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Abstract:



Turnovers in the National Football League (NFL) occur whenever a team loses possession of the ball due to a fumble, or an interception. Turnovers disrupt momentum of the offensive team, and represent lost opportunities to advance downfield and score. Teams with a positive differential turnover margin in a given game win [image: there is no content] of the time. Turnovers are statistically rare events, occurring apparently randomly. These characteristics make them difficult to predict. This investigation advances the hypothesis that turnovers are predictable in NFL football. Machine learning models are developed to learn the concept: At any point within a football game, what is the likelihood that a turnover will be observed on the next play from scrimmage? NFL play-by-play data for 32 teams spanning seven full seasons were used to train the models. Results presented suggest evidence to support the working hypothesis. Under certain conditions, both fumbles and interceptions can be anticipated at low false discovery rates (less than [image: there is no content]). When a turnover is predicted on the impending play from scrimmage, a high degree of confidence is associated with that prediction. The ability to anticipate catastrophic in-game events may lead to their management and control, ultimately improving the performance of individual athletes and their teams. This investigation contributes to the sports science literature by demonstrating the predictability of in-game events often considered to be essentially random in their occurrence. To the author’s knowledge, direct prediction of turnovers has not previously appeared in the literature, which has focused on retrospective statistical analyses of turnover margin in football games.
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1. Introduction


Turnovers in the National Football League (NFL) occur whenever a team loses possession of the ball due to a fumble, or an interception. A fumble is any act other than passing, handoffs, or legally kicking the ball, which results in a loss of possession from offense to defense. Interceptions occur when a defender catches a pass or fumble that does not touch the ground [1]. Turnovers disrupt the momentum of the offensive team, and represent lost opportunities to advance downfield and score.



A positive differential turnover margin in a given game is a significant predictor correlated with winning that game [2]. One analysis of multi-season game outcomes found that teams having a single turnover less than their opponent were victorious [image: there is no content] of the time [3].



Turnovers may be caused by any number of factors, including physical collisions, mistakes in play execution or lapses in player concentration. In statistical terms, turnovers are rare events. Less than [image: there is no content] of passes are intercepted, and less than [image: there is no content] of run plays end in fumbles being recovered by the defensive team. Turnovers appear to be random events [4]; previous work concluded that roughly equal parts chance and talent accounted for year-over-year variations in turnover differential for a given team [3]. Within a season, NFL turnovers are only weakly correlated with prior game performance [5].



These characteristics—rarity, irregular but recurrent appearance, and costliness in their effect—suggest a connection with so-called “extreme” events in dynamical systems, which are inherently difficult to predict [6].



The ability to anticipate turnovers with some degree of statistical confidence potentially offers significant value for in-game strategies to mitigate their negative consequences.



This investigation tests the hypothesis that turnovers are predictable in NFL football. Statistical models that predict the likelihood of observing a turnover on a given play from scrimmage are developed, and evaluated using play-by-play data from seven NFL seasons.




2. Methods


2.1. Gradient Boosted Machine Learning


The concept to be learned in this investigation is this: At any point within a football game, what is the likelihood that a turnover will be observed on the next play from scrimmage?



The specific objective is to learn an unknown function F that maps explanatory variables [image: there is no content] to the response y, or [image: there is no content], where x represents the game situation, and [image: there is no content] is the binary decision (no turnover, turnover). A collection of training examples [image: there is no content] is used to estimate an approximation to F, or [image: there is no content], by an adaptive learning algorithm known as the “gradient boosting machine” [7,8].



Gradient boosting machines (GBMs) are learning algorithms that reconstruct a decision function [image: there is no content] based on the consensus of an ensemble of classification or regression trees. New decision tree models are sequentially added to the ensemble, in order to increase the estimation accuracy of the response variable. The numerical optimization minimizes an expected loss [image: there is no content] of a group of trees, conditioned over the entire training data set [7]. The loss function can be selected according to a given learning concept and joint probability distribution [image: there is no content] under study. Here, we use a Bernoulli distribution loss function, convert the classification to a continuous value via logistic regression and estimate the turnover probability [image: there is no content], [image: there is no content] .



A useful property of GBMs in applications is interpretability through calculation of the relative influence of explanatory variables in constructing a consensus decision. The influence of each input variable [image: there is no content] in a given tree is based on the frequency of its selection for splitting in non-terminal nodes, and its contribution to successful model classification over the data sample. This influence is averaged over the ensemble of trees to estimate the variable’s overall importance to the decision function [image: there is no content] [7]. In the current investigation, this interpretation may provide insight into the game conditions under which turnovers might be expected to occur.



Gradient boosting machine models were developed and evaluated in R, using the ”gbm” package [9,10].




2.2. Sample, Segmentation and Features


The population under study consists of NFL season, game, player and play-level data for complete seasons 2009 through 2015, covering all 32 teams. Game data were downloaded from the site www.nfl.com using utilities provided by ”nflscrapR” [11]. These data were preprocessed by (1) sampling by season and team; (2) filtering by play type, to include only plays from scrimmage (run, pass or sack); (3) annotating by status of turnovers (true, false) observed on each play; (4) constructing feature vectors using attributes of the play-by-play and game contextual data.



This sample comprised 300,450 plays. Running plays represented [image: there is no content] of all plays, passes [image: there is no content], and sacks only [image: there is no content]. Although sack-fumbles lost are significant events ([image: there is no content] of sacks produce turnovers), we decided to exclude sacks from further consideration due to their negligible numbers relative to run and pass plays. To make this predictive analysis useful in practice, it is prudent to categorize turnover events in association with scrimmage plays that could reasonably be anticipated by a defensive team, based on offensive formation.



After excluding sack plays, the sample contained 291,675 plays, with an overall turnover prevalence of [image: there is no content] for pass and run plays, combined. Pass plays made up [image: there is no content] and runs [image: there is no content] of the resultant dataset.



Two partitioning schemes were applied to the sample. First, an aggregate sample of all 32 NFL teams was created to assess whether invariant patterns of turnover predictability could be determined. Second, individual team samples were assembled to develop team-specific models of turnovers. Seven full season-long records were used for all sample datasets.



Predictive models were trained and evaluated for each sample. These samples were segmented by distinct event types—(1) Run plays; (2) Pass plays; and (3) Run or Pass plays combined.



Feature vectors for learning were constructed from available fields in the play-by-play data. Numeric data were normalized by characteristic length and time scales. Categorical and ordinal variables were represented as binary valued quantities using one-hot encoding. The features and their corresponding nominal dimensions upon encoding are summarized in Table 1. Not all dimensions listed in the table were in model development, due to their low variation across certain limited subsamples.



Table 1. Features used in models to predict National Football League (NFL) turnovers.







	
Feature

	
Dimension






	
Drive number

	
1




	
Quarter

	
5




	
Down

	
4




	
Remaining game time

	
1




	
Yard line

	
1




	
Yards to 1st down

	
1




	
Yards on drive, net

	
1




	
Play type

	
14




	
Score differential

	
1




	
Run location

	
3




	
Pass location

	
3




	
Last run location

	
3




	
Last pass location

	
3




	
Last pass outcome

	
3




	
Last play yards gained

	
3











2.3. Modeling and Analysis


The incidence of turnovers as a percentage of all plays from scrimmage is very low, around [image: there is no content]. For this reason, the distribution of class labels [image: there is no content] in a training set [image: there is no content] randomly sampled from the true population is highly skewed. Learning the parameters of a useful statistical estimator of turnover probability [image: there is no content] suggests the use of specific learning techniques to avoid trivially predicting “no turnover” on every decision [12].



To address this, the approach taken in this study was to re-balance the distribution of classes in the training set, over-representing the distribution of the minority class in order to present sufficient examples to the learning algorithm. During validation of the models, examples closely representative of the true distribution within the population were used to assess model predictive power when applied out-of-sample.



The modeling strategy included bootstrap resampling [13], cross validation analysis, and receiver operating characteristic curve (ROC) analysis [14]. The latter technique enabled error estimation, model comparison and selection from the large number of hypotheses generated by the gradient boosting machines during training. ROC curves are often used to tradeoff false positive rate ([image: there is no content]) and true positive rate ([image: there is no content]) for evaluation of classifiers. In this study, the false discovery rate ([image: there is no content]) was substituted for [image: there is no content] for analysis. [image: there is no content] is the fraction of all positive decisions (i.e., turnover predicted) made by a model that are incorrect [15]. [image: there is no content] is a more informative metric than [image: there is no content] in diagnostic or predictive applications where confidence in a positive prediction is preferred, especially when the class distribution is skewed [16]. [image: there is no content] is related to the positive predictive value statistic by [image: there is no content]. High [image: there is no content] (low [image: there is no content]) values are desirable. [image: there is no content] denotes the sensitivity of the model, or the likelihood that actual turnovers events are detected within a testing distribution.



In ROC space ([image: there is no content],[image: there is no content]), an optimal decision threshold [image: there is no content] is determined experimentally for a given distribution. Our objective is to minimize [image: there is no content] for tactical reasons. A second pass through the training data with this fixed threshold is used to train and evaluate model performance. The gradient boosted model outputs a probability [image: there is no content]; the turnover prediction algorithm is then [17]


[image: there is no content]








where [image: there is no content] means a turnover will be observed given input [image: there is no content].



Model learning for the aggregate sample used the “bootstrap” [13] to repeatedly draw samples from the entire training set. Data were partitioned according to the play type segment under consideration, and a stratified sample was constructed for training. The validation data were sampled at random from the entire sample, according to the natural distribution of turnovers. A two step procedure was followed, for each of [image: there is no content] bootstrap replicates. The first step estimated the detection threshold (DT) for optimal [image: there is no content] and [image: there is no content] via ROC analysis, training GBMs comprising 1500 trees (nominally). Secondly, the threshold was held constant such that [image: there is no content] and the entire sample was modeled again.



The learning procedure used for the team-wise samples was notionally similar, differing slightly in the numerical mechanics. Stratified sampling (with respect to the class labels y) of individual teams produced untenably small sample counts. This required an alternate sampling strategy. The decision was made to use 10-fold cross validation, nested within a 10-trial bagging procedure. Prediction rules were developed by finally averaging the performance results. Modeling therefore included all of the available instances, and benefited from the variance-reduction properties of bagging for model performance estimation [18].



Performance statistics [image: there is no content] were accumulated and finally averaged over replicates B (or trials/folds k) to estimate the generalization performance of the ensemble of trees. Sampling distributions of the sample mean and standard error values for [image: there is no content] and [image: there is no content] observed in out-of-sample test were recorded for each sample and segment under investigation.



In this investigation, we define a “good” false discovery rate to be [image: there is no content]. In other words, a positive prediction made by the model ([image: there is no content]) is correct at least [image: there is no content] of the time to meet this criterion of model utility. This means that when a turnover is predicted on the impending play from scrimmage, a high degree of confidence can be associated with that prediction.



A pseudo-code outline of the model training and evaluation procedure appears in the Appendix, as Algorithm A1.





3. Results


The main predictive modeling results of this paper are presented in Table 2, Table 3, Table 4 and Table 5. These tables list the sampling distributions of the sample mean and standard errors for observed false discovery ([image: there is no content]) and true positive rates ([image: there is no content]) on predicting turnovers for the sample data segments and event types considered. These are the primary statistics used to evaluate turnover prediction acuity. The results tables also include observed values for prevalence of actual turnovers (Prev.) and corresponding out-of-sample instance counts ([image: there is no content]).



Table 2. Aggregate prediction performance: false discovery rate ([image: there is no content]) and true positive rate ([image: there is no content]) of models. A total of 32 teams, seasons 2009–2015. [image: there is no content].







	
Segment

	
FDR (±se)

	
TPR (±se)

	
Prev.

	
[image: there is no content]






	
Run or Pass

	
0.064 (0.026)

	
0.417 (0.023)

	
0.0164

	
22,183




	
Pass

	
0.083 (0.031)

	
0.381 (0.028)

	
0.024

	
12,653




	
Run

	
0.039 (0.035)

	
0.650 (0.064)

	
0.006

	
9514










Table 3. Team-wise prediction performance, Run or Pass segment, seasons 2009–2015. [image: there is no content].







	
Team

	
FDR (±se)

	
TPR (±se)

	
Prev.

	
[image: there is no content]






	
NE

	
0.021 (0.073)

	
0.449 (0.112)

	
0.008

	
6545




	
CLE

	
0.087 (0.109)

	
0.467 (0.133)

	
0.018

	
6117




	
CHI

	
0.134 (0.124)

	
0.359 (0.125)

	
0.019

	
5974




	
HOU

	
0.177 (0.168)

	
0.453 (0.138)

	
0.014

	
6475




	
NYJ

	
0.193 (0.162)

	
0.431 (0.105)

	
0.019

	
6378




	
BUF

	
0.097 (0.097)

	
0.461 (0.151)

	
0.020

	
6072




	
WAS

	
0.117 (0.138)

	
0.420 (0.097)

	
0.017

	
6161




	
JAC

	
0.132 (0.116)

	
0.429 (0.118)

	
0.018

	
6042




	
STL

	
0.146 (0.110)

	
0.531 (0.108)

	
0.016

	
5527




	
ARI

	
0.135 (0.119)

	
0.408 (0.120)

	
0.020

	
6081




	
SD

	
0.063 (0.111)

	
0.493 (0.074)

	
0.014

	
6222




	
TB

	
0.164 (0.124)

	
0.472 (0.113)

	
0.019

	
5940




	
OAK

	
0.113 (0.120)

	
0.453 (0.146)

	
0.019

	
6112




	
DEN

	
0.174 (0.126)

	
0.491 (0.143)

	
0.015

	
6454




	
DAL

	
0.180 (0.151)

	
0.412 (0.112)

	
0.015

	
6108




	
ATL

	
0.177 (0.171)

	
0.433 (0.139)

	
0.015

	
6403




	
SF

	
0.269 (0.194)

	
0.446 (0.208)

	
0.010

	
5802




	
KC

	
0.195 (0.194)

	
0.539 (0.203)

	
0.014

	
6073




	
CAR

	
0.189 (0.147)

	
0.425 (0.134)

	
0.016

	
6164




	
PIT

	
0.116 (0.124)

	
0.498 (0.125)

	
0.016

	
6111




	
NO

	
0.189 (0.208)

	
0.463 (0.141)

	
0.015

	
6584




	
MIN

	
0.068 (0.110)

	
0.451 (0.086)

	
0.016

	
6031




	
CIN

	
0.128 (0.113)

	
0.507 (0.141)

	
0.018

	
6272




	
NYG

	
0.103 (0.092)

	
0.480 (0.147)

	
0.021

	
6291




	
PHI

	
0.124 (0.110)

	
0.478 (0.131)

	
0.019

	
6398




	
GB

	
0.188 (0.185)

	
0.485 (0.176)

	
0.010

	
6142




	
IND

	
0.140 (0.131)

	
0.431 (0.125)

	
0.017

	
6360




	
TEN

	
0.091 (0.102)

	
0.473 (0.112)

	
0.020

	
5876




	
BAL

	
0.126 (0.116)

	
0.531 (0.102)

	
0.015

	
6321




	
MIA

	
0.113 (0.126)

	
0.493 (0.121)

	
0.017

	
6089




	
SEA

	
0.097 (0.171)

	
0.551 (0.191)

	
0.013

	
6000




	
DET

	
0.113 (0.121)

	
0.452 (0.075)

	
0.019

	
6574








Team abbreviations: NE: New England Patriots; CLE: Cleveland Browns; CHI: Chicago Bears; HOU: Houston Texans; NYJ: New York Jets; BUF: Buffalo Bills; WAS: Washington Redskins; JAC: Jacksonville Jaguars; STL: St. Louis Rams; ARI: Arizona Cardinals; SD: San Diego Chargers; TB: Tampa Bay Buccaneers; OAK: Oakland Raiders; DEN: Denver Broncos; DAL: Dallas Cowboys; ATL: Atlanta Falcons; SF: San Francisco 49ers; KC: Kansas City Chiefs; CAR: Carolina Panthers; PIT: Pittsburgh Steelers; NO: New Orleans Saints; MIN: Minnesota Vikings; CIN: Cincinnati Bengals; NYG: New York Giants; PHI: Philadelphia Eagles; GB: Green Bay Packers; IND: Indianapolis Colts; TEN: Tennessee Titans; BAL: Baltimore Ravens; MIA: Miami Dolphins; SEA: Seattle Seahawks; DET: Detroit Lions.








Table 4. Team-wise prediction performance, Pass segment, seasons 2009–2015. [image: there is no content].







	
Team

	
FDR (±se)

	
TPR (±se)

	
Prev.

	
[image: there is no content]






	
NE

	
0.305 (0.222)

	
0.469 (0.168)

	
0.011

	
3807




	
CLE

	
0.119 0.115)

	
0.445 (0.146)

	
0.026

	
3527




	
CHI

	
0.191 (0.147)

	
0.385 (0.134)

	
0.030

	
3404




	
HOU

	
0.174 (0.183)

	
0.376 (0.155)

	
0.020

	
3558




	
NYJ

	
0.205 (0.170)

	
0.339 (0.109)

	
0.032

	
3254




	
BUF

	
0.169 (0.146)

	
0.427 (0.176)

	
0.032

	
3327




	
WAS

	
0.229 (0.162)

	
0.415 (0.101)

	
0.026

	
3561




	
JAC

	
0.156 (0.134)

	
0.409 (0.138)

	
0.027

	
3485




	
STL

	
0.183 (0.189)

	
0.430 (0.165)

	
0.022

	
3400




	
ARI

	
0.134 (0.137)

	
0.400 (0.134)

	
0.028

	
3682




	
SD

	
0.120 (0.159)

	
0.447 (0.097)

	
0.021

	
3605




	
TB

	
0.204 (0.154)

	
0.449 (0.129)

	
0.027

	
3434




	
OAK

	
0.184 (0.168)

	
0.429 (0.143)

	
0.027

	
3535




	
DEN

	
0.149 (0.180)

	
0.428 (0.177)

	
0.022

	
3685




	
DAL

	
0.177 (0.161)

	
0.411 (0.111)

	
0.024

	
3603




	
ATL

	
0.176 (0.173)

	
0.434 (0.131)

	
0.021

	
3877




	
SF

	
0.269 (0.288)

	
0.345 (0.222)

	
0.016

	
3035




	
KC

	
0.196 (0.208)

	
0.433 (0.241

	
0.021

	
3183




	
CAR

	
0.246 (0.232)

	
0.377 (0.151)

	
0.026

	
3172




	
PIT

	
0.137 (0.139)

	
0.384 (0.130)

	
0.022

	
3545




	
NO

	
0.179 (0.192)

	
0.431 (0.157)

	
0.021

	
4119




	
MIN

	
0.198 (0.182)

	
0.420 (0.109)

	
0.025

	
3269




	
CIN

	
0.116 (0.122)

	
0.439 (0.150)

	
0.029

	
3427




	
NYG

	
0.164 (0.153)

	
0.378 (0.151)

	
0.029

	
3679




	
PHI

	
0.178 (0.138)

	
0.415 (0.117)

	
0.027

	
3698




	
GB

	
0.129 (0.161)

	
0.507 (0.190)

	
0.014

	
3504




	
IND

	
0.187 (0.156)

	
0.395 (0.118)

	
0.024

	
3936




	
TEN

	
0.077 (0.099)

	
0.455 (0.104)

	
0.029

	
3362




	
BAL

	
0.162 (0.150)

	
0.480 (0.104)

	
0.021

	
3599




	
MIA

	
0.150 (0.175)

	
0.408 (0.149)

	
0.024

	
3510




	
SEA

	
0.146 (0.204)

	
0.540 (0.206)

	
0.021

	
3127




	
DET

	
0.118 (0.116)

	
0.393 (0.080)

	
0.026

	
4133










Table 5. Team-wise prediction performance, Run segment, seasons 2009–2015. [image: there is no content].







	
Team

	
FDR (±se)

	
TPR (±se)

	
Prev.

	
[image: there is no content]






	
NE

	
0.945 (0.151)

	
0.119 (0.321)

	
0.003

	
2537




	
CLE

	
0.230 (0.325)

	
0.657 (0.429)

	
0.006

	
2589




	
CHI

	
0.918 (0.195)

	
0.181 (0.375)

	
0.004

	
2569




	
HOU

	
0.196 (0.336)

	
0.762 (0.362)

	
0.006

	
2917




	
NYJ

	
0.119 (0.209)

	
0.778 (0.441)

	
0.006

	
2895




	
BUF

	
0.500 (0.343)

	
0.683 (0.404)

	
0.006

	
2744




	
WAS

	
0.335 (0.454)

	
0.236 (0.319)

	
0.005

	
2600




	
JAC

	
0.777 (0.287)

	
0.463 (0.442)

	
0.005

	
2557




	
STL

	
0.106 (0.195)

	
0.901 (0.161)

	
0.007

	
2565




	
ARI

	
0.571 (0.362)

	
0.591 (0.378)

	
0.008

	
2351




	
SD

	
0.143 (0.339)

	
0.665 (0.344)

	
0.005

	
2617




	
TB

	
0.317 (0.373)

	
0.660 (0.400)

	
0.008

	
2506




	
OAK

	
0.306 (0.353)

	
0.668 (0.394)

	
0.007

	
2577




	
DEN

	
0.389 (0.332)

	
0.603 (0.362)

	
0.007

	
2769




	
DAL

	
0.107 (0.289)

	
0.138 (0.328)

	
0.004

	
2505




	
ATL

	
0.337 (0.353)

	
0.293 (0.230)

	
0.005

	
2527




	
SF

	
0.550 (0.415)

	
0.728 (0.405)

	
0.004

	
2721




	
KC

	
0.279 (0.370)

	
0.827 (0.248)

	
0.007

	
2890




	
CAR

	
0.266 (0.278)

	
0.707 (0.326)

	
0.005

	
2943




	
PIT

	
0.285 (0.348)

	
0.913 (0.219)

	
0.008

	
2566




	
NO

	
0.937 (0.111)

	
0.321 (0.417)

	
0.004

	
2465




	
MIN

	
0.182 (0.274)

	
0.733 (0.244)

	
0.006

	
2761




	
CIN

	
0.085 (0.170)

	
0.770 (0.329)

	
0.006

	
2844




	
NYG

	
0.131 (0.185)

	
0.867 (0.201)

	
0.010

	
2611




	
PHI

	
0.357 (0.326)

	
0.642 (0.433)

	
0.009

	
2700




	
GB

	
0.981 (0.055)

	
0.119 (0.267)

	
0.004

	
2638




	
IND

	
0.224 (0.389)

	
0.711 (0.392)

	
0.007

	
2424




	
TEN

	
0.155 (0.218)

	
0.650 (0.255)

	
0.009

	
2514




	
BAL

	
0.177 (0.266)

	
0.858 (0.271)

	
0.006

	
2722




	
MIA

	
0.274 (0.318)

	
0.807 (0.331)

	
0.007

	
2578




	
SEA

	
0.658 (0.365)

	
0.302 (0.400)

	
0.004

	
2874




	
DET

	
0.126 (0.202)

	
0.750 (0.253)

	
0.008

	
2441










We define a “good” false discovery rate to be [image: there is no content]. Tabulated results are annotated in green to highlight predictions meeting or exceeding this threshold for low [image: there is no content]. True positive rates observed, where [image: there is no content], are similarly noted in the tables.



Team-aggregated performance results are found in Table 2. Model predictions by individual team and segment appear in Table 3, Table 4 and Table 5 .



A synopsis of the important input variables contributing to the ensemble prediction for one of the samples studied is presented in Table 6.



Table 6. Most and least influential variables. Aggregate sample, Run or Pass segment.







	
(a) Most Influential

	
(b) Least Influential






	
Variable

	
Avg. Rank

	
Variable

	
Avg. Rank




	
last_pass_complete

	
1

	
qtr2

	
27




	
last_pass_incomplete

	
2

	
qtr4

	
28




	
is_last_pass

	
3

	
is_last_punt

	
29




	
time_left

	
4

	
is_run_left

	
30




	
last_yards_gained

	
5

	
qtr1

	
31




	
dwn1

	
6

	
is_run_right

	
32




	
yds_drive

	
7

	
is_run_middle

	
33




	
is_run

	
8

	
is_last_ex_pt

	
34




	
is_pass

	
9

	
is_ot

	
35




	
score_diff

	
10

	
is_last_fld_goal

	
36




	
yds_togo

	
11

	
is_last_qb_kneel

	
37




	
yrds100

	
12

	
is_last_os_kick

	
38










3.1. Turnover Prediction Results—Aggregated


Table 2 summarizes performance of models for the aggregate sample, for each of the three turnover event types considered. Low values of [image: there is no content] are seen for each segment ([image: there is no content], and [image: there is no content] for Run or Pass, Pass and Run, respectively). For [image: there is no content] plays, the sensitivity [image: there is no content] is seen to be [image: there is no content], making this segment the most successfully predicted turnover event type in the sample.



The results shown in Table 2 lend support to our hypothesis that turnovers are predictable in NFL football. Given an educated guess as to the expected play type from scrimmage, the GBM models have excellent positive predictive value in estimating turnover likelihood.




3.2. Turnover Prediction Results—Team-Wise


Prediction results for team-wise samples of the Run or Pass segment are found in Table 3. These statistics show that 20 of the 32 team models ([image: there is no content]) are observed to have [image: there is no content] rates below the [image: there is no content] goodness criterion as defined here. The best performing team model in terms of false discovery rate was for the New England Patriots (NE), where the sample mean [image: there is no content] was [image: there is no content]. Cleveland (CLE), Buffalo (BUF), San Diego (SD), Minnesota (MIN), Tennessee (TEN) and Seattle (SEA) each had [image: there is no content]’s of less than [image: there is no content]. San Francisco (SF) produced the most frequent rate of false positives, at [image: there is no content].



Note that the standard errors of the sample mean of the [image: there is no content] statistic are a significant proportion of the sample mean value. This behavior is seen in nearly all of the turnover prediction results obtained in this study. Model sensitivity [image: there is no content] is moderate in general, ranging from 40% to 50%. This statistic is considered less vital here than [image: there is no content], but is still important.



Details of modeling performance for Pass plays from scrimmage are presented in Table 4. For this segment, 10 of 32 teams ([image: there is no content]) were associated with good turnover predictability as measured by [image: there is no content]. The best precision was observed for Tennessee, where [image: there is no content]. New England had the highest false positive rate at [image: there is no content]. The true positive rate of the method is seen to be generally low, in the 30% to low 40% range.



Large standard errors of the predicted sample mean [image: there is no content] are apparent in these results.



Statistical performance of models trained on Run segment data is compiled in Table 5. These models are seen to be less precise than observed for other segments, as 7 of 32 team models produced sample mean [image: there is no content]’s of less than [image: there is no content]. It is clear that the overall sensitivity of the Run turnover predictions is very good, as [image: there is no content] of the models (22/32) show true positive rates exceeding [image: there is no content]. This observation is consistent with the “rolled-up” results shown in Table 2, where the overall Run segment produces [image: there is no content].



It is interesting to note that the lowest turnover prevalence by play type in the population (for run plays) is associated with the highest degree of model sensitivity in out-of-sample predictions. The disparity in realized false positive rates between Table 2 and Table 5 could be, in part, explained by the absolute number of training observations available in the aggregate case versus the team-wise samples, where fewer examples in the latter may be insufficient to learn the joint distribution between input and output variables.




3.3. Variable Influence


The relative importance of variables in the feature vector is estimated by gradient boosted machines [7]. This estimate is based on the increase in log likelihood of a decision tree as determined by non-terminal splits made on each variable; this likelihood improvement is summed over all trees in the ensemble to apportion that variable’s contribution to the plurality decision.



The most and least influential variables for turnover predictions made for the aggregate sample are summarized in Table 6. The most important features are last_pass_complete and last_pass_incomplete. These are boolean valued features describing the outcome of the last pass from scrimmage. The remaining highly influential variables make intuitive sense, describing the current game situation (time remaining, score differential, yards to go for a first down or score). Two seemingly trivial variables (is_pass and is_run) are consistent with the composition of the Run or Pass segmentation, and strongly influence the splitting pattern of the constituent trees.



Non-important variables include the quarter of the game (subsumed by time_left), the direction of a current run play, and plays immediately following special teams activity.





4. Discussion


The hypothesis motivating this study was that turnovers in NFL professional football are predictable. Statistical models were trained to predict the likelihood of observing a turnover on a given play from scrimmage. Empirical data representing seven complete NFL seasons (2009–2015) were used to train, test and evaluate the models.



Our machine learning results suggest evidence to support the hypothesis. Under certain conditions, both fumbles and interceptions can be anticipated at low false discovery rates (less than [image: there is no content]). This means that when a turnover is predicted on the impending play from scrimmage, a high degree of confidence can be associated with that prediction.



The operational premise from the defender’s perspective is that the impending play type (Run, Pass, Run or Pass) can be reliably estimated, using statistics (e.g., [19]) or intuition, in advance of the ball snap. These three play type categories are the basis for data segmentation, and predictive models are developed for each in turn.



For coaching purposes, this approach may be useful during development of game plans, or to inform in-game strategies to mitigate the negative consequences of turnovers by an offensive team, or to maximize their probability by a defensive squad.



Turnovers occur for many reasons, both physical and mental. Interceptions are caused by many factors—tipped balls and errant passes miss their destination due to the pressure of a defensive pass rush; misreading the defensive scheme prior to the ball snap; excellent coverage downfield by defensive backs; lack of spatial awareness of players on the field. Fumbles can be produced by violent physical collisions; insufficient ball protection by the runner; defensive “stripping” of the ball during tackling; or quarterback sacks resulting in fumbles.



This investigation contributes to the sports science literature by demonstrating the predictability of in-game events often considered to be essentially random in their occurrence. To the author’s knowledge, direct prediction of turnovers has not previously appeared in the literature, which has focused on retrospective statistical analyses of turnover margin in football games.



4.1. Quantitative Results and Observations


Two data samples were modeled to assess turnover predictability: an aggregate of all NFL teams, and 32 individual team samples. Seven full season-long records were used for all datasets. We define a “good” false discovery rate to be [image: there is no content]. A positive prediction made by a model ([image: there is no content]) is correct at least [image: there is no content] of the time.



The GBM models to predict turnovers generally are characterized by high positive predictive value, and moderate sensitivity.



Predictive results for the aggregated sample (Table 2) exhibit low false discovery rates ([image: there is no content]) for each play type segment ([image: there is no content], and [image: there is no content] for Run or Pass, Pass and Run, respectively). These measures reflect outstanding positive predictive value in estimating turnover likelihood. [image: there is no content] plays displayed the greatest sensitivity, with [image: there is no content].



Team-wise turnover predictions are summarized in Table 3, Table 4 and Table 5.



For the Run or Pass play segment, three-fifths of the team models ([image: there is no content]) have [image: there is no content] rates below the stated [image: there is no content] goodness criterion. Sensitivities were moderate for all team models. This exemplifies the essential tradeoff between [image: there is no content] and [image: there is no content] in ROC space [14], and follows from the present objective of minimizing [image: there is no content] for strategic utility of the method.



Pass play results showed that one-third of team models ([image: there is no content]) had false discovery rates below the goodness threshold. [image: there is no content] is in the 30%–40% range.



For Run plays, [image: there is no content] of the team results displayed [image: there is no content]. Sensitivity of the turnover predictions is good, as [image: there is no content] of the models (22/32) had true positive rates greater than [image: there is no content].



It is interesting to note that the lowest turnover prevalence by play type in the population (for Run plays) is associated with the highest degree of model sensitivity in out-of-sample predictions. The disparity in realized false positive rates between Table 2 and Table 5 could, in part, be due to the absolute number of training observations available in the aggregate case versus the team-wise samples. Fewer examples in the latter may be insufficient to learn the joint distribution between input and output variables.




4.2. Extreme Events Modeling and Sports


Turnovers have a number of characteristics in common with “extreme” events produced by complex dynamical systems, which are inherently difficult to predict [6]. These attributes include the following:

	(a)

	
Low occurrence frequency. Previous estimates found an average [image: there is no content] of passes by NFL quarterbacks were intercepted [4]; fumbles were turned over to the opposing team in [image: there is no content] of all run and pass plays [20]. The present study covering years 2009–2015 shows average turnover rates of [image: there is no content] and [image: there is no content] for pass and run plays, respectively.




	(b)

	
Intermittency. Turnovers appear to be random events. In one study, nearly equal parts luck and talent were proposed to account to year-over-year variations in turnover differential for a given team [3]. Within a season, NFL turnovers correlate weakly with prior game performance . A team with a strong season-to-date record of winning the turnover battle is likely to regress to the mean; conversely, teams losing in turnover margin at a point within a season tend to improve on this statistic moving forward [5].




	(c)

	
Costliness. A positive turnover margin in a given game is a significant predictor correlated with winning that game [2]. Teams with a unit valued positive turnover margin with respect to the opponent win the game [image: there is no content] of the time [3].









The methods developed here are informed by the nonlinear geophysical dynamics literature by framing the prediction as a classification task (e.g., [21]), using game state and its recent history as precursors to learn the turnover event. A related investigation from the sports scientific literature suggested the predictability of within-game events and associated outcomes using dynamical process modeling [22]. In that study, researchers found patterns of tempo and in-game scoring that were common to many different sports (American football, hockey, and basketball). They suggest that these cross-cutting themes may provide insight into psychological processes that affect teams’ performance in a general manner.




4.3. Standard Errors of Predictions


The statistics used to evaluate predictive performance reflect the sampling distribution of sample means and their standard errors, averaged over numerous replicates, folds and trials. It is observed that the standard errors for [image: there is no content] are a significant fraction of the sample mean value. This holds true for most results obtained in this study. The standard error of the sample mean will decrease as [image: there is no content], where n is the sample size, according to the Central Limit Theorem.




4.4. Sampling Notes


This study centered on macro-level game data, to test the hypothesis “turnovers are predictable” in NFL football. Our samples aggregated over teams, and over players for team-level predictive models. In extensions to this work, player-level data could be included to build individual player models; such models may provide additional insights beyond descriptive statistical summaries of turnovers in current usage.



Turnovers related to sacks were excluded from consideration, mainly due to their negligible sample size relative to run and pass plays. Only [image: there is no content] of sacks produce turnovers.
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Appendix A. Model Training Algorithms


The algorithm used to train and evaluate GBM models for NFL turnover prediction is sketched in the pseudo-code listing in Algorithm A1. This procedure was used for the aggregate sample (all teams, seasons 2009–2015). The scheme used for the teamwise samples is notionally similar. Details are described in Section 2.3.








	Algorithm A1 Pseudo-code for aggregate modeling procedure.



	
	
[image: there is no content]



	
[image: there is no content]



	
[image: there is no content]



	
[image: there is no content]



	
[image: there is no content]



	
[image: there is no content]



	
[image: there is no content]



	
[image: there is no content]



	
 



	
for [image: there is no content]do



	
    [image: there is no content]



	
    [image: there is no content]



	
    [image: there is no content]



	
    [image: there is no content]



	
    [image: there is no content]



	
    [image: there is no content]



	
    [image: there is no content]



	
    [image: there is no content]



	
    [image: there is no content]



	
    [image: there is no content]



	
end for
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