-lab/exmp-paper1
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in StatsModels), using PCoA axes and alpha diversity metrics as summary statistics for
baseline microbiome composition. For each time point, we modeled performance changes
from baseline as a function of the microbiome changes, age, and sex. Associations between
microbiome change and exercise performance changes were performed using Spearman
rank correlation between beta diversity distances and performance change measures. Ad-
justments for multiple comparisons across time points and diversity metrics was performed
using the Benjamini–Hochberg method, as implemented in StatsModels.

3. Results

Pre phase fitness and microbiome metrics were utilized as subjects’ controls to compare
pre-intervention and post-intervention measurements. A power analysis to determine suffi-
cient sample sizes was not conducted. Our work, and a concurrent study by Allen et al. [11],
were among the first such studies to examine microbiome changes associated with exercise.
As the effect size of exercise on the microbiome was unknown, neither study conducted an
a priori power analysis to calculate a necessary sample size. The Allen et al. [11] study had
a sample size similar to ours (32 and 28, respectively). Changes in microbiome composition
between Pre weeks on a per-individual basis provides subject-specific information on their
typical gut microbiome dynamics (i.e., the amount of week-to-week variation that they
typically experience).

3.1. Exercise Interventions

Independent samples t-tests revealed no significant differences in subjects’ age,
t30.52 = −0.90, p = 0.38; body weight, t40.45 = −0.01, p = 0.99; BMI, t46.00 = 0.53, p = 0.60;
FFM, t32.88 = −0.40, p = 0.69; and %BF, t44.49 = 0.19, p = 0.85, between both study samples at
baseline. Average exercise session attendance rates for EXMP-CRE and EXMP-RTE were
89% and 86%, respectively. Subjects’ demographics in both EXMP studies are reported in
Table 2. Outcome measures of both exercise interventions are presented in Table 3.

Table 2. Subjects’ demographics and descriptive statistics.

EXMP-CRE

Total Sample (N = 28) Female Subjects (n = 21) Male Subjects (n = 7)

Pre Post Pre Post Pre Post

Age (year) 20.54
(1.93)

20.71
(1.88)

20.00
(2.16)

Weight (kg) 67.83
(10.70)

68.14
(10.59)

66.22
(10.84)

66.57
(10.96)

72.63
(9.35)

72.86
(8.34)

BMI (kg·m−2)
24.41
(4.20)

24.55
(4.41)

24.54
(4.58)

24.72
(4.90)

24.04
(3.02)

24.06
(2.66)

FFM (kg) 48.71
(7.66)

48.85
(7.65)

45.28
(4.11)

45.43
(4.23)

59.01
(6.52)

59.11
(6.31)

%BF 27.57
(9.13)

27.68
(9.10)

30.62
(7.77)

30.71
(7.86)

18.43
(6.63)

18.57
(6.16)

EXMP-RTE

Total Sample (N = 28) Female Subjects (n = 17) Male Subjects (n = 11)

Pre Post Pre Post Pre Post

Age (year) 21.28
(3.85)

20.41
(3.34)

22.64
(4.34)

Weight (kg) 67.72
(15.03)

68.32
(14.67)

61.58
(12.84)

62.08
(12.02)

77.20
(13.55)

77.97
(13.44)

BMI (kg·m−2)
23.77
(4.15)

23.97
(3.93)

23.24
(4.36)

23.43
(4.11)

24.59
(3.87)

24.81
(3.67)

FFM (kg) 49.58
(11.63)

50.47
(12.32) *

41.96
(5.15)

42.55
(5.12)

62.54
(6.89)

63.95
(8.48)

%BF 27.08
(8.10)

26.54
(8.35)

30.69
(6.49)

30.46
(6.00)

20.94
(6.92)

19.86
(7.67)

Values presented as mean (SD). * p < 0.05. Pre, pre-intervention; Post, post-intervention; BMI, body mass index;
FFM, fat free mass; %BF, percent body fat.
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Table 3. Exercise intervention outcome measures.

EXMP-CRE

Total Sample (N = 28) Female Subjects (n = 21) Male Subjects (n = 7)

Pre Post ∆ Pre Post ∆ Pre Post ∆

VO2max
(mL·kg−1 ·min−1)

35.55
(6.48)

35.57
(5.88) 0.03 (2.91) 33.59

(5.64)
33.64
(5.08) 0.06 (2.74) 41.43

(5.38)
41.36
(4.23) −0.07 (3.62)

RER 1.24 (0.12) 1.31 (0.09) 0.07 (0.13) ** 1.21 (0.11) 1.31 (0.09) 0.09 (0.13) ** 1.33 (0.11) 1.32 (0.11) −0.01 (0.08)
Treadmill Test Time

(s)
579.89

(114.78)
631.11
(98.49) 51.21 (76.17) ** 550.48

(114.55)
595.10
(75.10) 44.62 (83.73) * 668.14

(58.54)
739.14
(81.84) 71.00 (46.17) **

EXMP-RTE

Total Sample (N = 28) Female Subjects (n = 17) Male Subjects (n = 11)

Pre Post ∆ Pre Post ∆ Pre Post ∆

3RM Squat (kg) 71.28
(30.48)

96.47
(34.86) 25.19 (14.11) *** 56.83

(16.46)
77.78

(16.51) 20.95 (8.58) *** 93.60
(34.22)

125.36
(36.52) 31.75 (18.48) ***

Pred. 1RM Squat
(kg)

75.54
(32.30)

102.24
(36.95) 26.70 (14.95) *** 60.23

(17.45)
82.43

(17.49) 22.20 (9.09) *** 99.20
(36.26)

132.86
(38.70) 33.64 (19.59) ***

3RM Bench Press
(kg)

43.25
(22.20)

50.95
(22.88) 7.69 (4.11) *** 28.55

(6.32)
35.62
(6.20) 7.07 (3.75) *** 65.98

(18.19)
74.64

(18.30) 8.66 (4.63) ***

Pred. 1RM Bench
Press (kg)

45.84
(23.52)

54.00
(24.24) 8.16 (4.36) *** 30.26

(6.69)
37.75
(6.57) 7.49 (3.98) *** 69.92

(19.27)
79.10

(19.39) 9.18 (4.90) ***

3RM Bent-Over
Row (kg)

56.78
(23.36)

74.19
(25.78) 17.41 (5.92) *** 41.89

(7.61)
57.10
(8.49) 15.21 (4.73) *** 79.79

(20.53)
100.62
(20.34) 20.82 (6.15) ***

Pred. 1RM
Bent-Over Row (kg)

60.18
(24.76)

78.63
(27.32) 18.46 (6.28) *** 44.40

(8.07)
60.52
(9.00) 16.12 (5.01) *** 84.56

(21.76)
106.63
(21.56) 22.07 (6.52) ***

Values presented as mean (SD). * p < 0.05. ** p < 0.01. *** p < 0.001. Pre, pre-intervention; Post, post-intervention; ∆, mean difference; VO2max,
maximal aerobic capacity; RER, respiratory exchange ratio; 3RM, three repetition maximum; Pred., predicted; 1RM, one repetition maximum.

3.1.1. EXMP-CRE—Cardiorespiratory Fitness

Subjects’ RER significantly increased among the total sample by an average of 0.07
units (SD = 0.13) following the CRE intervention, t27 = 2.80, p = 0.009, 95% CI [0.02, 0.12].
This difference was significant among female subjects (M = 0.09, SD = 0.13), t20 = 3.27,
p = 0.004, 95% CI [0.028. 0.036]; but not male subjects (M = −0.01, SD = 0.08), t6 = −0.33,
p = 0.75. Following the CRE intervention, time on treadmill during post-intervention
VO2max testing also significantly increased among the total study sample by an aver-
age of 51.22 s (SD = 76.17), t27 = 3.56, p = 0.001, 95% CI [21.68, 80.75]. A significant
increase of 44.62 s (SD = 83.73) was also observed in female subjects, t20 = 2.44, p = 0.024,
95% CI [6.51, 82.73]; while a significant increase of 71.00 s (SD = 46.17) was observed in
male subjects, t6 = 4.07, p = 0.007, 95% CI [28.30, 113.70]. VO2max did not significantly
differ pre- to post-intervention in the total sample (M = 0.03 mL·kg−1·min−1, SD = 2.91),
t27 = 0.05, p = 0.96; female subjects (M = 0.06 mL·kg−1·min−1, SD = 2.74), t20 = 0.10, p = 0.93;
or male subjects (M = −0.07 mL·kg−1·min−1, SD = 3.62), t6 = −0.05, p = 0.96. To investi-
gate this further, Pearson correlation between change in body weight (kg) and change in
relative VO2max between Pre and Post measurements for the total sample were performed.
Results suggest a strong negative linear relationship, r26 = −0.58, p = 0.001. This negative
correlation with change in relative VO2max was also evident with change in BMI (kg·m−2),
r26 = −0.60, p = 0.001; and change in %BF, r26 = −0.49, p = 0.009. The eight-week CRE
intervention seemed to have increased subjects’ post-intervention VO2max test duration,
but did not affect VO2max itself.

Similar to Estaki et al. [30], subjects’ pre- and post-intervention VO2max test values
were sorted into established classifications for cardiorespiratory fitness (see Table, Spread-
sheet S4, which displays subjects’ VO2max classifications by sex) to further examine VO2max
changes on an individual basis. Categories were based on VO2max classifications listed by
Gibson, Wagner, and Heyward [31]. Overall, 15 subjects (54%) entered the intervention
period with a “Poor” VO2max classification, 10 entered with a “Fair” classification, and
three entered with a “Good” classification. Most subjects (n = 22; 79%) maintained their
pre-intervention VO2max classification while five dropped one category. Only one subject
improved one category, improving from “Poor” to “Fair.”

Change in body mass among subjects at post-test ranged between −4.10 and +4.70 kg.
Pearson correlation further indicated a medium negative linear relationship between
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change in body weight (kg) and change in VT (mL·kg−1·min−1) between Pre and Post
measurements, r25 = −0.40, p = 0.040. This negative correlation with change in VT was
also apparent with change in BMI (kg·m−2), r25 = −0.44, p = 0.021; and change in %BF,
r25 = −0.39, p = 0.045. These results suggest that VT values differed between VO2max
treadmill tests within subjects as a function of change in body mass.

3.1.2. EXMP-RTE–Resistance Training

Subjects’ 3RM and e1RM weights significantly increased across the squat, bench
press, and bent-over row following the eight-week RTE intervention. In the full sample,
subjects’ squat 3RM and e1RM weights increased by an average of 25.19 kg (SD = 14.11),
t27 = 9.45, p < 0.001, 95% CI [19.72, 30.66]; and 26.70 kg (SD = 14.95), t27 = 9.45, p < 0.001,
95% CI [20.90, 32.50], respectively. For bench press, 3RM and e1RM weights increased
an average of 7.69 kg (SD = 4.11), t27 = 9.90, p < 0.001, 95% CI [6.10, 9.29]; and 8.16 kg
(SD = 4.36), t27 = 9.91, p < 0.001, 95% CI [6.47, 9.84], respectively. For bent-over row, 3RM
and e1RM weights increased an average of 17.41 kg (SD = 5.92), t27 = 15.56, p < 0.001,
95% CI [15.12, 19.71]; and 18.46 kg (SD = 6.28), t27 = 15.56, p < 0.001, 95% CI [16.02, 20.89],
respectively. FFM also significantly increased across the full sample following the RTE
intervention by an average of 0.89 kg (SD = 2.16), t26 = 1.26, p = 0.042, 95% CI [0.04, 1.74].
Taken together, the RTE intervention proved effective in increasing mostly untrained
subjects’ strength and lean body mass over 24 sessions in eight weeks. Further breakdown
of strength gains by subjects’ sex is presented in Table 3.

In congruence with EXMP-CRE results, subjects were organized into relative strength
(RS) categories pre- and post-intervention. RS was calculated by dividing subjects’ e1RM
weights by body weight for the three lifts. Subjects were then categorized into RS clas-
sifications in accordance with percentile rankings and normative values published by
Gibson et al. [31] and Hoffman [32] for bench press and squat, respectively. No normative
values were found for bent-over row among this general, non-athletic, young-adult popu-
lation. Overall, six subjects entered the intervention period with a “Well Below Average”
bench press RS classification, three entered with a “Below Average” classification, three
entered with an “Average” classification, eight entered with an “Above Average” classi-
fication, and eight entered with a “Well Above Average” classification. Twelve subjects
experienced no change in RS for bench press, while 13 improved by one category and two
improved by two categories. One subject improved by three categories, improving from
“Below Average” to “Well Above Average.” For squat, 25 subjects entered the intervention
period with a “Poor” RS classification and two entered with a “Fair” classification. One
subject was classified as “Average” for squat relative strength prior to the intervention.
Following the RTE intervention, 10 subjects experienced no change in squat RS, while five
improved by one category, nine improved by two categories, one improved by three cate-
gories, and three improved by four categories (see Table, Spreadsheet S5, which displays
subjects’ RS classifications by sex).

3.2. Cardiorespiratory Exercise Was Associated with Changes to Subjects’ Gut Microbiome

In EXMP-CRE we noticed a change in microbiome composition almost immediately
after the initiation of the exercise program. In Int week 2, after a full week of exercise,
subjects showed a significant change in unweighted UniFrac distance from Pre week 1
(Figure 1a), indicating a shift in their microbiome composition (U = 137.0; p = 3.23·10−6;
FDR-corrected p = 4.20·10−5). This shift was also apparent when evaluated with another
qualitative distance metric (Jaccard distance, Figure 1b), and a non-phylogenetic, quanti-
tative distance metric (Bray-Curtis, Figure 1d) but not with a phylogenetic, quantitative
distance metric (weighted UniFrac, Figure 1c). Since quantitative composition metrics
downweight low abundance features and upweight high abundance features, and qual-
itative composition metrics highlight changes in the presence or absence of community
members, taken together these results suggest that low abundance community members
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are either joining or leaving the community (or increasing or decreasing in abundance
around our threshold of detection).
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Figure 1. Microbiome change by week in EXMP-CRE. Microbiome dissimilarity to Pre phase week 1 (i.e., change since
week 1) is reported using four different community dissimilarity metrics for Pre phase weeks 2–3, Int phase weeks 1–8, and
Post phase weeks 1–3: (a) Unweighted UniFrac, (b) Jaccard distance, (c) weighted UniFrac distance, and (d) Bray–Curtis
distance. Larger distances indicate more microbiome change from Pre phase week 1. Each box represents the distribution of
microbiome change across all subjects. Significant change from week 1 was computed at each week using the Mann–Whitney
U test. ns indicates no significant difference after correction for multiple comparisons; * indicates significant difference
with p < 0.05 after correction for multiple comparisons; ** indicates significant difference with p < 0.01 after correction for
multiple comparisons; and *** indicates significant difference with p < 0.001 after correction for multiple comparisons.

Interestingly, the largest changes in the microbiome were observed in the second and
third weeks of the Int phase, but around the fifth week of the Int phase, the magnitude
of change decreased, with the change between Pre week 1 and Int week 5 not being
significantly different from the change between Pre weeks 1 and 2 after adjustment for
multiple comparisons. Int weeks 6, 7, and 8 were all more different from Pre week 1 than
Pre week 2 was, but not as different as the early weeks in the Int phase. In Post phase week
1 the subjects were no longer more different from their Pre phase week 1 samples than they
were in Pre phase week 2.

These results suggest that the addition of cardiovascular exercise prompts a change
to the gut microbiome, that this change is most pronounced at the beginning of the pro-
gram, but that it does not persist throughout or after completion of a short-term exercise
intervention.

3.3. Resistance Training Was Not Associated with Changes to Subjects’ Gut Microbiome

Unlike with our cardiorespiratory exercise intervention, we did not observe a change
in microbiome composition with any of the four microbiome diversity metrics (Figure 2a–d).
We generally had fewer subjects providing samples in EXMP-RTE, so this result may have
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been due to our smaller sample size. However, even in weeks when we had the largest
number of samples and expected observed microbiome differences to be greatest based
on our EXMP-CRE findings (e.g., Int week 2) we did not observe significant differences
even before adjustment for multiple comparisons. Our findings therefore suggest that
microbiome composition change is not a universal outcome of exercise intervention, but
may be dependent on exercise modality.
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Figure 2. Microbiome change by week in EXMP-RTE. Microbiome dissimilarity to Pre phase week 1 (i.e., change since
week 1) is reported using four different community dissimilarity metrics for Pre phase weeks 2–3, Int phase weeks 1–8,
and Post phase weeks 1–3: (a) Unweighted UniFrac, (b) Jaccard distance, (c) weighted UniFrac distance, and (d) Bray–
Curtis distance. Larger distances indicate more microbiome change from week 1. Each box represents the distribution of
microbiome change across all subjects. Significant change from week 1 was computed at each week using the Mann–Whitney
U test. ns indicates no significant difference after correction for multiple comparisons. Samples from fewer than five subjects
were returned in Int week 2 and Post week 2, so we have excluded these data from the figure.

3.4. Starting Microbiome State May Predict Magnitude of Change in CRE

We next tested whether the microbiome composition pre-exercise was predictive of
the change each individual might experience during the exercise intervention. As stated
previously, change in RER was modeled as an observed significant difference between Pre
and Post measurements as was time on treadmill. Exercise test performance is represented
by subjects’ VO2max, VT, and time on treadmill (s). In EXMP-CRE, we evaluated OLS
models when provided with Faith’s Phylogenetic composition, Shannon’s composition
index, and Pileou’s Evenness index, and PCoA 1, 2, and 3 of unweighted and weighted
UniFrac. We attempted to model change in RER and change in VO2max. For change in
RER, the Pre week 1 microbiome, as defined by these summary metrics, was in congruence
with significant change in RER as indicated during the post treadmill test (RER omnibus
statistics: F11, 16 = 2.8, p = 0.031, N = 28) with Shannon’s diversity index, Pielou’s evenness
index, and weighted UniFrac PCoA 3 as significant terms. For change in VO2max, the Pre
week 1 microbiome nearly achieved statistical significance (VO2max: F11, 16 = 2.38, p = 0.056,
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N = 28) with the Shannon’s diversity index, Pielou’s evenness index, and weighted UniFrac
PCoA 2 as significant terms.

To interpret the association between PCoA axes and RER change, we computed Spear-
man correlation coefficients between all genera observed in EXMP-CRE and weighted
UniFrac PCoA 3. This gives us an idea of the taxa that differ in the baseline gut microbiome
composition across the individuals who demonstrated little to no change in RER versus
some RER change post-intervention, and is similar to the analysis performed when gen-
erating microbiome composition biplots. The full results of this analysis are presented in
Spreadsheet S6, which presents all correlation coefficients between genera in EXMP-CRE
and weighted UniFrac PCoA 3 (p-values are not presented as we are not performing a
statistical test, but rather ranking taxa based on their associations with the PCoA axes).

These data suggest that the baseline gut microbiome of individuals who experience a
higher RER Post, as measured during increased time on treadmill during Bruce Protocol
VO2max testing, are dominated by the genera Prevotella, Romboutsia, and Dialister (positive
rho value between abundance and weighted UniFrac PCoA 3, with median abundance of
at least 1), while the individuals who experience lower RER change Post, are dominated
by the genera Bacteroides, Bacteroides B, and Parabacteroides (negative rho value between
abundance and weighted UniFrac PCoA 3, with median abundance of at least 1).

Because Pre weeks 2 and 3 also preceded exercise intervention, we additionally used
these weeks to summarize the microbiome composition. In both of these cases the omnibus
p-value was not significant, suggesting some noise in this signal. A recent study suggested
that averaging microbiome composition across time points may be a useful approach to
reduce noise in longitudinal studies [33], so we grouped Pre weeks 1–3 samples on a per
subject basis by converting each feature count to its median count across the three Pre
weeks of the study. When we did this and recomputed the microbiome metrics and our
OLS model, we achieved a significant omnibus test result for VO2max change (F11, 16 = 2.50,
p = 0.047, N = 28) but not for RER change. In this analysis, weighted UniFrac PCoA 2 was
the only significant term in the VO2max model.

Full statistical results for all analyses described here can be found in Spreadsheet S7,
which provides all results for all microbiome statistical analyses.

3.5. Starting Microbiome State Predicts Exercise Gains during Resistance Training

We additionally evaluated whether the starting microbiome state in EXMP-RTE pre-
dicted change in bench press, bent-over row, and squat. These specific variables were
modeled according to their significance at p < 0.05, rather than using e1RM and 3RM for
all three lifts. For change in 3RM squat, we observed that the Pre week 1 microbiome was
predictive of exercise gains (F6, 11 = 5.16, p = 0.028, n = 18), with weighted UniFrac PCoA 2,
weighted UniFrac PCoA 3, and the participant’s age as significant terms. None of the
other tests resulted in a significant omnibus test result with any of the other three baseline
weeks, or with the averaged baseline weeks (n = 18 in all tests), though e1RM bent-over
row change was suggestive (F6, 11 = 2.56, p = 0.055, n = 18) when averaging the Pre weeks
with unweighted UniFrac PCoA 1 as the only significant term. Again, this difference from
our EXMP-CRE result may be due to the smaller sample size, or because the microbiome
impacts, or is impacted differently, by different modes of exercise.

To interpret the association between PCoA axes and 3RM squat change, we com-
puted Spearman correlation coefficients between all genera observed in EXMP-RTE and
weighted UniFrac PCoA 2 and 3. This gives us an idea of the taxa that contribute to the
baseline gut microbiome composition for the individuals who experience low and high
3RM squat change over the course of the study, and is similar to the analysis performed
when generating microbiome composition biplots. All correlation coefficients are presented
in Spreadsheet S8, which presents correlation coefficients for weighted UniFrac PCoA 2,
and Spreadsheet S9, which presents correlation coefficients for weighted UniFrac PCoA 3)
for weighted UniFrac PCoA 2 and 3, respectively (p-values are not presented as we are not
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performing a statistical test, but rather ranking taxa based on their associations with the
PCoA axes).

These data suggest that the baseline gut microbiome of individuals who experience
high 3RM squat change are dominated by the Firmicutes genera Ruminococcus and uniden-
tified Lachnospiraceae (positive rho value between abundance and weighted UniFrac
PCoA 2, with median abundance of at least 1), and by the Firmicutes genera Turicibacter
and Clostridium (positive rho value between abundance and weighted UniFrac PCoA 3,
with median abundance of at least 1). The individuals who experience low 3RM squat
change are dominated by the genera Siccibacter, Bacteroides, and Bacteroides B (negative
rho value between abundance and weighted UniFrac PCoA 2, with median abundance
of at least 1), and by the genera Alistipes, Oscillibacter, and ER4 (family Oscillospiracea).
Interestingly, while there is not much overlap between the taxa associated with higher
exercise gains across EXMP-CRE and EXMP-RTE, two of the same genera (Bacteroides and
Bacteroides B) are associated with lower gains in exercise performance in both studies.

Full statistical results for all analyses described here can be found in Spreadsheet S7,
which provides all results for all microbiome statistical analyses.

3.6. Magnitude of Change in Microbiome Composition Is Not Correlated with Magnitude of
Exercise Gains

We additionally evaluated whether the magnitude of microbiome change was associ-
ated with the magnitude of exercise performance change. To evaluate this, we tested for
correlation between microbiome change at Int weeks 2 and 3 (when median microbiome
changes were largest), and an individual’s change in VO2max and RER for EXMP-CRE,
and e1RM bench press, e1RM bent-over row, and 3RM squat for EXMP-RTE. For each
study and performance metric, we performed a statistical test including all individuals
in the study, as well as a sex-specific tests conducted on only males and only females in
each study.

Results of statistical tests (Spearman rank correlations and scatter plots relating micro-
biome change to change in performance metrics) are available in Spreadsheet S10, which
lists Spearman rank correlations and scatter plots relating microbiome changes to perfor-
mance metrics. We did not observe any significant correlations in these tests, suggesting
that individuals who have larger microbiome changes do not necessarily experience larger
exercise performance gains.

4. Discussion

Our initial questions were designed to examine whether an eight-week cardiorespira-
tory intervention (aerobic exercise) and/or an eight-week resistance training intervention
(anaerobic exercise) altered the human gut microbiota. Secondly, we examined if initial gut
microbiota profiles of subjects in either study predicted fitness adaptations. Changes in
microbiota differed between exercise interventions, and the initial microbial community
was predictive of fitness gains.

Microbiome changes due to aerobic, but not anaerobic, exercise may be due to dif-
ferences in metabolic pathways specific to the exercise modalities. Internal physiological
processes associated with CRE can divert blood flow away from the gastrointestinal (GI)
tract, induce acute tissue hypoxia, decrease intestinal transit time, and increase absorptive
capacity of the gut, further contributing to increased microbiota richness [30,34]. Exercise-
induced increases to butyrate-producing taxa, and their ensuing production of butyrate,
can lead to increased colonic epithelial cell proliferation, gut barrier integrity, and re-
duce inflammation throughout the gut [3,8]. It is clear that CRE exercise performed on
a regular basis can positively impact human gut health, although the effects of intensity
(e.g., high intensity interval training), duration, and initial microbiome status need further
investigation.
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4.1. Change in Microbiome Associated with Cardiorespiratory Exercise

Exercise presents a potential stimulus for changes in the human microbiome richness
and composition, though studies of microbiome composition with high temporal reso-
lution have been lacking. Here we present our results of tracking the gut microbiome
weekly over a period of 14 weeks, with individuals progressing through a three-week
pre-exercise-intervention stage, an eight-week intervention period, and a three-week post-
exercise-intervention phase. We find that by the second week of the exercise intervention
(Int week 2) the individuals have experienced a compositional shift in their gut microbiome.
This is evident when using qualitative distance metrics, such as unweighted UniFrac and
Jaccard distance, but when using quantitative distance metrics, it is not observed (weighted
UniFrac) or is less apparent (Bray–Curtis distance). By comparing different metrics across
weeks, we can interpret the types of microbiome changes that occur. For example, as
Bray–Curtis distance exhibits significant distances from Pre week 1 to Int weeks 2 and 3, but
weighted UniFrac does not, this suggests changes in high abundance, but phylogenetically
similar taxa. As unweighted UniFrac also exhibits significant distances from Pre week 1 to
Int weeks 2 and 3, it suggests changes in the presence or absence of low abundance taxa
that may be phylogenetically dissimilar. Together, these results suggest substantial changes
in the gut microbiota in the first few weeks of exercise.

Because of the high temporal resolution of our studies relative to other human micro-
biome exercise intervention studies, we observe for the first time that exercise instigates
large changes to the gut microbiome. This was apparent in all of the metrics that showed
significant changes in our study. Int week 5 was not significantly different from Pre phase
by any of our metrics, and Int weeks 6, 7, and 8 were always more similar to the Pre phase
samples than the samples taken earlier in the exercise intervention. These data suggest an
initial large change to the microbiome, but smaller differences from Pre phase once a few
weeks have passed and the individual has settled into their new exercise regime.

By all four of the metrics that we applied for comparing microbiome compositions
we observed that, after the exercise intervention had completed, the individuals were no
longer significantly different in their gut microbiome from their starting state. This suggests
that the initial changes we see in response to exercise might resemble a disturbance to
the gut microbiome, followed by a recovery to the pre-disturbance state as a homeostatic
response to individual’s adaptation to the sustained exercise intervention. If true, this
suggests that persistent microbiome differences between athletes and non-athletes, as have
been reported from cross-sectional studies comparing athletes and non-athletes, may be
the result of long-term lifestyle differences between these groups, including differences in
diet and exercise practices, that cannot be quickly achieved.

4.2. Cardiorespiratory Fitness Adaptations

In our study sample for EXMP-CRE, we found a statistically significant increase in
RER and time on treadmill (s) which may be related to increased ability to buffer lactate
as a result of the eight-week intervention. RER values in excess of 1.00 relate to vigorous
exercise intensities in which increased production of CO2 and hyperventilation result from
buffering of excess hydrogen ions (H+) generated in anaerobic metabolic pathways within
working musculature [21]. While increased RER at Post measurement is not indicative of
cardiorespiratory fitness improvements, significant increases to RER and time on treadmill
(s) during the stepped Bruce Protocol following the eight-week CRE intervention are
worth noting.

We believe that the significant increases in subjects’ RER values and total treadmill test
times (s) between Pre and Post VO2max testing, without corresponding increases in VO2max
values, can be attributed to increased lactate buffering capacity resulting from the eight-
week CRE intervention [35], although no direct measurements of lactate were performed
during this study. Most subjects also entered the study with little experience in CRE, and
the eight-week intervention period could have worked to normalize their subjective and
physiological reactions to sustained cardiorespiratory work practiced during three weekly
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exercise sessions, resulting in their prolonged performance during the post-test Bruce
treadmill Protocol.

Further, we attribute the lack of increase in relative VO2max among most subjects
to the relatively short duration of the CRE intervention and an increase in body weight
among over half of subjects. Specifically, 15 subjects (54%) increased total body mass
(ranging between 0.30–4.70 kg) during the study period. Post hoc Pearson correlations
also support this interpretation, as increases in body weight, BMI, and %BF paralleled
reductions to relative VO2max in EXMP-CRE subjects. Similar results have been reported
by Radovanović et al. [36] concerning BMI and VO2max among adult men (r = −0.90,
p < 0.001). Pribis et al. [37] also present negative correlations between both BMI and %BF
and VO2max among male (BMI: r = −0.33, p < 0.001; %BF: r = −0.49, p < 0.001) and female
(BMI: r = −0.41, p < 0.001; %BF: r = −0.42, p < 0.001) college students. Additionally, changes
in body weight might have affected improvements to VT following the eight-week CRE
intervention. Most subjects (n = 24; 86%) also remained in the same VO2max classification
throughout the study period, with two subjects decreasing and two subjects increasing
their VO2max classifications. While we could not definitively pinpoint the cause of weight
gain in our subjects, we postulate that self-report dietary intake was underreported in our
college-aged population during the months of August–December in which the EXMP-CRE
study took place.

Intensity constraints of our CRE intervention (i.e., 60–90% HRmax) were also more
broadly defined than other similar studies. In comparison to Allen et al. [11], whose CRE
intervention intensity incrementally progressed from 60% heart rate reserve (HRR) in
weeks 1–3 to 75% HRR by week 6, our subjects were frequently reminded during exercise
sessions to maintain a working intensity within our prescribed range. Subjects’ Polar™
heart rate monitors (Polar Electro; Kempele, Finland) were programmed to display working
percentage of HRmax to better allow subjects to self-monitor during exercise sessions, and
HR data showed an average working range of 70–85% HRmax over the intervention period.
EXMP-CRE also provided subjects with greater variability in CRE exercise, with two
weekly exercise sessions of group cycling and a third session of varying modality (e.g.,
step aerobics, bootcamp-style circuit training, non-contact kickboxing, stadium and track
running, etc.) to more closely replicate how people might engage in exercise in a group
setting rather than a controlled laboratory setting.

It is possible that this variability might have worked against improvements to subjects’
maximal aerobic capacity in our eight-week intervention, as subjects in Allen et al.’s [11]
study were provided either a cycle ergometer or treadmill during their six-week CRE
intervention and saw an increase in VO2max of at least 4 mL·kg−1·min−1 in both lean and
obese groups. Allen et al. also reported a 100% compliance rate for their CRE intervention
with mean subject ages of 25.10 (SE = 6.52) and 31.14 (SE = 8.57) years in lean and obese
groups, respectively [11]. In comparison, the mean age of our undergraduate subjects was
20.54 (SE = 0.37) years, with 89% compliance over the CRE intervention. These differences
in sample characteristics might also contribute to our lack of increase in relative VO2max in
EXMP-CRE.

Lastly, Allen et al. also acutely controlled for dietary consumption by asking subjects
to follow a three-day food menu of only foods and drinks reported on a 7-day dietary recall
prior to their three fecal sample collections [11]. They also instructed subjects to maintain
overall dietary patterns over the entire study period, as did we. While our fecal sampling
was far more extensive during both EXMP-CRE (M = 13.61, SD = 1.81, per subject) and
EXMP-RTE (M = 7.44, SD = 1.33, per subject) studies, we only asked subjects to report
substantial shifts in daily eating habits in online per-sample questionnaires accompanying
each fecal sample taken, of which none did. We note that if dietary changes were large and
unreported, this could potentially be a confounding variable that would offer an alternative
explanation for the microbiome changes we observed in our cohort. Integrating food
frequency questionnaires in future studies would help to isolate the cause of microbiome
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changes, though this is challenging to implement in studies involving volunteers due to
the time these take to complete.

4.3. Resistance Training Associated Change in Microbiome

A gap in the exercise microbiome literature has been a comparison of different exercise
modalities for their association with gut microbiome composition. In contrast to our
findings in relation to CRE, we observed no significant changes during or after exercise
intervention for individuals in our RTE exercise program. While our RTE study had the
same number of subjects, in general we had lower adherence to microbiome sampling,
and thus frequently had a lower sample size during individual weeks. As a result, it is
possible that we do not observe differences in the microbiome with RTE exercise because
we are under-powered. However, even in weeks where we observed large differences in
microbiome composition during CRE, and where we had our largest sample size for RTE,
we did not observe even weakly significant microbiome changes. We therefore conclude
that the RTE either does not impact the microbiome, or does so with a much lower effect
size than CRE.

4.4. Resistance Training Fitness Adaptations

Significant increase in strength, measured across subjects’ 3RM for squat, bench press,
and bent-over row, were related to neuromuscular adaptations, novelty of the RTE inter-
vention to mostly untrained subjects, and the overall RTE program design implemented in
EXMP-RTE. Initial improvements in muscular strength originate from neural adaptations
across the central nervous system, and more distally at the neuromuscular junctions, that in-
clude greater motor unit recruitment, firing rates, and synchronization [19,38]. Subsequent
strength gains are associated with increased muscle fiber hypertrophy and begin to occur
after about 16 or more training sessions [19]. Because almost all subjects recruited for EXMP-
RTE were untrained and novice weightlifters, we attribute most muscular strength gains
to neuromuscular adaptations that occurred during the 24 RTE sessions of the eight-week
intervention period.

Untrained individuals can see increases in muscular strength of approximately 40%
over training periods that ranged between four weeks and two years [39]. These increases
were observed in the EXMP-RTE study with subjects increasing weights lifted in 3RM
squat by an average of 40.46% (SD = 5.29, 95% CI [29.59, 51.33]), 3RM bench press by an
average of 22.50% (SD = 3.10, 95% CI [16.12, 28.88]), and 3RM bent-over row by an average
of 33.73% (SD = 2.66, 95% CI [28.27, 39.19]). Concurrent mean increases in FFM of 1.71%
(SD = 0.69, 95% CI [0.30, 3.13]) in subjects might also relate to increased skeletal muscle
fiber hypertrophy arising from the eight-week RTE intervention.

Additionally, untrained individuals adapt favorably in any RTE program and see a
majority of strength increases within the first 4–8 weeks of training [38]. We expect that
introduction to and participation in the eight-week intervention, which repeatedly trained
all major muscle groups across a three-day weekly split of full body, upper body, and lower
body exercises, contributed to the strength gains observed in our mostly untrained study
sample. The intervention also stressed progressive overload by increasing weight lifted in
each exercise during intervention weeks 4 and 6 in accordance with NSCA guidelines [19].
Increases in muscular strength are also personified using relative strength classifications
for bench press and squat by Gibson et al. [31] and Hoffman [32], respectively (see Table,
Spreadsheet S5).

4.5. Initial Microbiome Status and Subsequent Exercise Adaptations

Multiple recent studies suggest that an individual’s microbiome composition and rich-
ness might affect subsequent performance adaptations brought about by exercise [15,40].
For example, Chen et al. [40] demonstrated a positive correlation between endurance swim-
ming time to exhaustion and higher microbiome richness in mice. Liu et al. [15] describe
the development of a random forest regression model that relates improvement in glycemic
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control and following exercise based on the state of the microbiome prior to exercise. In
this study, we constructed OLS models in an attempt to model direct measures of change
in exercise performance metrics using summary statistics of the microbiome composition,
including richness, evenness, and principal coordinates axes. We found that models could
be developed to predict change in exercise performance. Of note, Prevotella abundance was
associated with a higher RER during the post-treadmill test. Prevotella has been associated
with plant-rich diets and is a producer of anti-inflammatory metabolites, short chain fatty
acids, associated with gastrointestinal health [41]. This observation suggests that altering
the gut microbiome either before or during exercise might allow for more effective exercise
training, potentially helping individuals who are transitioning to an exercise program meet
their performance improvement goals. While this is an exciting preliminary result, it is
important to note that these models were developed on small cohorts, and some related
approaches that we took toward modeling these data (described in Results) did not achieve
statistical significance. Testing of this hypothesis in other, larger cohorts is essential.

4.6. Next Steps in Understanding the Role of Exercise in Shaping the Microbiome

It is clear to us from this work and others that engaging in the ACSM minimum
recommendations to improve cardiorespiratory fitness can impact the composition of the
gut microbiome, although additional studies are essential to developing our understanding
of that relationship. For example, it is highly likely that athletes harbor distinct microbiome
compositions than less active individuals based on several cross-sectional studies [30,42],
but at this point we do not know how long it takes for stable differences in the microbiome
to emerge from exercise. It is also unclear what mechanisms drive microbiome change
following the initiation of exercise, and if initial changes (as seen in the first few weeks
of intervention in our cardiorespiratory study) have the potential to stabilize into the
differences observed when comparing long-time athletes and non-athletes in cross-sectional
studies. Our limited results suggest that changes are more likely to be a short-term response
akin to a disturbance from which the individual’s microbiome returns to its pre-exercise
state. Further, the degree to which exercise volume and/or intensity affect microbiome
changes should also be examined in future research. If exercise proves to be a viable
mechanism for introducing changes to an individual’s gut microbiome, for example to
treat dysbiosis or impact disease-related phenotypes such as insulin sensitivity, these types
of questions will need to be addressed. We suggest that in the next phase of exercise
microbiome research, teams undertake the challenge of controlling or assessing diet in
participants (e.g., by using validated food frequency questionnaires) to better differentiate
the impacts of diet and exercise. We additionally suggest that dense temporal sampling
is performed, for example weekly or even daily, to develop a better understanding of the
microbiome dynamics that accompany the onset of exercise.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-4
663/9/2/14/s1, Spreadsheet S1: Questionnaire completed by participants on sample submission;
Spreadsheet S2: Upper body, lower body, and full body lifting cards used to track performance
in EXMP-RTE; Spreadsheet S3: EXMP-CRE-RTE_DataFile; Spreadsheet S4: EXMP-CRE subjects’
VO2max classifications by sex over study period; Spreadsheet S5: EXMP-RTE subjects’ relative
strength categories by sex over study period; Spreadsheet S6: Correlation coefficients of microbial
genera with weighted UniFrac PCoA 3 for EXMP-CRE; Spreadsheet S7: Ordinary least squares results
from evaluations of relationship between baseline microbiome and exercise performance change;
Spreadsheet S8: Correlation coefficients of microbial genera with weighted UniFrac PCoA 2 for EXMP-
RTE; Spreadsheet S9: Correlation coefficients of microbial genera with weighted UniFrac PCoA 3
for EXMP-RTE; Spreadsheet S10: Correlations test results and scatterplots illustrating relationships
between exercise performance change and microbiome change.
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