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Abstract: The aim of this study was to determine if quadriceps morphology [muscle volume (MV);
cross-sectional area (CSA)], vastus lateralis (VL) muscle architecture, and muscle quality [echo
intensity (ECHO)] can explain differences in knee extensor maximal voluntary isometric contraction
(MVIC), crank torque (CT) and time-to-exhaustion (TTE) in trained cyclists. Twenty male competitive
cyclists performed a maximal incremental ramp to determine their maximal power output (POMAX).
Muscle morphology (MV; CSA), muscle architecture of VL and muscle quality (ECHO) of both
quadriceps muscles were assessed. Subsequently, cyclists performed three MVICs of both knee
extensor muscles and finally performed a TTE test at POMAX with CT measurement during TTE.
Stepwise multiple regression results revealed right quadriceps MV determined right MVIC (31%) and
CT (33%). Left MV determined CT (24%); and left VL fascicle length (VL-FL) determined MVIC (64%).
However, quadriceps morphological variables do not explain differences in TTE. No significant
differences were observed between left and right quadriceps muscle morphology (p > 0.05). The
findings emphasize that quadriceps MV is an important determinant of knee extensor MVIC and CT
but does not explain differences in TTE at POMAX. Furthermore, quadriceps morphological variables
were similar between the left and right quadriceps in competitive cyclists.

Keywords: cyclists; performance predictors; maximal knee extensor torque; crank torque; quadriceps
muscle properties

1. Introduction

Endurance cycling performance is determined by physiological factors, such as maxi-
mal oxygen uptake (VO2MAX), physiological transition thresholds, and metabolic efficiency
(e.g., cycling economy, gross efficiency) [1–3]. VO2MAX is probably the most tested de-
terminant for cycling performance [4,5]. Moreover, neuromuscular parameters have also
been used to determine cycling time-to-exhaustion (TTE) and performance [6]. Miller and
Manfredi [7] showed that physiological (i.e., anaerobic threshold) and anthropometric (i.e.,
thigh + calf/arm + chest) parameters are important performance determinants during a
cycling time-trial (TT). Cycling endurance performance during TT is also explained by
oxygen consumption (VO2), muscular hemoglobin concentration, and skeletal muscle
oxygenation [8,9]. In addition, Lanferdini et al. [10] showed that the mechanical resultant
pedaling force is a determinant of cycling submaximal performance as measured by the
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power output (PO). Additionally, other studies have found moderate or strong correlations
between physiological [11–13], or neuromuscular [14] variables with cycling endurance
TT performance.

Furthermore, a recent investigation showed that quadriceps muscle volume (MV)
and vastus lateralis (VL) pennation angle (PA) determined 76% and 11% of the variance
in peak power output (PPO) during sprint tests, respectively [15]. Therefore, in elite
cyclists, VL-MV, in combination with the percentage of type-II muscle fibers, explained
65% of variance in PPO during a Wingate test [8]. Focusing specifically on knee extensor
function, MV of the quadriceps femoris seems to be the best predictor (explaining 60%) of
isometric knee extensor torque [16], and isokinetic PO during knee extension (explaining
~80%) in healthy subjects [17]. It has been suggested that MV is a determinant of maximal
voluntary isometric contraction (MVIC) or crank torque (CT) in cyclists, but this remains to
be determined.

In addition, previous studies found a negative correlation between the echo inten-
sity (ECHO; lower values mean better muscle quality) of rectus femoris (RF) and knee
extensors’ torque [18]. Similar findings of a negative correlation between ECHO from
gastrocnemius lateralis and soleus muscles and a positive correlation between MV of the
triceps surae muscles [19] and the triceps surae’s torque [19] have been reported in the
literature. These results demonstrate that the lower the ECHO is (better muscle quality),
the greater the torque production capacity of the assessed muscles [18,19]. However, the
sample of both studies was composed of healthy subjects (men and women), non-cyclists
or the elderly [16–19]. Furthermore, Song et al. [20] showed a moderate non-significant
relationship between quadriceps ECHO (RF and vastus intermedius—VI) with maximum
knee extensor strength. These results demonstrate a contradiction between ECHO and the
ability to produce muscle strength. Moreover, no study was found relating ECHO to force
production capacity during crank cycle.

Although some studies have verified a relationship between muscle morphology (e.g.,
physiological cross-sectional area—PCSA), muscle architecture (fascicle length—FL) and
skeletal muscle respiration with cycling aerobic performance [2,8,9,21], to date, no evidence
has been found using different variables of quadriceps femoris muscle morphology [i.e.,
MV, cross-sectional area (CSA)], muscle quality (i.e., ECHO), and VL muscle architecture
to determine MVIC and CT during TTE in cyclists, nor have we found studies assessing a
possible relationship between quadriceps muscle morphology, muscle quality and muscle
architecture and TTE performance in cyclists. Therefore, the objective of this study was
to determine if knee extensor MV, CSA, ECHO and VL muscle architecture were able to
determine MVIC, CT and TTE performance in cyclists. If indeed cycling performance
is somehow determined by quadriceps morphology, coaches and cyclists may decide
whether to allocate time for training-specific strength exercises aimed at quadriceps muscle
hypertrophy during their regular endurance cycling training.

2. Materials and Methods
2.1. Experimental Approach

We carried out a cross-sectional study to understand if quadriceps morphology and
quality, and VL muscle architecture, are determinants of maximal isometric knee extensor
torque and of crank torque during TTE performance. Each cyclist visited the laboratory on
two occasions (Figure 1). During the first visit, anthropometric data were assessed, and
cyclists performed a maximal incremental test and familiarization to maximal TTE. After
a week, athletes returned for the second visit. Muscle morphology (estimated MV; CSA),
muscle quality (ECHO) and VL muscle architecture of both the left and right quadriceps’
muscles were assessed. After that, cyclists performed three knee extensor MVICs with both
lower limbs. Finally, cyclists performed a maximal TTE at maximal power output (POMAX)
with measured CT. This study was conducted according to the Declaration of Helsinki, and
all procedures were approved by the local Institutional Research Ethics Committee (project
number 708.362). All cyclists were informed of the benefits and risks of the investigation
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prior to signing an institutionally-approved informed consent document to participate
in the study. Before each visit, subjects were instructed to avoid strenuous exercise and
alcohol consumption within the last 48 h and to consume no caffeine or food during the
final 3 h before each test. The athletes participating in the present study had 5.8 ± 6.6 years
of regular training/competition and no history of lower limb muscle-skeletal injuries.
Exclusion criteria included chronic disease, smoking, metabolic disorders, use of steroids
in the last six months, chronic disease, physical disabilities, smoking, and use of antibiotic
drugs in the previous week.
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Figure 1. Experimental design. Maximal power output (POMAX).

2.2. Participants

Twenty endurance-trained male cyclists participated in the study, having the following
physical and physiological characteristics: Age 29.2 ± 6.6 years; body mass 77.1 ± 10.5 kg;
height 179 ± 8 cm; POMAX 377.6 ± 34.5 W; VO2MAX 57.0 ± 7.7 mL·kg·min−1; training
volume 4.6 days and ~264 km/week; classified as performance level 3 (trained), according
to De Pauw et al. [22]. Cyclists competed at the regional and national levels.

2.3. Procedures

During the first session, anthropometric data were measured according to the Interna-
tional Society for the Advancement of Kinanthropometry [23]. After that, cyclists performed
a warm-up with 150 W of workload for 10 min. Cyclists were tested using a standard road
cycling bicycle (Giant TCR Advanced, Taichung, Taiwan) with handlebars configuration
and saddle position set to their anthropometrical characteristics. The bicycle was mounted
on a stationary cycling trainer (CompuTrainer, ProLab 3D, Racermate Inc., Seattle, WA,
USA) to determine POMAX (in Watts). Before testing, tire pressure was calibrated according
to manufacturer instructions (~100 psi). Laboratory temperature (26–28 ◦C) and humidity
(~50%) were controlled during all testing to minimize temperature effects on bicycle tire
pressure and PO measurements [24]. Cyclists performed an incremental ramp test with
25 W increments every minute (~0.42 W/s) until exhaustion, using a custom-made script in
cycling trainer software (CompuTrainer, CS 1.6, Racermate Inc, Seattle, WA, USA). Cadence
was maintained close to 95 ± 5-rpm for all cyclists, using visual feedback from the cycling
trainer control unit. Exhaustion was defined by the following criteria: voluntary exhaustion
or cadence dropping below 70 rpm. VO2 was measured by an open-circuit indirect gas
exchange system (CPX/D, Medical Graphics Corp., St. Louis, MO, USA) and VO2MAX was
defined as the greatest value obtained in the last stage of the incremental test, along with
POMAX. After incremental tests, cyclists pedaled for ~30 min at 50 W for recovery purposes
and, finally, cyclists performed a familiarization with the TTE at POMAX and a 95 ± 5-rpm
of cadence.

In the second session, quadriceps muscle morphology, muscle architecture and muscle
quality were measured by the same investigator with extensive experience with ultra-
sonography acquisition of muscles (~10 years). Quadriceps ultrasonography images were
acquired using a B-mode Aloka ultrasound system (SSD 4000; ALOKA, Tokyo, Japan) with
a 60-mm linear array transducer and 7.5 MHz. The ultrasonography probe was coated with
a water-soluble gel to provide acoustic contact and was positioned on the skin without
depressing the dermal surface. All ultrasonography images were acquired at rest with
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the lower limbs fully extended, after subjects rested for 10 min in a supine position on a
stretcher. Three transversal ultrasound images were obtained for each muscle [VL, VI and
RF, as well as the quadriceps muscle thickness (MT)] from both quadriceps’ muscles (right
and left). The probe was placed transversally (50% of the distance between the greater
trochanter and the lateral femur condyle) using fixed settings on the ultrasound equipment
(frequency: 7.5 MHz; depth: 8 cm; General Gain: 40 dB; Time Gain Compensation—TGC in
neutral position and focal zone 1.0 cm). After that, three longitudinal ultrasound images
were obtained of VL (right and left) from each cyclist. After that, three longitudinal ultra-
sound images were obtained of VL (right and left) from each cyclist, with the probe placed
longitudinally to the muscle at 50% of the distance between the greater trochanter and the
lateral femur condyle. Femur length was measured using a metric fiberglass tape (Sanny,
São Bernardo do Campo, Brazil, with 1 mm precision) from the distance between the
femur’s greater trochanter and the articular cleft between the femur and tibia condyles [25].

Quadriceps MV was estimated from the MT measurement between RF’s superficial
aponeurosis and VI’s deep aponeurosis using ImageJ 1.42q software (National Institute of
Health, Bethesda, MD, USA). Quadriceps MV was estimated using the equation proposed
by Miyatani et al. [25], where: Quadriceps MV = [(Quadriceps MT (RF + VI) · 320.6) + (femur
length · 110.9) − 4437.9].

All ultrasound images were analysed by the same investigator with extensive expe-
rience using ultrasonography analysis with the ImageJ 1.42q software (National Institute
of Health, Bethesda, MD, USA). A maximum region of interest captured by the ultra-
sonography probe (60-mm) was determined in each muscle and used to determine the
quadriceps CSA and ECHO [26,27]. CSA measurements may have been underestimated
due to the CSA’s size of the assessed muscles, which, in some cases, exceeded the image’s
area captured by the ultrasound probe (60-mm). Mean grayscale of ECHO value of each
muscle was determined using a standard grayscale histogram function and expressed as a
value between 0 (black) and 255 (white) in the same software. The mean of three ultrasound
images was used to quantify quadriceps CSA (RF + VI + VL) and ECHO [(RF + VI + VL)/3];
Figure 2. In addition, the VL best fascicle (i.e., the fascicle that was fully visible from
its insertion on the deep aponeurosis to the superficial aponeurosis, or to the ultrasound
probe field-of-view end) in each ultrasonography image was used for muscle architecture
analysis. FL was considered the length of the fascicular path between superficial and deep
aponeuroses. When the ends of the fascicles were outside the ultrasound image, FL was
estimated from extrapolation, as recommended in a previous study [28]. PA was calculated
as the angle between the muscle fascicle and the deep aponeurosis. MT was considered
a straight line between the deep and superficial aponeurosis along each ultrasonography
image (Figure 2). Mean values were obtained from three ultrasound images for each muscle
to determine FL, PA and MT of VL. The error in estimating the entire FL using the linear
model ranged from 2–7% [28] to 13% [29].

After that, athletes were asked to sit on a chair of an isokinetic dynamometer (Biodex
System 3 Pro, 2000 Hz, Biodex Medical Systems, Shirley, NY, USA) to perform MVIC of
the knee extensor muscles, which was evaluated at 70◦ of knee flexion (0◦ = full knee
extension). After fixation of the subject on the dynamometer chair, a verbal encouragement
was given by researchers in each MVIC so that cyclists performed maximal torque in all
contractions. All participants performed three 5-sec MVICs, with a 2-min rest interval
between contractions. MVICs were measured from both lower limbs, and the highest or
peak MVIC from each limb was used for further analysis.
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Figure 2. Illustration of left (L) and right (R) quadriceps muscle architecture. Both upper images
represent the cross-sectional area (CSA) of the rectus femoris muscles—RF (green line), vastus
intermedius—VI (blue line) and muscle thickness of the RF and VI muscles (yellow line) for later
calculation of muscle volume (MV). Both middle images represent the CSA of the vastus lateralis—VL
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aponeuroses are represented by the white lines, while the muscular fascicle length (FL) is represented
by the orange line, the pennation angle (PA) by the red line, and muscle thickness (MT) by the pink
line. All analyses were performed using ImageJ 1.42q software (National Institute of Health, Bethesda,
MD, USA).

Finally, cyclists performed a maximal TTE at POMAX with the road bike coupled to a
stationary cycling trainer (CompuTrainer, ProLab 3D, Racermate Inc., Seattle, WA, USA).
During TTE, instrumented cranks (MEP, Studio AIP SRL, 2 Hz, Oggiona con Santo Stefano,
Italy) were used to measure CT in both lower limbs, with the software MEP Studio AIP
(MEP Manager 1.6—Studio AIP SRL, Oggiona con Santo Stefano, Italy). The mean CT of
each crank (right and left) during the TTE was used for further analysis.

2.4. Statistical Analysis

Data normality, homoscedasticity and sphericity were assessed by the Shapiro-Wilk,
Levene and Mauchly tests, respectively. Stepwise multiple linear regressions were used to
estimate the relative contributions of independent morphological (CSA, MV), architectural
(VL’s MT, PA and FL) and muscle quality (ECHO) variables of both quadriceps on the
dependent variables of performance (knee extensors MVIC, CT and TTE). Our collinearity
diagnostic exploration resulted in variance inflation factors (VIF) of <2.0 and tolerance of
0.10–0.70, which indicate acceptable levels of multicollinearity of the independent vari-
ables [30]. In addition, post-hoc power of the multiple linear regression was calculated
according to Cohen et al. [31]. Effect size (ES) of multiple linear regression was calculated
and classified as small (>0.02); moderate (>0.13); and large (>0.26) a priori, using G*Power



Sports 2023, 11, 22 6 of 14

3.1.9.7 (FrauzFaurUniversität, Kiel, Germany), as described by Faul et al. [32]. The correla-
tion matrix showed the magnitude of Pearson’s product-moment correlation coefficient
between dependent variables (knee extensors MVIC, CT and TTE), and independent muscle
variables [CSA, MV, ECHO and VL muscle architecture (MT, PA and FL)]. The correlation
was classified as small (R = 0.0–0.1); moderate (R = 0.1–0.3); large (R = 0.3–0.5); very large
(R = 0.5–0.7); and extremely large (R = 0.9–1.0), according to thresholds recommended
by Hopkins et al. [33] using R-Studio (R version 4.1.0, R Core Team, 2021). Dependent
Sample t-test was used to compare sides. Simple linear regressions were performed to
verify the relationship between sides for all investigated variables. All statistical analysis
was performed with SPSS 22.0 for Windows (IBM SPSS Inc, Chicago, IL, USA), with a
significance level of α = 0.05. All dataset is in Supplementary Material (Table S1).

3. Results

The cyclists presented the following TTE performance at POMAX: 150.8 ± 38.2 s.
Initially, stepwise multiple linear regression analyses of multicollinearity excluded from
the regression models all variables that presented below 2 VIF and tolerance outside
0.10–0.70. The stepwise multiple linear regression model demonstrated that the right
quadriceps MV is an important determinant of right MVIC (31.0%) and CT (32.6%) of
cyclists (Table 1). Moreover, left quadriceps MV and left vastus lateralis fascicle length
(VL-FL) were determinants of left MVIC (64.2%), and left quadriceps MV was an important
determinant of left CT (23.5%) of cyclists (Table 1). However, no variables were able to
determine the TTE at POMAX of cyclists.

Table 1. Determinants of knee extensors maximal voluntary isometric contraction (MVIC) and crank
torque (CT) of cyclists.

Dependent
Variable R2 Indicator Standardized

Coefficients (β) p-Value Effect
Size

Observed
Power

MVIC right 0.310 MV right 0.557 0.011 0.45 0.81

MVIC left 0.642 MV left
VL-FL left

0.502
0.553

0.003
0.002 1.79 0.84

CT right 0.326 MV right 0.571 0.009 0.48 0.82
CT left 0.235 MV left 0.485 0.030 0.31 0.81

Quadriceps muscle volume (MV); left vastus lateralis fascicle length (VL-FL left).

Right (R = 0.56) and left (R = 0.59) quadriceps MV presented very large positive
correlations with right and left MVIC, respectively (p < 0.05). Furthermore, right (R = 0.57)
and left (R = 0.49) quadriceps MV presented very large and large positive correlations
with right and left CT, respectively (p < 0.05). In addition, left quadriceps ECHO (R = 0.47)
presented large positive correlation with left CT, and left VL-FL (R = 0.63) presented very
large positive correlation with left MVIC (p < 0.05) (Figure 3).

Table 2 shows comparisons between left and right lower limbs for dependent (MVIC
and CT) and independent [Quadriceps MV, CSA, ECHO and muscle architecture of VL
(MT, PA and FL)] variables. No significant between-sides differences were found for CSA,
ECHO, vastus lateralis pennation angle (VL-PA), VL-FL and MVIC (p > 0.05). However, the
right lower limb presented greater quadriceps MV and vastus lateralis muscle thickness
(VL-MT), and smaller CT, compared to the left lower limb (p < 0.05).
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Figure 3. Correlation matrix showing the relationship between all dependent and independent
variables. Right knee extensor maximal voluntary isometric contraction (MVIC_R); left knee extensor
maximal voluntary isometric contraction (MVIC_L); right crank torque (CT_R); left crank torque
(CT_L); right quadriceps muscle volume (MV_R); left quadriceps muscle volume (MV_L); right
quadriceps cross-sectional area (CSA_R); left quadriceps cross-sectional area (CSA_L); right vastus
lateralis muscle thickness (VL-MT_R); left vastus lateralis muscle thickness (VL-MT_L); right vastus
lateralis pennation angle (VL-PA_R); left vastus lateralis pennation angle (VL-PA_L); right vastus
lateralis fascicle length (VL-FL_R); left vastus lateralis fascicle length (VL-FL_L); right quadriceps
echo intensity (ECHO_R); and left quadriceps echo intensity (ECHO_L). Independent variables right
(R = 0.56) and left (R = 0.59) quadriceps MV presented very large positive correlation with right and
left MVIC, respectively (p < 0.05). Right (R = 0.57) and left (R = 0.49) quadriceps MV presented very
large and large positive correlations with right and left CT, respectively (p < 0.05). Left quadriceps
ECHO (R = 0.47) presented large positive correlation with left CT, and left VL-FL (R = 0.63) presented
very large positive correlation with left MVIC (p < 0.05).

Table 2. Between-sides comparison for quadriceps muscle morphology (Dependent Sample t-test).

Variables Left Right Differences (%) t-test p-Value

CSA (cm2) 35.8 ± 4.0 36.9 ± 5.5 2.9 ± 9.7 1.341 0.196
ECHO (A.U.) 67.5 ± 8.7 67.7 ± 8.6 0.4 ± 4.7 0.304 0.765

MV (cm3) 2357 ± 345 2427 ± 385 2.8 ± 4.2 3.095 0.006
VL-MT (cm) 2.7 ± 0.3 2.8 ± 0.5 5.5 ± 8.3 2.942 0.008

VL-PA (◦) 21.0 ± 3.0 21.0 ± 4.8 1.2 ± 19.2 0.161 0.874
VL-FL (cm) 7.4 ± 1.3 7.7 ± 1.3 6.2 ± 17.1 1.267 0.220

MVIC (N·m) 275.2 ± 50.5 284.0 ± 42.4 4.2 ± 10.1 1.594 0.127
CT (N·m) 20.8 ± 2.4 19.9 ± 2.1 −3.8 ± 5.2 −3.472 0.003

CSA: quadriceps muscle cross-sectional area; ECHO: quadriceps muscle echo intensity; MV: quadriceps muscle
volume; VL-MT: vastus lateralis muscle thickness; VL-PA: vastus lateralis pennation angle; VL-FL: vastus lateralis
fascicle length; MVIC: knee extensors maximal voluntary isometric contraction; CT: crank torque; TTE: time-to-
exhaustion. Significant between-sides differences (p < 0.05).
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Simple linear regressions showed significant relationships between left and right limbs
for all variables [MVIC (R2 = 0.76; p < 0.001); CT (R2 = 0.79; p < 0.001); quadriceps MV
(R2 = 0.94; p < 0.001); quadriceps CSA (R2 = 0.59; p < 0.001); VL-MT (R2 = 0.76; p < 0.001);
VL-PA (R2 = 0.27; p = 0.012); VL-FL (R2 = 0.27; p = 0.012); and quadriceps ECHO (R2 = 0.88;
p < 0.001)]; Figure 4.
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Figure 4. Between-sides simple linear regressions (black line) for the following variables: (A) knee
extensors maximal voluntary isometric contraction (MVIC); (B) crank torque (CT); (C) quadriceps
muscle volume (MV); (D) quadriceps cross-sectional area (CSA); (E) vastus lateralis muscle thickness
(VL-MT); (F) vastus lateralis pennation angle (VL-PA); (G) vastus lateralis fascicle length (VL-FL);
and (H) quadriceps echo intensity (ECHO). Red line represents perfect linear relationship between
sides for each variable.

4. Discussion

The purpose of this study was to identify which parameters of quadriceps muscle
morphology size (MV and CSA), quadriceps muscle quality (ECHO) and VL muscle
architecture (FL, PA and MT) from both lower limbs are determinants of knee extensor
MVIC, CT (both sides) and TTE performance in trained cyclists. Our outcomes showed
large ES (≥0.31) for the stepwise multiple linear regression model and large observed
power (≥0.81), demonstrating adequate sample size and confirming the cause-effect of the
all-regression analyses performed. According to our results, 31% of right knee extensor
MVIC was determined by right quadriceps MV, whereas 33% of right CT was determined
by right quadriceps MV. In addition, 64% of left knee extensor MVIC was determined
by left quadriceps MV and left VL-FL, whereas 24% of left CT was determined by left
quadriceps MV. However, the evaluated quadriceps morphological parameters did not
explain differences in the TTE performance at POMAX in competitive cyclists. Additionally,
our results showed strong positive correlations between right and left quadriceps MV with
knee extensor MVIC and CT of both lower limbs. Furthermore, left quadriceps ECHO
presented positive correlations with left CT, and left VL-FL presented positive correlations
with left knee extensor MVIC. Results showed no between-sides differences for CSA, ECHO,
VL-PA, VL-FL and MVIC. However, the right limb presents greater quadriceps MV (2.8%)
and VL-MT (5.5%) and smaller CT (3.8%) compared to the left limb of cyclists. These
results suggest no asymmetries between lower limbs [34]. Carpes et al. [34], in their review,
showed that cyclists exhibit higher asymmetry indexes for CT or PO during moderate to
low intensity exercise, but intensities eliciting maximal effort (e.g., POMAX) were suggested
to be symmetric between lower limbs. However, there is a lack of investigations about
muscle morphology, muscle architecture, muscle quality, and muscle activation that allow
us to determine the origins of possible asymmetries.

Our results agree with previous studies, where MV (76%) predicted the PPO during
sprints tests [15] and was the best determinant (60%) of knee extensor MVIC torque [16].
Furthermore, in a group of elite cyclists, VL MV, in combination with the percentage of type-
II muscle fibers, explained 65% of the variance in PPO during a Wingate test [8]. Our results
showed that the quadriceps MV of endurance cyclists determine ~30% of knee extensor
MVIC. However, these MV values are well below those of sprinter track cyclists (76%) to
determine PPO during sprint tests [15]. One of the explanations may be related to the fact
that long-distance cyclists depend too highly on physiological (e.g., energetic) conditions
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to improve their performance when compared to sprinters [1–9]. In addition, our results
demonstrate that the left VL-FL helped explain differences in the left knee extensor MVIC.
These results suggest that cycling training may have generated musculoskeletal adaptations
on VL-FL and consequently increased the athlete’s capacity to produce maximum torque at
the knee extensors’ optimal angle (~70◦ of knee flexion) [35,36]. However, the same result
was not found for the right side, which may be due to variability in the ultrasonography
measurements of the VL muscle (Figure 4). Moreover, Kordi et al. [15] showed that the
quadriceps VL-PA determined 11% of PPO during sprint tests, which disagrees with
our findings, most likely due to the type of test performed. Furthermore, our results
demonstrate that no quadriceps muscle morphology and quadriceps muscle quality and/or
VL muscle architecture variables was able to explain differences in the TTE performance at
POMAX in endurance cyclists, probably related to the fact that all athletes were pedaling at
maximum aerobic workload. Perhaps if the TTE tests were performed at a submaximal
workload (e.g., 80% of POMAX) the results could be different, and better conditioned
cyclists would have a higher performance, which is not necessarily the case when the
workload is relative to 100% (i.e., maximal). Therefore, we suggest that future studies also
test the quadriceps morphology, muscle quality and muscle architecture as performance
determinants in submaximal aerobic tests (Workload Absolute or Relative).

However, despite the strong relationships between MVIC and CT with MV and VL-FL,
muscle morphology may also interact with other variables such as neuromuscular [6],
cardiac, skeletal, and anthropometric [7] parameters. van der Zwaard et al. [8] evalu-
ated the effect of several independent variables (oxygen consumption, blood sampling,
knee-extensor maximal force, muscle oxygenation, muscle morphology, and muscle fiber
histochemistry of VL) in the cyclists’ performance, and suggested that VL-FL and capillar-
ization are important targets for training to optimize sprint and endurance performance
simultaneously. Furthermore, muscle morphology of multiple muscles involved on crank
cycling (recently investigated in a simulation model) showed that better alignment of the
peak power-pedaling rate curve of the vasti muscles may improve cycling PPO [37]. In the
present study, other muscle groups that almost certainly contribute to CT, such as gluteus
maximus and plantar flexors, were not assessed [38]. Assessment of other major muscle
groups would have given a more complete understanding of muscular morphological,
quality, and architectural determinants of CT during cycling. Nevertheless, our findings
for the predominant influence of quadriceps femoris MV on MVIC and CT reinforce the
importance of muscle size (~30%) for neuromuscular force/power production. Our results
also suggest that cyclists and coaches should be especially attentive to strength training
and nutrition strategies to enhance MV. Plyometric and resistance training are well-known
strategies to stimulate hypertrophy and increase MV [39,40], and could be used to improve
the cyclists’ performance.

Furthermore, our results demonstrated a large positive correlation between both sides
of quadriceps ECHO with both sides of knee extensors MVIC and between left quadriceps
ECHO and left CT (despite not entering the stepwise multiple linear regression model),
without correlations between right quadriceps ECHO and right CT, and both sides of
quadriceps ECHO with both sides of MVIC of knee extensors. These results contradict
previous studies, which found negative or no correlations [18–20] between these outcomes.
In addition, the fact that our study investigated endurance cyclists may have contributed to
the differences between studies. It is possible that different long-term physical demands (in
our case, endurance) may have determined specific changes in strength and muscle quality.
More specifically, slow-twitch fibered muscles may depend more on the connective tissue
(e.g., epimysium, perimysium, endomysium, fascia and tendon) to transmit force during
long cycling periods, thereby increasing the ECHO in the muscle belly. Athletes with a
higher force production capacity (i.e., higher in parallel sarcomeres or myofibrils within
their muscle fibers) may also need a higher connective tissue content within the muscle,
thereby explaining the positive and large correlation between ECHO and MVIC in both
sides. However, no previous studies were found that compared muscle quality between
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different sports or related ECHO with the capacity to produce maximum or specific force
in athletes. We also evaluated mean quadriceps ECHO [(RF + VI + VL)/3], unlike previous
studies that evaluated one or two knee extensors. Our results suggest that the use of
ECHO for inferring muscle quality should be revisited [20], especially with long-distance
or endurance athletes. However, our study has a small and possibly heterogeneous sample
(e.g., heterogeneous TTE performance), which is a limitation of our study and, therefore,
our results should be looked at with care.

Additionally, the ability of pennate muscles (i.e., VL) to undergo muscle architectural
dynamic changes to amplify fiber contraction speed (i.e., amplify quadriceps fiber con-
traction speed during force-velocity changes that occur during the crank cycle) present
significant interactions with muscle architectural gearing during contractions [41]. Pennate
muscles (e.g., VL) change thickness and width during shortening [42,43]. Increasing thick-
ness increases the amount of fiber rotation during shortening, and consequently increases
muscle architectural gear ratio, whereas decreasing thickness decreases fiber rotation and
muscle architectural gear ratio [43,44]. Variable gearing occurs at the level of the tendon
and may be due to changes in muscle coordination across a different range of locomotor
tasks [45]. Therefore, greater PA will result in shorter fascicles (due to the arrangement of
muscle origins and insertions) and, consequently, the muscle will have a slower maximum
shortening velocity [46]. Furthermore, short fascicles, shortening with the same absolute
velocity as long fascicles, imply greater relative shortening velocities compared to those
of long fascicles, and therefore a subsequently greater reduction in the force potential
according to the force-velocity relationship [47]. Indeed, it is well known that muscles
with greater PA may operate with higher belly gearing, which is associated with higher
strength potentials [47]. Moreover, dynamic interplay between fiber force and connective
tissue behavior (e.g., tendon) determines the muscle gear [41,43]. However, we did not find
studies that have investigated the relationship between architectural gear ratio and torque
or PO in cycling. Therefore, further studies should investigate the relationship between
muscle architectural gear ratio and torque or PO during cycling.

One limitation of the present study was not evaluating the vastus medialis muscle
morphology, especially for calculating the total CSA of the quadriceps muscle. Furthermore,
the size of the probe (60-mm) did not allow us to capture the total CSA from all the evaluated
muscles, thereby limiting our quadriceps CSA results. Discrepancies in TTE performance
at POMAX may also have affected the results of the present study. In addition, we did not
evaluate other cycling tests (i.e., incremental or TT) to elucidate which are the possible
quadriceps’ architectural, morphological and/or quality indicators that determine the
torque applied to the crank cycle. Another limitation is that we used only transverse
ultrasound images to estimate the quadriceps MV, whereas the “gold standard” would
be the evaluation by magnetic resonance imaging (MRI), or using 3D ultrasound, having
the benefits like those of MRI [48,49]. Nonetheless, the 2D ultrasound evaluation that was
applied has been validated by previous studies [26].

Practical Application

Understanding which variables can be predictors of maximal quadriceps isometric
torque and crank torque during cycling, may help coaches and athletes to be aware of some
of the physical characteristics needed for the best performance (e.g., applied resistance train-
ing for improving quadriceps MV, and, consequently, the cyclists’ performance). However,
they should also be aware of the simultaneous nature of cycling training and resistance
exercises, which can mitigate muscle hypertrophic responses [50]. In this study, MV and
VL-FL were shown to be important morphological determinants of knee extensor MVIC
and CT, but not in TTE performance at POMAX of endurance cyclists. The next decisive
step will be to investigate the prediction of different morphological variables on cycling
endurance performance during a race (i.e., TT).
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5. Conclusions

Quadriceps MV was an important determinant of knee extensor MVIC and CT in both
lower limbs of cyclists. Left VL-FL also determines the left knee extensor MVIC. However,
no quadriceps morphological variables explained differences in the TTE performance at
POMAX in cyclists. Our results showed consistent and similar muscle morphology between
the right and left limbs and revealed strong positive correlations.
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