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Abstract: We investigated the effects of intermittent long-term stretch training (5 weeks) on the
architectural and mechanical properties of the muscle–tendon unit (MTU) in healthy humans. MTU’s
viscoelastic and architectural properties in the human medial gastrocnemius (MG) muscle and
the contribution of muscle and tendon structures to the MTU lengthening were analyzed. Ten
healthy volunteers participated in the study (four females and six males). The passive stretch of
the plantar flexor muscles was achieved from 0◦ (neutral ankle position) to 25◦ of dorsiflexion.
Measurements were obtained during a single passive stretch before and after the completion of
the stretching protocol. During the stretch, the architectural parameters of the MG muscle were
measured via ultrasonography, and the passive torque was recorded by means of a strain-gauge
transducer. Repeated-measure ANOVA was applied for all parameters. When expressed as a
percentage for all dorsiflexion angles, the relative torque values decreased (p < 0.001). In the same
way, architectural parameters (pennation angle and fascicle length) were compared for covariance and
showed a significant difference between the slopes (ANCOVA p < 0.0001 and p < 0.001, respectively)
suggesting a modification in the mechanical behavior after stretch training. Furthermore, the values
for passive stiffness decreased (p < 0.05). The maximum ankle range of motion (ROM) (p < 0.01)
and the maximum passive torque (p < 0.05) increased. Lastly, the contribution of the free tendon
increased more than fascicle elongation to the total lengthening of the MTU (ANCOVA p < 0.001).
Our results suggest that five weeks of intermittent static stretch training significantly change the
behavior of the MTU. Specifically, it can increase flexibility and increase tendon contribution during
MTU lengthening.

Keywords: muscle fascicle; passive torque; pennation angle; stiffness; hysteresis; ultrasonography

1. Introduction

Static stretch training is an effective method to increase the range of motion (ROM)
and decrease muscle stiffness [1,2]. In athletic settings, static stretching is usually applied
to prevent sport injuries. However, the effects of stretching on the structural properties
of muscles and tendons remain unclear, probably due to differences in methodological
approaches, such as training duration, the number and duration of weekly stretching
sessions, intermittent versus continuous static stretching, and stretch intensity [3]. For an
updated very recent review with a multi-level meta-analysis about the chronic effects of
static stretching exercises on muscle strength, power, and flexibility, we recommend the
excellent manuscript of Arntz et al. [4].
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Usually, ROM is used to quantify changes in flexibility. However, it can be influenced
by various factors such as pain, stretch tolerance, and reflex activation of the agonist mus-
cle [5,6]. Another useful method is to determine the joint torque during submaximal passive
stretch [7,8], which is often used in conjunction with variations in joint angle to characterize
the viscoelastic properties of the human muscle–tendon unit (MTU) in vivo. Recently, it
has been confirmed that a high-intensity static stretching program is more effective for
increasing ROM and decreasing muscle stiffness than a low-intensity program [2]. An
intermittent stretching approach also seems to be more effective for increasing ROM and
changing the mechanical properties of the musculotendinous complex [9].

Although researchers agree that the limitations of this lengthening are both neuro-
logical and mechanical [6,10,11], the mechanical factors remain ambiguous and disputed.
Weppler and Magnusson [12] pointed out that numerous studies tried to explain the length-
ening of the stretched muscle as a consequence of changes in mechanical properties (such
as viscoelastic deformation, plastic deformation, or neuromuscular relaxation).

Many previous studies showed that ultrasonography is a valid analysis method and
can be used for the viscoelastic properties of the stretched muscle, namely the stiffness
and hysteresis of the human muscle–tendon structures in vivo [13–16]. Moreover, this
non-invasive method allows for the characterization of changes in fascicle length and
tendon tissue behavior during stretching [17–21]. This approach is of interest since the
relative contribution of muscle and tendon structures to the total MTU lengthening remains
disputed. Herbert and al. [17] reported a tendon contribution to the MTU lengthening of
up to ≈75%, while a study by Morse and al. [20] observed a relatively equal contribution
of muscle length and the free tendon.

Some previous studies reported no significant changes in the muscle architecture of
medial gastrocnemius (MG) after 4 to 12 weeks of static stretch training [1,2]. However,
others reported a modification in the muscle architecture of MG after 6 weeks of a machine-
assisted static stretching program [22] or 8 weeks of high-intensity static stretching in the
biceps femoris [23]. In addition, few authors investigated the effects of stretching on MTU
considering both muscle and tendon. Nevertheless, Kubo and al. [24] showed that stretch
training can specifically affect the viscosity of tendon structures.

To analyze these changes, the aim of this study was two-fold: on the one hand, to
investigate the in vivo effects of five weeks of intermittent static stretch training protocol
on the human MTU viscoelastic and architectural properties of the MG; and, on the other
hand, to assess the relative contribution of muscle and tendon structures to the total
MTU lengthening. We hypothesize that five weeks of intermittent static stretch training
could alter MTU viscoelastic and architectural properties since this approach seems to
be more effective for increasing ROM and changing the mechanical properties of the
musculotendinous complex. Therefore, we realized this original protocol, using a slow and
progressive passive lengthening of the MTU to avoid inducing the myotatic reflex [25,26],
at various ankle joint angles and following the suggestion of Nakamura et al. [27].

2. Materials and Methods
2.1. Participants

Ten healthy subjects (four females and six males) volunteered for this study, after
approval from the Bio-Ethical Committee for Research and Higher Education, Brussels (No.
B200-2023-030), and written informed consent was obtained. All experimental procedures
were conducted in accordance with the Declaration of Helsinki [28]. The participants
aged 22.9 ± 3.2 years (height: 175.7 ± 6.9 cm and body mass: 71.3 ± 9.5 kg; means ± SD).
Height and weight were measured using a fixed stadiometer and an electronic scale (Tanita
DC360S), respectively. All the subjects were healthy physiotherapy students and were
engaging in physical activity on average for two hours a week. The physical activity
organized during the period of the experiment was the sport training proposed by their
physical education professor and consisted of running in the forest once a week during the
2 h of their required physical education curriculum. All the subjects were instructed on
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the experimental procedure and avoided strenuous physical activity the day before the
experiment. Exclusion criteria consisted of signs or a history of neuromuscular disorders
or traumatic lesions.

2.2. Experimental Setup and Protocol

A prone position was used for each subject along with straps at the ankles and an
adjustable heel block. Both legs were extended, and one foot was secured to a footplate
by straps (Figure 1). Extra foam was applied underneath the knee as needed to ensure
full extension. The angular displacement of the ankle joint was monitored by means
of a domestically made and calibrated linear potentiometer that was mounted on the
rotational axis of the footplate. The sole of the foot was perpendicular to the tibial axis
in control conditions (0◦; perpendicular to the anatomical axis). An unextensionable
cable connected the footplate to a sliding mechanical device that measured passive ankle
dorsiflexion by passively dorsiflexing the ankles from 0◦ to 25◦ (increment of 5◦ steps), at
an angular velocity of 2.5◦/s. Subjects were instructed to relax during the stretching phase
of the experiment, and not to resist the footplate’s movement. To reach total ROM, the
angle was not limited to 25◦, but for viscoelastic measurements, this angulation was the
maximum taken. All of our participants were instructed to reach their own perceived level
of maximum stretch within the pain limit during testing and exercise. The supervision of
the exercises within the laboratory (except on weekends) made it possible to optimize each
stretching session.
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Figure 1. (a) Experimental setup with the volunteer lying prone on a table, with both legs extended
and one foot secured to a footplate by straps and an adjustable heel block; (b) schematic illustration
showing the location ultrasound probe and the force transducer.

The torque produced by the plantar flexor muscles during the passive stretch was
recorded by means of a strain-gauge transducer (U2000 Load Cell, Sherborne Sensors
Limited, Basingstoke, UK). The passive torque values for all dorsiflexion angles were
expressed in absolute and relative values. The slope of the passive torque–angle curve
from 15◦ to 25◦ was used to estimate passive stiffness for each subject. The hysteresis loop
produced by the loading and unloading curves of the passive torque, as a function of the
angle of dorsiflexion, allows the determination of the amount of dissipated elastic energy.
The area under the loading and unloading curves represents, respectively, the elastic energy
input and the elastic energy available.

The ultrasound machine was a Sonosite M-Turbo (FUJIFILM Sonosite Inc., Amsterdam,
The Netherlands), the apparatus settings were adapted for musculoskeletal measurements,
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and a linear probe model HFL 50× was used that has a width of X cm and a frequency
range from 15 to 6 MHz. This ultrasound machine was used to investigate the architectural
changes in the MG muscle during the stretching. The probe was fixed into the leg (at 30%
of the distance between the center of the medial femoral condyle and the center of the
medial malleolus), over the mid-belly of the muscle. After identifying the muscle fascicle,
a custom-made molding resin (Aquaplast™) sheath was strapped to the skin to hold the
echographic/ultrasound linear probe in position. By maintaining constant orientation and
pressure, the sheath ensured the probe’s integrity. Transmission gel was used to make
acoustic contact with the probe. Commercial software (PCTV vision) was used to acquire
images on a personal computer and analyze them offline.

2.3. Training Protocol

Each subject followed a passive stretch training protocol for 5 weeks. Subjects were
asked to stretch their gastrocnemius muscle for 30 s, 3 times a day, for 5 weeks. The stretches
were performed at the maximum degrees of dorsiflexion possible while avoiding crossing
the individual pain threshold. The stretched leg was maintained in a straight position, and
the hip was positioned in neutral rotation. The subjects were asked to perform the classic
wall stretch (legs in a split stance). While facing the wall with one foot forward and the
other foot behind, hands were placed flat on the wall at chest height. Keeping the rear
leg straight and the foot flat on the floor with the front leg knee bend, they would lean
forward, hold for 30 s, and slowly release and switch sides. Warm-up was intentionally not
performed before the stretch training. Stretching was supervised by laboratory members
and was carried out in the laboratory before class, during the lunch break, and in the
evening. No monitoring was carried out on weekends.

2.4. Data Analysis

Two parameters were measured from each MG ultrasound scan: muscle fascicu-
lar length (Lf), and pennation angle (µ) [21,29–31]. The muscle fascicle was defined
as a clearly visible fiber bundle lying between the superficial and deep aponeuroses,
identified and marked by using an image program (ImageTool). The pennation an-
gle (µ) was determined as the angle between the fascicle and its insertion on the deep
aponeurosis. The fascicle length (Lf) was measured along the marked fibers’ bundle,
from the superficial to the deep aponeurosis. When the end of the fascicle extended off
the acquired ultrasound image, fascicle length (Lf) was estimated using trigonometry
(total Lf = lf 1 measured + lf 2 estimated = lf 1 + (h/sinµ)) [10,32,33] by assuming a linear
continuation of the fascicles (Figure 2a). The total muscle–tendon unit length (LMTU) at rest
(ankle angle at 0◦) was determined through the use of a tape measure over the skin, after
having identified the proximal (medial femoral condyle) and distal (superior edge of the
calcaneum) insertions of the MG. All measures were performed by the same experienced
operator (M.L.) with more than 100 scans/year, which is recommended to maintain com-
petency. In our laboratory, the mean intraobserver variability for muscular measurement
for the operator (M.L.) recorded on the same day, the same site, and the same subject was
0.8 ± 0.2%.

Concerning the estimation of the change in LMTU during the stretch, the position of the ul-
trasound probe over the MG impeded a direct measure of the LMTU change during the stretching
exercise. As a result, we used the regression equation provided by Grieve et al. [34] to calculate
the change in LMTU during stretching: ∆L = −22.185 + 0.30141 (90 + A) − 0.00061 (90 + A)2,
where ∆L is the change in LMTU due to the change in dorsiflexion angle (A) (Figure 2b). To
estimate the lengthening of the tendon (Lt; distal and proximal parts) during the stretch,
the change in Lf along the longitudinal axis (Lf.cosµ) of the MTU was subtracted from the
respective change in LMTU, at each angle of ankle dorsiflexion (Figure 2b) [10,17].
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(MG) muscle. Muscle fascicles can be identified as the oblique striations occurring between superficial
and deep aponeurosis. When the end of the fascicle extended off the acquired ultrasound image, the total
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unit (LMTU) comprising the sum of the distal (Lt (d)) and proximal (Lt (p)) lengths of the tendon and
the component of the muscle along the horizontal axis (Lf.cosµ).

2.5. Statistical Analysis

Conventional statistical methods were used for calculating the means, standard devia-
tions (SD), and standard error (SE). The Kolmogorov–Smirnov and the D’Agostino-Pearson
Omnibus tests were used to assess normality. Changes in passive torque, pennation angle,
and fascicle length were analyzed by means of a repeated-measure analysis of variance
(ANOVA). A Bonferroni post hoc test was used to identify the significant differences among
the means. The specific time points before and after stretch training were analyzed by
means of a Student’s t-test, or Mann–Whitney test when appropriate. The best-fitting
relations were tested with linear regressions using the least-square method. The linear
regressions (pennation angle and fascicle length) recorded before and after the stretch
training were compared using an analysis of covariance (ANCOVA). Power calculation
was performed a priori for repeated-measure ANOVA (effect size = 0.67, alpha error = 0.05,
power = 0.80) using G*Power calculator 3.1 software (Heinrich Heine University, Düssel-
dorf, Germany); the requisite number of participants for this study was more than 8. The
ANOVA effect size was evaluated with Cohen’s term d and classified as follows: small
(d = 0.2), medium (d = 0.5), and large (d ≥ 0.8). For all analyses, the level of significance
was set at p < 0.05. Data are reported as means ± SD in the text.

3. Results
3.1. Changes in Passive Torque after Completion of the Stretch Training Protocol

Before stretch training, as the angle of dorsiflexion increased from 0◦ to 25◦, the passive
torque increased exponentially (y = 5.7 * e(0.068 * x); r2 > 0.98) from 3.5 ± 1.2 Nm at 0◦

(neutral position) to 30.4 ± 10.4 Nm at 25◦ of dorsiflexion.
After the training, the same trend was observed. Once again, the passive torque

increased exponentially (y = 7.3 * e(0.054 * x); r2 > 0.98) from 5.5 ± 1.2 Nm at 0◦ (neutral
position) to 27.9 ± 6.2 Nm at 25◦ of dorsiflexion (Figure 3a).

To compare the differences in the passive torque values at any dorsiflexion angle
between the pre-training and post-training tests, the relative passive torque was calculated
as a percentage for all dorsiflexion angles (Figure 3b). The analysis of each individual
curve showed a nonlinear increase before (y = 165.5 * e(0.069 * x); r2 > 0.98) and after
(y = 133.6 * e(0.055 * x); r2 > 0.98) stretch training. The ANOVA analysis revealed a stretch-
ing effect for the passive torque calculated as a percentage (d ≥ 0.8). The comparison
of those curves showed a decrease in the relative passive torque values after the stretch
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training at 15◦ (p < 0.05), 20◦ (p < 0.001), and 25◦ (p < 0.001). There was a significant increase
in the maximum ankle ROM from 33.5 ± 4.1◦ to 37.5 ± 2.6◦ after training (+13%; p < 0.01)
and the maximum passive torque from 39.3 ± 11.2 Nm to 43.4 ± 9.8 Nm (+13.2%; p < 0.05)
(Figure 3a).
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Figure 3. (a) Change in the passive torque (Nm) produced by the plantar flexor muscles as a function
of the ankle angle before (—#—) and after (—•—) stretch training. Curves represent the loading and
unloading curves forming a hysteresis loop. Isolated data correspond to the maximum ankle range
of motion and the corresponding mean maximum passive tension before (#) and after (•) stretch
training. Data are means ± SE for 10 subjects. * p < 0.05; ** p < 0.01. (b) the correlation between
relative passive torque (%) and ankle angle was best fitted by the following exponential equations
before (—#—) and after (—•—) stretch training: y = 165.5 * e 0.069x (r2 = 0.98) and y = 133.6 * e 0.055x

(r2 = 0.98). Data are means ± SE for 10 subjects. * p < 0.05; *** p < 0.001.

Ankle passive stiffness reached an average value of 1.34 ± 0.5 Nm/◦ before stretch
training and an average value of 1.04 ± 0.4 Nm/◦ after. The comparison between pre- and
post-stretch training showed a significant decrease of −21.6% (78.4 ± 19.1%; p < 0.01). After
the training, the dissipated elastic energy, represented by the hysteresis loop, decreased by
−61.2% (38.8 ± 18.6%; p < 0.001).

3.2. Changes in MG Architecture after Completion of the Stretch Training Protocol

Before the stretch training, the pennation angle (Figure 4a) decreased linearly
(y = −0.089x + 20; r2 = 0.99) from 20.0 ± 1.56◦ at 0◦ (neutral ankle position) to 17.8 ± 1.5◦

at 25◦ of dorsiflexion (−11.2% ± 2.1%). Lf (Figure 4b) increased linearly (y = 0.46x + 54.61;
r2 = 0.99;) from 54.7 ± 9.9 mm at 0◦ (neutral ankle position) to 66.1 ± 11.7 mm at 25◦ of
dorsiflexion (+21.1 ± 4.1%).

Similar observations were made after the training. The pennation angle decreased
linearly (y = −0.056x + 19.00; r2 = 0.98) from 19.1 ± 1.1◦ at 0◦ (neutral ankle position) to
17.6 ± 0.8◦ at 25◦ of dorsiflexion (−7.5% ± 1.4%). Lf increased linearly (y = 0.38x + 59.47;
r2 = 0.99; p < 0.0001) from 59.3 ± 9.5 mm at 0◦ to 68.8 ± 11.0 mm at 25◦ of dorsiflexion
(+16.0 ± 3.9%). Statistical analysis of the pre- and post-test results of the linear regression of
the pennation angle and fascicle length showed an extremely significant difference between
the slopes (ANCOVA p < 0.0001; d = 0.80 and p < 0.001; d = 0.47, respectively).
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Figure 4. (a) Change in the linear relation between the pennation angle (◦) and the ankle angle (◦)
before (y = −0.089x + 20; r2 > 0.99; —#—) and after (y = −0.056x + 19.00; r2 = 0.98; —•—) stretch
training. (ANCOVA p < 0.0001). Data are means ± SE for 10 subjects. * p < 0.05; **** p < 0.0001;
(b) change in the relation between the fascicle length and the ankle angle (◦) before (y = 0.46x + 52.61;
r2 > 0.99; —#—) and after (y = 0.38x + 59.47; r2 > 0.99; —•—) stretch training. (ANCOVA p < 0.001).
Data are means ± SE for 10 subjects. * p < 0.05; *** p < 0.001.

3.3. Estimation of the Relative Changes in Length after Completion of the Stretch Training Protocol

Length of myotendinous unit (LMTU): The average LMTU increased from
396.5 ± 26.7 mm at 0◦ (neutral ankle position) to 414.0 ± 27.9 mm at 25◦ of dorsiflexion
(+17.5 ± 1.2 mm; +4.4%).

Lf.cosµ and Lt: Statistical analysis of the pre- and post-test results showed a different
behavior (ANCOVA p < 0.001; d = 0.77) in the relative contributions of the free tendon, and
of the fascicle elongation, to the total lengthening of the MTU during stretching (Figure 5).
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Figure 5. Relationship between the longitudinal lengthening fascicles (∆Lf.cosµ) and the lengthening
of the muscle–tendon unit (∆LMTU) during passive stretching from 0◦ to 25◦ (dorsiflexion) of ankle
angle before (—#—) and after (—•—) stretch training (ANCOVA p < 0.001 ***). The length of
the muscle–tendon unit (LMTU) corresponds to the sum of the distal (Lt (d)) and proximal (Lt (p))
lengths of the tendon (Lt (d + p) and the component of the muscle along the horizontal axis (Lf.cosµ).
Uppercase delta (∆) means “change” or “variation”. Data are means ± SE for 10 subjects.
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In pre-training, at 25◦ of ankle dorsiflexion, the average Lf.cos µ was 11.6 ± 2.6 mm,
which corresponded to 66.4 ± 15.3% of the total lengthening of the MTU. This means that
the average Lt was 33.6 ± 15.3%, or 5.9 ± 2.8 mm, of the increase in the LMTU.

In post-training, at the same angulation of 25◦, the average Lf.cos µ was reduced to
9.5 ± 2.7 mm, or 54.2% (45.8 ± 14.3%) of the total lengthening of the MTU. Therefore,
the average Lt increased to 45.8% (54.2 ± 14.3%), or 8.0 ± 2.5 mm of the total increase in
the LMTU.

4. Discussion

As expected, the results of the current study show that an intermittent passive stretch
training protocol during 5 weeks of the plantar flexor muscles increased the maximum
ankle dorsiflexion and reduced the relative passive torque produced by the MTU (15◦ to
25◦ dorsiflexion) in healthy subjects. These changes showed a decrease in ankle passive
stiffness and dissipated elastic energy. Architectural parameters (pennation angle and
fascicle length) showed a significant difference between the slopes of their evolution
suggesting a modification in the mechanical behavior after stretch training.

4.1. Changes in Passive Torque

Many studies have demonstrated that the maximum ROM can be increased after
a stretch training protocol [1,2,4,9,35]. However, Toft et al. [7] suggested that passive
torque measurements would be more objective than the range of motion measurements,
due to the fact that psychological factors do not interfere with the results. Therefore, in
the present study, passive torque measurements and maximum ROM were utilized to
assess flexibility. The stretch training increased the maximum ankle dorsiflexion and the
associated maximum passive torque by ±13%. The greater maximum passive torque has
been attributed to a greater tolerance to stretch [12,36]. The increase in stretch tolerance
could be linked to a change in the afferent input from nociceptive nerve endings and
mechanoreceptors [12,37].

Consistent with previous in vivo studies, the passive torque produced by the plantar
flexor muscles increased exponentially with progressive ankle dorsiflexion [6,16,18,20,36].
After the stretch training, we observed a significant reduction in the relative passive torque
for ankle angles of 15–25◦ reaching 27.9 ± 6.2 Nm at 25◦. Kubo et al. [24] and Toft et al. [7]
also reported a decrease in passive torque after a three-week stretch training protocol.

The passive stiffness values, calculated between 15◦ and 25◦, reached an average of
1.34 ± 0.5 Nm/◦ before stretch training, which is comparable to the value of 1.43 ± 0.3 Nm/◦

reported by Kubo et al. [24]. After the stretch training, the passive stiffness values decreased
significantly by 21.7%, to reach the value of 1.04 ± 0.4 Nm/◦. In contrast, Kubo et al. [24]
demonstrated a decrease of 13.4% after twenty consecutive days of stretching and reported
a value of 1.24 ± 0.3 Nm/◦. The present results concur with previous studies, in which de-
creased muscle stiffness [27,35,38–40] has been observed after static stretching. In contrast,
other studies did not find changes in muscle stiffness [41]. The discrepancy can be due to
different training modalities, such as intensity, frequency, number of exercises, and overall
duration [3,4,40]. The myotendinous stiffness could be related to the intrinsic stiffness of
muscles, tendons, and connective tissues surrounding the whole MTU but also to neural
mechanisms [35,40,42,43].

The hysteresis loop, produced by the loading and unloading curves of passive torque
as a function of the ankle angle, enabled us to determine the dissipated elastic energy. In
our study, the dissipated elastic energy decreased by −61.2% (38.8 ± 18.6%; p < 0.001) after
the stretch training. This result is higher than the decrease of approximately 37% observed
by Kubo et al. [24]. These results will explain the higher degree of flexibility in the MTU
obtained after the same intermittent passive stretch training [44]. This finding is of interest
since it shows better storage of elastic energy, which was then converted to kinetic energy
during the push-off phase of the drop jump [44]. However, the mechanisms that resulted
in the decrease in hysteresis remain ambiguous. Nevertheless, the cyclic strain with a
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repetitive passive motion is considered to cause a rapid redistribution of polysaccharides
and water within the collagen framework leading to changes in muscle thixotropy and
viscosity [9,45], which can explain our results.

4.2. Changes in Muscle Architecture

In agreement with previous studies [17,20,21,32], muscle architecture changed during
passive stretching: Fascicle length increased and pennation angle decreased in the MG
muscle when the ankle angle was rotated from 0◦ to 25◦. These changes in MG architecture
contributed to the increase in the whole MTU length during passive muscle stretching.

Statistical analysis of the pre- and post-test results of the linear regression of penna-
tion angle and fascicle length showed a significant difference between the slopes (AN-
COVA p < 0.001) in a neutral position. The pennation angle decreased linearly by −7.5%
(92.5 ± 1.4%), and the Lf increased linearly by +16.0% (84.0 ± 3.9%) during ankle dorsi-
flexion. More recent studies did not report changes in the muscle architecture of MG after
4 to 12 weeks of static stretch training [1,2,9]. Nevertheless, Freitas and Mil-Homens [23]
reported a significant increase in the fascicle length of the biceps femoris following an
8-week high-intensity stretch training program. These studies demonstrate that, in the case
of the hamstring, a static stretching program may change the muscle architecture, which
may result in increased strength or performance. These results suggest that the effects
of static stretch training on muscle strength and architecture may differ on the basis of
the target muscle and total exercise. Our contrasting results may be understood because
very seldom studies followed the architectural behavior of the MTU measured during
progressive stretching, allowing researchers to unravel some otherwise unseen changes.

In addition to the intrinsic stiffness of the muscle, the MTU resting passive torque
can also be partly induced by neural mechanisms [6,11,25,46]. By reducing passive re-
sistance due to tonic reflex activity, the passive stretch training protocol may have con-
tributed to a greater elongation of the muscle fibers through greater muscle relaxation in a
neutral position.

4.3. Estimation of the Relative Contribution of Fascicles and Tendon

To calculate the change in LMTU during each stretching angle, the regression equa-
tion provided by Grieve et al. [34], as introduced previously, was used. Our results,
which matched those of previous studies [32], indicated that LMTU increased by 4.4%
(17.5 ± 1.2 mm) during ankle dorsiflexion to reach an average length of 414.0 ± 27.8 mm
at 25◦.

Moreover, to determine the relative contributions of the fascicle and free-tendon
elongation to the total lengthening of the MTU during stretching, it was necessary, first, to
determine the change in Lf along the longitudinal axis of the MTU by multiplying Lf with
the cosine of the pennation angle; and secondly, to calculate the change in Lt by subtracting
the change in the Lf.cos µ from the change in LMTU. In our study, before the stretch
training, Lf.cos µ and Lt increased during passive ankle dorsiflexion by 11.6 ± 2.6 mm and
5.9 ± 2.8 mm, respectively. Our results confirm the reported changes in the original paper
of Mizuno [47]. Therefore, before the stretch training, the relative fascicle elongation
contributed to 66.4 ± 15.3% of the total lengthening of the MTU, and the relative free
tendon contributed to 33.6 ± 15.3% of the increase in the LMTU.

The relative contributions of the fascicle and free-tendon elongation remain disputed
in the literature. Indeed, although Abellaneda et al. [32] reported a fascicle elongation
contribution slightly greater than our results (71.8%), the general behavior remained the
same, with fascicle elongation contributing more than the elongation of the free tendon. This
is contrary to the results of Herbert et al. [17], who showed a free-tendon contribution of
≈75%. Other studies, such as Morse et al. [20], reported a similar contribution of fascicule
and free-tendon elongation changes to the whole MTU lengthening. These variations
could be explained by differences in the experimental methodology. Herbert et al. [17]
conducted their study with the knee flexed, contrary to the study of Abellaneda et al. [32]
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and our study, both of which kept the leg straight. Moreover, Morse et al. [20] estimated
the relative contributions with a different method. In their study, the authors measured
the changes in the free tendon directly and inferred the changes in muscle (fascicles and
aponeurosis) length.

After the training, at 25◦ of dorsiflexion, a change in the free-tendon and fascicle
elongation was observed. The contributions of fascicle elongation and the free-tendon
elongation balanced each other out, as indicated by the contribution values of 54.2 ± 14.3%
and 45.8 ± 14.3%, respectively, of the total lengthening of the MTU.

4.4. Limitations

There were some limitations in this study. First, we did not have a control group. In
addition, supervision of stretching sessions was not carried out on weekends. Furthermore,
it is possible that the six men in the study biased the results given their significant stiffness.
Thus comparing the mechanical and architectural parameters behavior between males and
females should be considered. It is also possible that their feelings and stretch tolerance
may be different. Another limitation is that other neuromuscular characteristics (average
electromyography and maximum voluntary contraction) were not measured. Finally, it is
possible to have underestimated the stretching time since the students also stretched after
the sport class although not in a specific way.

5. Conclusions

In conclusion, the five-week intermittent passive stretch training protocol produced
viscoelastic and architectural changes in the human MTU. Our protocol induced changes
in the relative contributions of the free tendon and fascicles. Furthermore, the stretch
training modified the passive torque–ankle angle relationship and decreased the dissipated
elastic energy. This modification could, over time, influence the athletes’ performance
during stretch-shortening cycle exercises. Further investigations are required to elucidate
this point.
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