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Abstract: Background: The purpose of this study was to compare physiological responses during
continuous and intermittent swimming at intensity corresponding to critical speed (CS: slope of
the distance vs. time relationship using 200 and 400-m tests) with maximal lactate steady state
(MLSS) in children and adolescents. Methods: CS and the speed corresponding to MLSS (sMLSS)
were calculated in ten male children (11.5 ± 0.4 years) and ten adolescents (15.8 ± 0.7 years). Blood
lactate concentration (BL), oxygen uptake (V̇O2), and heart rate (HR) at sMLSS were compared
to intermittent (10 × 200-m) and continuous swimming corresponding to CS. Results: CS was
similar to sMLSS in children (1.092 ± 0.071 vs. 1.083 ± 0.065 m·s−1; p = 0.12) and adolescents
(1.315 ± 0.068 vs. 1.297 ± 0.056 m·s−1; p = 0.12). However, not all swimmers were able to complete
30 min at CS and BL was higher at the end of continuous swimming at CS compared to sMLSS
(children: CS: 4.0 ± 1.8, sMLSS: 3.4 ± 1.5; adolescents: CS: 4.5 ± 2.3, sMLSS: 3.1 ± 0.8 mmol·L−1;
p < 0.05). V̇O2 and HR in continuous swimming at CS were not different compared to sMLSS
(p > 0.05). BL, V̇O2 and HR in 10 × 200-m were similar to sMLSS and no different between
groups. Conclusion: Intermittent swimming at CS presents physiological responses similar to
sMLSS. Metabolic responses of continuous swimming at CS may not correspond to MLSS in some
children and adolescent swimmers.
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1. Introduction

Assessment of aerobic endurance and adjustment of training pace in swimming requires testing
for the determination of the speed corresponding to well-known indices such as lactate threshold,
maximum lactate steady state (MLSS), and V̇O2max [1,2]. An additional, easy-to-calculate aerobic
endurance index is critical speed (CS), which is considered to be the speed swimmers can maintain
without exhaustion [3,4] and is a suitable intensity to improve aerobic capacity [5,6]. However, previous
studies have shown that CS does not correspond to a tolerable intensity and cannot be sustained for
a long time for all swimmers (e.g., 30–40 min; [7,8]). A long-duration training set (e.g., 30–40 min)
with appropriate sustained intensity is suggested for the improvement of aerobic endurance [9]. Then,
CS intensity should be sustained for a long duration to achieve improvements in aerobic capacity.
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Moreover, this intensity can also be used during intermittent exercise [10], but the physiological
responses and the intensity domain during continuous and intermittent training relative to CS have
not been fully elucidated. In addition, these responses may be age-dependent, since children and
adolescent swimmers have been shown to present different physiological responses during intermittent
and continuous exercise [11–13].

The variability in metabolic responses observed when swimming at intensity relative to CS is also
highly depended on the distances selected and the mathematical model used for its calculation [1,8].
It is suggested that the duration of selected distances for CS calculation should be between 3 to
10–15 min, to comply with the theoretical definition of the critical power model (exercise without
fatigue or exhaustion) [1]. However, previous studies in swimming have used distances of 200 and
400-m or shorter to calculate CS [5,14,15] despite that using short duration distances may overestimate
CS [16]. Whatever the case, CS calculated by 200 and 400-m tests is an easier and less time-consuming
approach to apply compared to testing several long-duration distances (i.e., swimming 800 or 1500-m).

To characterize the exercise intensity domain of CS, researchers have evaluated blood lactate
concentration (BL) and oxygen uptake (V̇O2) responses during continuous and intermittent swimming
at various intensities above and below the speed corresponding to CS [5,7,12,14–17]. Swimming at
“heavy” intensity domain presents increased but steady BL and V̇O2 responses, while swimming at
“very heavy” exercise intensity domain causes a progressive increase in BL and V̇O2 slow component
without attainment of maximum oxygen uptake at exhaustion. Exercise intensity that leads to
maximum oxygen uptake attainment and high BL values is in the “severe” intensity domain [2].
In adult swimmers, it seems that BL and V̇O2 remain steady during continuous swimming below
CS, while during swimming above CS there is a progressive increase in BL and V̇O2, reaching V̇O2

peak at the end of exercise [7]. These physiological responses characterize the “heavy” and “severe”
exercise intensity, respectively. Swimming at a speed corresponding to CS causes a rise in BL and
attainment of V̇O2 peak at exhaustion [7]. Due to the difficulty of continuously collecting expired
air during swimming [1], only two studies have provided data of V̇O2 responses during recovery in
adults [7] and adolescents [8], but no study has examined V̇O2 during intermittent swimming at speed
corresponding to CS. In previous studies, adolescents showed steady V̇O2 responses without V̇O2

peak attainment at the end of continuous swimming corresponding to CS (~82% V̇O2 peak; [8]) while
adults attained V̇O2 peak at exhaustion [7]. No study has provided data of V̇O2 responses in children
during continuous and intermittent swimming at speed corresponding to CS. V̇O2, combined with BL
values provide the information to characterize the exercise intensity domain helping coaches to design
training sets at an appropriate intensity. Besides V̇O2, BL is easier to measure in all age-groups during
intermittent swimming. Swimming at CS intensity children presented steady BL [18] while adolescents
and adults presented an increase of 0.8 and 1.4 mmol·L−1 in BL respectively, from the 10th min to
the end of continuous swimming exhausting them in less than 30 min [7,8]. Similarly, a steady BL
of 4–5 mmol·L−1 was observed in children during intermittent swimming, [12] while adolescents
presented a rise in BL after 1200-m in an intermittent set of 400-m repetitions at intensity corresponding
to CS [12,14,17]. A likely attenuated fatigue profile, metabolic response and differences in energy
contribution in children compared to adolescent and adults may partly explain these differences [11,13].

It should be noted that CS in all the above-mentioned studies was calculated with different
combinations of distances and mathematical models. Shorter distances used for CS calculation may
overestimate its value and alter subsequent metabolic responses when swimming at overestimated
CS. Additionally, no study has examined physiological responses at an intensity corresponding to
CS calculated by 200 and 400-m tests compared to MLSS. Comparing the physiological responses
of CS to MLSS will help to clarify its importance for training purposes. Previous studies have used
an intermittent protocol to obtain the MLSS speed and compare the physiological responses with
swimming at speed corresponding to CS obtained by 200 and 400-m tests [5], but such a comparison
has limited validity. Therefore, the purpose of this study was to evaluate physiological responses of
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continuous and intermittent swimming at speed corresponding to CS obtained by 200 and 400-m tests
and MLSS in children and adolescent swimmers.

2. Methods

2.1. Participants

Ten boys (age: 11.5 ± 0.4 years, body mass: 40.0 ± 5.4 kg, height: 149.2 ± 1.5 cm) and ten
adolescents (age: 15.8 ± 0.7 years, body mass: 65.9 ± 7.5 kg, height: 177.1 ± 8.4 cm) participated in
the study. The swimmers’ best performance in 200-m front crawl represented 90.5 ± 5.3% of the best
national performance in the children age-group (160.2 ± 7.4 s, 261 ± 38 FINA points), and 88.7 ± 3.7%
of the national record in their respective age-group of adolescents (127.3 ± 5.4 s, 519 ± 64 FINA points).
Both children and adolescents were trained 5–6 times per week, with duration of approximately 2 h
per session and covering about 3500–4000 m and 5500–6500 m per session, respectively. All tests
were carried out during the specific preparation mesocycle. The anthropometric characteristics (body
mass, height and sitting height) were measured on the first day. These characteristics were used
for the calculation of the age corresponding to peak height velocity (PHV), based on the equation
proposed by Mirwald et al. [19]. Children were 2.3 ± 0.3 years before PHV and adolescents 2.1 ± 0.7
years after the age of PHV. All tests were conducted within one month and with at least one-day
difference between tests for each swimmer, in a 25-m indoors swimming pool, with constant water and
environmental temperature (25 ◦C, 27–28 ◦C respectively). Participants were asked to record their diet
the day before the first testing session and repeat a diet of similar nutritional content the day before all
subsequent testing sessions. The swimmers agreed to participate, and parents or guardians signed a
written informed consent before the commencement of the study that had received approval from the
institutional ethical committee (1031/6/12/2017).

2.2. Calculation of CS

Before each test, a standardized warm up was applied (400-m front crawl, 200-m front crawl drills,
4 × 50-m front crawl at pace of personal best 400-m). After the warm up and before the test began,
8 min of passive rest was allowed. On the first visit, two all-out efforts of 200-m and 400-m with a push
off start within the water were carried out to determine CS (the slope of the regression line between
distance and time [3]) and V̇O2 peak. A 30 min recovery period was allowed between tests (5 min of
active and 25 min of passive rest). Time to complete each distance was recorded by two independent
timekeepers using a digital stopwatch (FINIS 3X300, Finis Inc., Livermore, CA, USA). Before and after
the 400-m all-out effort BL was determined in a blood sample taken from the fingertip (Lactate Scout+,
Leipzig, Germany). Immediately after the 200 and 400 m tests, a breathing mask was fitted on the
face and expired air was analyzed using a portable gas analyzer (VO2000 Med Graphics, Saint Paul,
MN, USA) [20]. The highest value measured after 200 or 400-m, was considered as V̇O2 peak for each
swimmer. Speed at V̇O2 peak (sV̇O2 peak) was defined as the average speed at the test in which the
highest V̇O2 peak was attained. Heart rate (HR) was measured during tests (Polar V800, Polar Electro
Oy, Kempele, Finland), and peak HR (HRpeak) was defined as the highest HR observed.

2.3. Continuous Swimming Tests—Determination of MLSS

For the determination of the MLSS participants performed, in separate days, two to four
continuous 30 min swimming efforts at a constant submaximal speed. On the first day, the pace
was set at the speed corresponding to the individual CS. When a steady BL was observed in the CS
test, the speed increased by 2% at the next visit. When no steady BL was observed in the CS test or the
participant failed to complete 30 min of continuous swimming, the speed at the next test decreased
by 2%. A blood sample was taken at the start, at the completion of the 10th min and at the end of
the test for the determination of BL. Expired air was also collected at the same time points for the
determination of V̇O2 as it is described in the previous paragraph. Each test was terminated after
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volitional fatigue, or when swimmers were not able to maintain the required speed for two consecutive
25-m laps despite strong verbal encouragement (i.e., slower by 1 s in a 50 m lap). The speed at MLSS
(sMLSS) was determined, using the criteria set by Beneke et al. [21] (i.e., the speed where the lactate
concentration increased no more or equal to 1.0 mmol·L−1 between the 10th and 30th min of exercise).
The average BL between the 10th and 30th min of the MLSS test was defined as BL at MLSS. HR was
recorded continuously during all tests and the average HR during the last 30 s before the end of
each test was defined as end-HR. A 45-s rest interval was allowed at the 10th min to measure BL and
V̇O2. A pacing device emitting sound signals was attached under the swimmers’ cap to help them
maintain the pre-defined speed in each trial (Finis tempo trainer pro, Finis Inc., Livermore, CA, USA).
In addition, an assistant was walking alongside the pool at the pre-defined speed of the test, and
participants were instructed to keep their head at the level of assistant’s feet.

2.4. Intermittent Swimming at CS

At the last visit to the swimming pool, volunteers were required to swim a set of ten 200-m
repetitions (10 × 200-m) at a speed corresponding to CS, with a 35–45 s rest interval after each
repetition (mean rest duration: 43.17 ± 6.53 s). BL was measured before the start (pre) and after the
2nd, 4th, 6th, 8th and 10th repetition. V̇O2 was measured before the start of the set (pre) and after each
200-m repetition. HR was recorded continuously during the test, and the average value of the last 30 s
of each 200-m repetition was used for the data analysis. To maintain the pre-defined speed, the same
pacing device as in continuous swimming was used.

2.5. Statistical Analysis

Statistica v.10 software (Stat-Soft Inc, Tulsa, OK, USA) was used for data analysis. Sphericity
was verified using Mauchly’s test. When the assumption of sphericity was not met, the significance
of F-ratios was adjusted according to the Greenhouse–Geisser procedure. A Student’s t-test for
independent samples was used to establish differences at V̇O2 peak, sV̇O2 peak and time to exhaustion
at CS between groups. A 2-way analysis of variance (ANOVA) for repeated measures was used
to examine differences between CS and sMLSS (two groups × two tests) and a 3-way ANOVA for
physiological responses (BL, V̇O2 and HR; two groups × two tests × two times of measurement).
When significant main effects were found, a Tukey’s honest significant difference (HSD) post-hoc test
was used to identify differences between means. Pearson’s correlation coefficient was used to assess
association between variables. The effect size (ES) for paired comparisons was calculated with Cohen’s
d using the pooled standard deviation as denominator. The ES was considered small if the absolute
value of Cohen’s d was less than 0.20, medium if it was between 0.20 and 0.50 and large if it was
greater than 0.50 [22]. 95% confidence limits (95% CL) were also calculated. Significance was set at
p ≤ 0.05. Data are presented as mean ± SD.

3. Results

3.1. Performance, Peak Heart Rate and Peak Oxygen Uptake in 200 and 400-m Tests

Performance time in 200 and 400-m all-out efforts used for CS calculation was longer in children
compared to adolescents (children: 171.3 ± 9.7, 355.1 ± 21.0 s, adolescents: 136.5 ± 6.5, 288.9 ± 13.9 s,
p < 0.05). HRpeak was higher in children compared to adolescent (193 ± 10 vs. 185 ± 8 b·min−1,
ES = 0.96, large t = 2.13, p < 0.05). V̇O2 peak and sV̇O2 peak were higher in adolescents compared to
children (59.4 ± 3.8 vs. 52.3 ± 6.3 mL·kg−1·min−1, ES = 1.4, large, t = −3.01, p < 0.05 and 1.441 ± 0.053
vs. 1.153 ± 0.083 m·s−1, ES = 4.2, large, t = −9.26, p < 0.05).

3.2. Speed and Physiological Responses during Continuous Swimming at CS and sMLSS

CS and sMLSS were higher in adolescents compared to children (p < 0.05). However, no difference
was observed between CS and sMLSS in children and adolescents (Table 1, F1,18 = 2.672, p > 0.05).
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CS and sMLSS corresponded to 200-m swimming time of 183.8 ± 12.0 and 185.3 ± 11.1 s in children
and to 152.5 ± 8.2 and 154.4 ± 6.8 s in adolescents, respectively. CS was correlated with sMLSS
(r = 0.96, p < 0.05) and sV̇O2 peak (r = 0.93, p < 0.05).

Mean time to exhaustion during continuous swimming at intensity corresponding to CS was
not different between groups (children: 21.2 ± 12.1, 95% CL: 13.7–28.7 min; adolescents: 25.7 ± 7.4,
95% CL: 21.0–30.3 min, t = −0.998, p > 0.05). Specifically, six out of ten children and seven out of ten
adolescents were able to complete 30 min of swimming at speed corresponding to CS. Five out of
six children and four out of seven adolescents who were able to complete 30 min of swimming at
CS presented steady BL between the 10th and 30th min. Three children were not able to complete
10 min of swimming at CS. A significant correlation was observed between distance covered at CS
and CS as percentage of the 400-m speed (r = −0.71, p < 0.05). Analysis of variance showed significant
interaction of test × time for BL (F1,18 = 563, p < 0.05), with continuous swimming at CS resulting in
higher BL than sMLSS in both children and adolescents (Figure 1). Figure 2 illustrates individual BL
values for all participants at the start, at minute 10 and the end of continuous swimming in speed
corresponding to CS.

Table 1. Mean ± SD and 95% confidence limits for heart rate (HR) and oxygen uptake (V̇O2) at the end
of continuous swimming at critical speed (CS) and at the speed corresponding to maximum lactate
steady state (sMLSS).

Variable
Children Adolescents

CS sMLSS ES CS sMLSS ES

Speed (m·s−1)
1.092 ± 0.071 ‡
(1.136–1.048)

1.083 ± 0.065 ‡
(1.123–1.042)

0.14
small

1.315 ± 0.068
(1.357–1.237)

1.297 ± 0.056
(1.332–1.263) 0.29 medium

End-HR
(b·min−1)

188 ± 13 ‡
(180–196)

187 ± 8 ‡
(182–191)

0.18
small

179 ± 9
(174–185)

175 ± 12
(168–182) 0.44 medium

End V̇O2
(mL·kg−1·min−1)

43.3 ± 5.4
(39.9–46.6)

40.7 ± 7.4
(36.1–45.3)

0.40
medium

46.3 ± 6.6
(42.2–50.4)

44.6 ± 6.9
(40.4–48.9) 0.25 medium

ES: effect size between CS and sMLSS in each group, ‡: p < 0.05 compared to adolescents (main effect of group).
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Figure 1. Blood lactate concentration at the start and after the end of continuous swimming at critical
speed (CS) and speed corresponding to maximum lactate steady state (sMLSS) in children (black-filled
dot and square) and adolescents (white filled dot and square). *: p < 0.05, CS compared to sMLSS in
both groups.
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Figure 2. Blood Lactate concentration at start, min 10 and at the end of continuous effort at speed
corresponding to critical speed in children ((A), filled bullets) and adolescents ((B), open bullets).

V̇O2 was not different in adolescents compared to children at the end of continuous swimming at
CS (F1,18 = 2.464, p > 0.05; Table 1) and not different during continuous swimming at CS compared to
sMLSS (F1,18 = 1.126, p > 0.05; Table 1). HR was similar during continuous swimming at CS compared
to sMLSS (F1,18 = 3.238, p > 0.05) but increased in children compared to adolescents (F1,18 = 5.631,
p < 0.05; Table 1).

3.3. Physiological Responses during Intermittent Swimming at CS

Both children and adolescents maintained a speed equal to CS during the ten 200-m repetitions
in the intermittent swimming test (mean speed at 10 × 200-m; children: 1.093 ± 0.067, adolescents:
1.323 ± 0.063 m·s−1; CS vs. mean speed at 10 × 200-m F1,18 = 1.426, p > 0.05). BL remained unchanged
during the 10 × 200-m repetitions and was not different between groups (p > 0.05, Figure 3). Mean BL
during the 10 × 200-m intermittent swimming was similar to mean BL measured at sMLSS for both
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children and adolescents (10 × 200-m, children: 3.8 ± 1.6, adolescents: 3.0 ± 1.1; sMLSS, children:
3.5 ± 1.5, adolescents: 3.0 ± 0.7; F1,18 = 0.247, p > 0.05). V̇O2 was not different between groups
(F1,18 = 2.818, p > 0.05). However, V̇O2 remained unchanged during 10 × 200-m in adolescents but
decreased after the eighth compared with the first bout in children (F10,180 = 4.891, p < 0.05, Figure 4).
HR was similar between children and adolescents (183 ± 2 vs. 173 ± 3 beats·min−1, F1,18 = 3.973,
p = 0.06) and remained unchanged over the 10 × 200-m repetitions.

 

 

 

Figure 3 

 

 

Figure 4 

Figure 3. Blood lactate concentration during intermittent swimming (10 × 200-m) at speed
corresponding to critical speed in children (filled black bullet) and adolescents (open bullet). *: p < 0.05
compared to start in children group only.

 

 

 

Figure 3 

 

 

Figure 4 
Figure 4. Oxygen uptake during intermittent swimming (10 × 200-m) at speed corresponding to critical
speed in children (black-filled bullet) and adolescents (open bullets). *: p < 0.05 compared to first and
second repetition in children group only. The horizontal dotted and continuous lines show the V̇O2

peak values of children and adolescents, respectively.
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4. Discussion

The purpose of this study was to evaluate physiological responses during continuous and
intermittent swimming at speeds corresponding to CS calculated by 200 and 400-m tests and MLSS in
children and adolescent swimmers. The main findings showed that: (i) CS was similar to sMLSS in
both children and adolescents, (ii) intermittent but not continuous swimming at critical speed was
sustainable for children and adolescent swimmers, (iii) the physiological responses during continuous
swimming at CS indicate that this intensity corresponds to MLSS for some children and adolescent
swimmers but it may be above or below MLSS by 6% and 4% respectively for others.

CS was not different compared to sMLSS in both children and adolescents. Previous studies
calculated CS by the time to exhaustion (tests duration of 2 to 7 min) or by 200 and 400 m tests reported a
higher CS compared to sMLSS in adult swimmers of similar performance level compared to adolescent
swimmers in the present study [23,24]. In contrast, studies conducted with children and adolescent
swimmers agree with our findings, showing CS similar to sMLSS [15,18]. It is likely that the duration
of selected distances may be shorter in adults compared to younger swimmers, thus overestimating
CS (the slope of distance vs. time). Moreover, the speed difference between 200 and 400-m within
each group will also impact CS calculations. In the present study children were slower by 20.3% and
18.3% in 200-m and 400-m tests compared to adolescents. It is also interesting to note that the speed
difference in 200 vs. 400-m in children was 3.5% compared to 5.5% in adolescents. A 5.5% difference
has been also observed in adult swimmers [23]. The observed differences may be attributed to an
attenuated metabolic acidosis and fatigue combined with increased reliance on aerobic metabolism in
children compared to adolescents and adults [11,13,25]. Altogether the above-mentioned observations
highlight the need for a careful selection of distances and the mathematical model for CS calculation
especially when a comparison between age-groups or between CS and MLSS is attempted.

In the present study CS and sMLSS differed by 0.8% and 1.3% in children and adolescent
swimmers, respectively. However, a great variability between swimmers in both groups was observed.
Some of the swimmers were able to swim 30 min with a steady lactate concentration at intensity 4%
faster than CS while others should have decreased speed for about 6% to maintain steady lactate
responses from the 10th to the 30th min of continuous swimming. This information may explain
why some swimmers were not able to complete 30 min at CS intensity. Another possible reason that
explains the inability of some children and adolescents to complete 30 min at CS intensity is that
these swimmers presented a CS over 96.5% of the 400-m speed and there was a strong relationship
between distance covered at CS intensity and CS as % of the speed at 400-m. Previous studies agree
with our findings that continuous swimming at CS can be maintained for 24 to 27 min, albeit with
a great variability (standard deviations of 5 to 7 min) [7,8], as was also the case in both children
and adolescents groups in the present study. However, it seems that 10–12 years old children can
complete 30 min swimming at a speed corresponding to CS, while maintaining a steady blood lactate
concentration [18]. These differences may appear because of different combination of distances and the
mathematical model used for CS calculation leading to overestimation or underestimation of CS [1].
The combination of distances and the two-parameter linear model that used in the present study may
overestimate CS compared to other models and combinations that include longer distances for CV
assessment [8].

A high relative percentage of CS compared with the maximum aerobic speed (92–94%) and a
difference of 5–8% between sMLSS and CS have also been reported in previous studies [23,24]. The CS
measured in the present study corresponded to 95% and 97% of the speed at 400-m for adolescent
and children swimmers, respectively. This may explain why, despite a small mean difference between
CS and sMLSS, this speed was not sustainable for most children and adolescent athletes, as they had
to swim at a speed very close to their best 400-m performance. Furthermore, children swimmers
participated in the present study presented faster CS and sMLSS compared to previous study [18],
then, they had to apply more power to overcome drag force than lower level swimmers at the same
intensity relative to maximal aerobic speed [26]. This information may explain why a small difference
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between speeds of about 1%, but with a range of −6.4% to 4.3% for children and −6.1% to 4.5% for
adolescents, leads to different physiological responses when aiming to maintain CS intensity for 30 min
compared to sMLSS. Swimmers in previous studies, to continue swimming for 30 min, adjusted their
speed to a lower intensity (~96–97% of CS, [14,24]). In the present study, all participants were able
to comply with the imposed speed (the CS), but some of them failed to maintain it for 30 min. Thus,
our findings suggest that great inter-individual differences may appear between CS and sMLSS (−6%
to 4%) that may critically alter sustainability or metabolic responses despite that the range of mean
speeds corresponding to various aerobic indices is very narrow in swimming [27]. Moreover, the
selection of distances for CS calculation in the present study (200 and 400-m) may overestimate the
“ideal” CS calculation and this should be considered as a limitation of the current study.

CS and sMLSS did not differ from each other statistically; however, it is possible that these aerobic
indices represent different exercise intensities, due to different individual physiological responses
observed during swimming at these intensities. This is confirmed by the higher lactate responses
and small to medium increments in end-HR and V̇O2 observed during continuous swimming at CS
compared with sMLSS, in combination with the shorter time to exhaustion observed in continuous
swimming at CS compared to the standard time of 30 min at sMLSS. Blood lactate concentration
compared to previous studies [7,8] was not as high as expected during the CS intensity but was higher
than the concentration measured in the sMLSS speed. Adolescent swimmers in previous studies
completed continuous swimming or terminated the test with higher blood lactate concentration of 6 to
7 mmol·L−1 [7,8]. However, our measured values in children’s group were comparable to previous
study with children swimmers (e.g., 3 to 4 mmol·L−1, [18]). It is possible that at intensities above MLSS,
(i.e., CS in some swimmers in the present study), exercise termination may be induced by protective
mechanisms to ensure the maintenance of homeostasis, even though lactate concentration is not very
high ~4 mmol·L−1 and V̇O2 peak is not reached [28]. Thus, CS calculated by 200 and 400-m seems to
be a hardly tolerable intensity, which some swimmers cannot maintain for a long time (e.g., 30 min [7]).
Children and adolescents did not reach V̇O2 peak during the continuous swimming at CS intensity as it
has been reported in a previous study with adult swimmers [7]. This means that CS probably does not
represent the boundary between “very heavy” and “severe” exercise intensity domain. Furthermore,
CS may represent slightly higher intensity in children compare to adolescents, due to the higher
cardiovascular effect (higher heart rate) observed in continuous swimming. Children compared to
adolescents and adults present lower stroke volume and they need to increase their HR to maintain
cardiac output [29].

In contrast to continuous swimming, children and adolescents were able to maintain CS during
the 10 × 200-m interval training, with physiological responses similar to sMLSS. Previous studies have
shown that swimming at CS induces an increase in blood lactate concentration after 800 m [12] or
1200 m [14,17] in a series of 5 × 400-m. However, children have shown steady lactate concentration
during repetitions of 300 m at CS intensity [12]. Nevertheless, in the present study, lactate concentration
showed steady levels in both, children and adolescents during the 10 × 200-m intermittent swimming.
To explain this disagreement, we should consider that in the above-mentioned studies, adolescents
performed repetitions of 400 m in a 50-m swimming pool, while in the present study children and
adolescents performed repetitions of 200 m in a 25-m swimming pool, using the same resting interval
(e.g., 30–45 s). The shorter duration of repetitions and the shorter pool length may have helped in
attenuating metabolic responses [30]. When swimmers perform short-term efforts (up to 200 m), they
can maintain steady metabolic conditions more easily compared with longer distances such as the
400-m repetitions [7,14,31,32]. In addition, V̇O2 also showed a steady state between repetitions in
children and adolescents, without attainment of V̇O2 peak. Furthermore, in accordance with a previous
study, HR was steady between repetitions without differences between children and adolescents [12].
Values obtained in the present study were similar to the values obtained in a study during which
adolescents exhibited heart rate within the range of 180–197 beats·min−1 during various intermittent
sets independent of the distances used (i.e., 5 × 400-m, 10 × 200-m, 20 × 100-m) [14].
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5. Conclusions

The speed corresponding to CS calculated by the two-parameter linear model and using distances
of 200 and 400-m represent an intensity that not all children and adolescent swimmers are able to
maintain for a long period during continuous swimming. Considering the time to exhaustion, the
metabolic, V̇O2 and heart rate responses observed in children and adolescent swimmers in the present
study, it seems that CS obtained by 200 and 400-m tests represents exercise intensity above the “heavy”
domain for some of the swimmers. On the other hand, 30–45 s passive recovery between 10 × 200-m
swimming repetitions enables steady lactate concentration, V̇O2 and HR similar to MLSS. Swimming
coaches may use 200-m swimming repetitions with rest interval of 30–45 s at a pace corresponding to
CS calculated by 200 and 400-m aiming to improve aerobic endurance of well-trained children and
adolescent swimmers.
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