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Abstract: Injuries to the shoulder are very common in sports that involve overhead arm or throwing
movements. Strength training of the chest muscles has the potential to protect the shoulder from
injury. Kinematic and kinetic data were acquired in 20 healthy subjects (age: 24.9 ± 2.7 years) using
motion capture, force plates for the bench press exercises and load cells in the cable for the cable pulley
exercises with 15% and 30% of body weight (BW). Joint ranges of motion (RoM) and joint moments
at the shoulder, elbow and wrist were derived using an inverse dynamics approach. The maximum
absolute moments at the shoulder joint were significantly larger for the cable pulley exercises than for
the bench press exercises. The cable cross-over exercise resulted in substantially different joint angles
and loading patterns compared to most other exercises, with higher fluctuations during the exercise
cycle. The present results indicate that a combination of bench press and cable pulley exercises are
best to train the full RoM and, thus, intra-muscular coordination across the upper limbs. Care has
to be taken when performing cable cross-over exercises to ensure proper stabilisation of the joints
during exercise execution and avoid joint overloading.

Keywords: shoulder; strength exercise; pectoralis training; kinetics; kinematics

1. Introduction

Strength training plays an integral part in the prevention of and rehabilitation from
injury, as well as improvement of sports performance [1]. Thereby, the primary goal of
strength training is to increase muscular strength for stabilising the joints while simulta-
neously improving inter- and intra-muscular coordination [2]. Focusing on the shoulder
joint and upper limb, injuries are very common in sport disciplines that involve overhead
arm or throwing movements, such as tennis, baseball or basketball [3]. Here, well-trained
chest muscles may help to reduce injury risks by better stabilising the shoulder joint and
the interconnected upper limbs [4].

Bench press exercises are the most popular strength exercises for developing upper
body strength, especially of chest muscles [5]. The core muscle groups which are trained
during bench press exercises are the pectoralis major, the triceps brachii, the anterior deltoid
and the medial deltoid, serving as key stabilisers of the shoulder joint [1]. Another common
method to improve chest muscle strength is to perform strength exercises on a cable pulley
system [6]. The cable pulley system offers a wide range of exercise execution types that
can be adapted to individual preferences and requirements. From a biomechanical point
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of view, the direction of resistance during bench press exercises is always vertical due to
gravity, while the resistance during the cable pulley exercises is in the direction of the cable.

While a high number of studies have analysed muscle activity patterns during bench
press exercises [7–13], relatively little research has been done on joint kinematics and
kinetics of the upper limbs for both bench press and cable pulley exercises. The authors
of [14] investigated the effects of exercise intensity on trunk muscle activity during pulley-
based shoulder exercises on an unstable support surface. The results did not show any
significant changes in muscle activation patterns for different exercise intensities. In a
different study, it was found that the shear forces in the shoulder joint were more constant,
and the joint ranges of motion (RoMs) were larger using a variable resistance machine
compared to a cable pulley system [6]. More recently, ref. [15] compared the kinematics and
kinetics of the upper limbs during external and internal rotation exercises of the shoulder
with constant versus elastic resistance. While the joint RoM did not differ significantly
between the two resistance types, shoulder joint loading was found to be significantly
higher with constant resistance. No study was found comparing upper limb kinematics
and kinetics for different strength exercises that specifically target the stabilisation of the
shoulder joint.

It was previously found in professional baseball pitchers that present weakness of
shoulder strength is associated with increased risk of throwing-related injuries, stressing
the importance of targeted muscle strengthening plans for injury prevention [4]. While
strength training can have a beneficial effect on joint function and sports performance, there
is also a reported risk of injury due to overstressing or incorrect exercise execution [16].
The high injury risks of the shoulder, both during sports performance and strength training,
demands an improved understanding of joint kinematics and kinetics during non-fatiguing
exercise executions to develop safe and effective training guidelines. Therefore, the aim of
the present study was to compare the kinematics and kinetics of the upper limbs during flat
and inclined bench press exercises, as well as during two different cable pulley exercises,
namely the cross-over exercise, also known as butterfly, and the pull-over exercise at
moderate intensity. Specifically, the RoMs of the wrist, elbow and shoulder joint, as well as
the maximum joint moments during each repetition cycle, were analysed and compared
between the different types of exercises and two different load magnitudes.

2. Materials and Methods
2.1. Participants

Kinematic and kinetic data were acquired in 10 healthy male and 10 healthy female
subjects (age: 24.9 ± 2.7 years, height: 175.2 ± 9.0 cm, weight: 68.6 ± 11.1 kg). The sample
size of n = 20 was in line with similar studies that compared joint kinematics between
different types of strength exercise (i.e., n = 15 in [17] or n = 12 in [15]). Inclusion criteria
were an age between 18 and 45 years and experience with weight training, with at least
two hours per week of training for a sufficient length of time to be familiar with the
selected exercises. Exclusion criteria were current injury or illness, previous surgery to the
shoulder or upper limbs, neurological disorders or current medical treatment. The study
was approved by the ethics committee of the ETH Zurich, Switzerland (2017-N-46). All
participants signed a declaration of consent to participate in the study.

2.2. Experimental Approach

Prior to data acquisition, each participant conducted a specific, five-minute warm-up
session using sets of the exercises with minimal loading. Each subject received precise
instructions on how to execute the exercises (i.e., bench press flat, bench press inclined,
cable cross-over, cable pull-over, see Additional File 1). For the bench press exercises,
a weight bench with an adjustable backrest, together with a barbell with a tare weight of
10 kg and variable weight plates, were used. Grip width for the bench press exercises was
defined as the length of the upper arm times two, plus once the shoulder width. This is the
standardised definition of grip width in weight lifting [18]. Cable pulley exercises were
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performed on a cable pulley system with two separate towers that were height-adjustable.
For the cross-over exercise, both towers were used with a single-hand grip on either side,
and the loading was evenly divided between both towers. The pull-over exercise was
executed using just one tower with a nylon rope with a rubber-end stop and swivel to hold
with both hands. Each exercise was performed with two different loading conditions that
were 15% and 30% of the subject’s body weight (BW).

Following the warm-up session, each participant performed the flat and inclined
bench press exercises, as well as the cross-over and pull-over exercises according to the
given guidelines. The order of the exercises was chosen randomly for each subject, but each
exercise was performed first with a loading of 15% BW, directly followed with a loading
of 30% BW. Six consecutive repetitions were recorded for each exercise and both loading
conditions. Between each set of six repetitions, the subjects took a break of at least 2 min
to recover and avoid muscular fatigue. Focus was given to correct exercise execution (i.e.,
joint alignment) according to guidelines rather than speed of execution and/or the lifting
of maximum weight.

2.3. Data Acquisition

To collect kinematic data of the upper extremities in all three planes of motion, a Vi-
con MX40 system (Vicon Motion Systems Ltd., Oxford, UK) with 22 cameras was used.
The resolution of each camera was 2353 × 1728 pixels, capturing at a frequency of 100 Hz.
A skin marker set with a total of 54 markers was used, which was specifically designed for
evaluating the biomechanics of the upper limbs and previously applied to strength training
research [15]. A cluster of at least four markers was used to define each body segment.
The marker set by [15] was supplemented with four additional markers on the trunk,
because the ones on the spine and scapula could not be used during the bench press trials.
Markers were positioned on anatomical structures with little skin movement and high
visibility throughout the whole exercise cycle. Markers had a diameter of 14 mm, except
the markers on the hands, on the highest point of the sternum and on the sternoclavicular
joints, which had a diameter of 9 mm. Two Kistler force plates (Kistler Group, Winterthur,
Switzerland, Type 9281B, width and length of 400 × 600 mm), which were embedded in
the floor of the movement analysis laboratory, were used to record the ground reaction
forces during the bench press exercises. For the kinetic measurements of the cable pulley
exercises, two 1 kN load cells operating at 2000 Hz (SM-1000N, Interface Inc., Atlanta,
GA, USA) were placed in series between the handle and the cable. Additionally, optical
markers were placed on the cable pulley handles and six additional markers on the cable in
order to assess the direction of the external force due to resistance during the pull-over and
cross-over exercises. The recorded movement trajectories of these markers were also used
to separate the exercise cycles into individual repetitions. Optical markers were placed on
each end of the barbell to separate the cycles for the bench press exercises.

2.4. Data Processing and Analysis

The marker trajectories from optical motion capture were tracked and labelled using
Vicon Nexus 2.4 (Vicon Motion Systems Ltd., Oxford, UK) and, subsequently, exported
for the analysis of joint kinematics using Matlab 2014 (Mathworks, Natick, MA, USA).
Exercise cycles were separated into individual repetitions using the mean values of the
z coordinates of the markers on each handle, with a minimum velocity of 30 mm/s to
indicate movement for the bench press exercises and 40 mm/s for the cable pulley exercises,
respectively. The positions of the glenohumeral joint centre (i.e., shoulder joint), elbow joint
centre and wrist joint centre were functionally derived based on the kinematic data from
nine basic motion tasks, previously introduced by [15] and described in Additional File 2.
Orthogonal and right-handed segmental coordinate systems were defined based on the
position of the joint centres and the segmental markers.

The kinematic and kinetic data from the first repetition of each exercise cycle were
excluded from further analysis. Thus, five repetitions of each exercise for the right and left
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extremity of each subject were further processed, making a total of 200 evaluated cycles.
The positions and orientations of the segments during each repetition were determined
using a least-squares fit of the corresponding marker clusters [19]. Upper limb joint
kinematics were derived from the segmental positions using the joint coordinate system
convention created by [20] and recommended by the International Society of Biomechanics
(ISB) [21]. The movement of the shoulder joint was simplified, described as the relative
motion of the upper arm with respect to the torso, similar to [17], not considering the
shoulder girdle as individual segments due to well-known skin movement artefacts across
the clavicle and scapula [22]. Details on the definitions of segmental and joint coordinate
systems are given in the Additional File 3. It is important to note that the joint coordinate
systems based on the convention by [20] are non-orthogonal, depending on the position
and orientation of the adjacent segments with respect to each other.

The joint moments (Mabs) and their maximum (Mmax) at the shoulder, elbow and wrist
during each repetition cycle were calculated using a quasi-static inverse dynamics approach
based on the positions and orientation of the segments, the measured external forces and
the gravitational force of the segments and handle [17,23]. The data from the force sensors
were filtered using a third-order low pass Butterworth filter with a cut-off frequency of
70 Hz. Due to the different recording frequencies of the kinetic and kinematic data, the force
sensor data were down-sampled to 100 Hz. The BW of each subject was subtracted from
the total force vector during the bench press exercises to ensure that only the mass and
accelerations of the moved segments and the barbell had an impact on the calculation of the
joint moments. The centre of mass (CoM) and mass of the moved segments were calculated
according to [24]. The mass of the handle was 0.07 kg for the pull-over exercise and 0.05 kg
each for the cross-over exercise, and its centre of gravity was assumed to be equal to the
CoM of the hand. The direction of the force vector during the cable pulley exercises was
calculated using a least-squares fit of the line between the six markers attached to the cable.

Joint angles and joint moments were resampled over time, and joint moments were
additionally normalised to BW. Mean maximum and mean minimum joint angles, as well as
mean maximum joint moments (Mmax), were calculated across all repetition cycles of each
exercise (i.e., bench press flat, bench press inclined, cable cross-over, cable pull-over). Joint
RoMs were calculated as the difference between the maximum and minimum joint angles.

2.5. Statistical Analysis

Statistical analysis was carried out using IBM SPSS Statistics 24 (SPSS AG, Zurich,
Switzerland) software. The independent variables were the four different types of strength
exercises (i.e., bench press flat, bench press inclined, cable cross-over, cable pull-over)
and the two magnitudes of externally applied loads (i.e., 15% and 30% BW). At the wrist
and the elbow joint, mean RoMs and mean Mmax in the sagittal and frontal plane and
transversal plane, respectively, were statistically compared between exercises and applied
loads. At the shoulder joint, only the absolute Mmax values were statistically compared due
to the complexity of the shoulder joint in 3D [17].

Prior to statistical analysis, outcome variables were checked for normal distribution
using Q–Q plots. Given normal distributions with minor deviations, parametric statistical
analysis was carried out. In particular, two-sample paired t-tests were used to analyse the
significance of the differences between paired outcome variables from the four different
types of strength exercises and two types of loading magnitudes. The level of significance
was set at p < 0.0125 for all comparisons.

3. Results

All results are shown as mean ± standard deviation (SD). Positive values correspond
to internal rotation, adduction or flexion angles and the corresponding Mmax. Mean grip
width was 88.7 ± 6.7 cm for the bench press exercises.
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3.1. Shoulder

The mean trajectories of the flexion extension and abduction-adduction joint angles
and absolute moments in the shoulder joint during bench press and cable pulley exercises
are shown in Figure 1. The results from the statistical comparison of maximum absolute
moments are given in Table 1. The flat and inclined bench press exercises showed very
similar motion and loading patterns in the shoulder joint. The cross-over exercise presented
with substantially different joint angles and loading patterns compared to the pull-over
exercise, as well as compared to the bench press exercises, with higher fluctuations of the
abduction-adduction angle and absolute joint moment during the exercise cycle. For all
exercises, the maximum absolute joint moment was substantially larger with the 30% BW
compared to 15% BW loading. Thereby, the maximum absolute shoulder moments were
significantly larger for the cable pulley exercises than for the bench press exercises (Table 1).
Yet, no significant difference was found between flat versus inclined bench press exercises,
as well as between cable pull-over versus cross-over exercises (Table 1). Interestingly,
the maximum absolute joint moments during the bench press exercises approximately
coincided with the change in movement direction of the upper limb, while maximum joint
moments during the cable pulley exercises occurred in the first phase of the exercise cycle
(Figure 1).

Table 1. Mean values and SD for maximum absolute joint moment (Mmax) calculated across all
20 subjects. The two bottom rows associated with (*) indicate significant differences (p < 0.0125) of
the particular exercise with respect to flat bench press (bf), incline bench press (bi), cable cross-over
(cc) and/or cable pull-over (cp) with equal load, as well as significant differences (p < 0.0125) of the
particular exercise with respect to 15% BW or 30% BW, respectively.

Shoulder
Moment [Nm/kg]

Bench_Flat (bf) Bench_Incline (bi) Cable_Cross (cc) Cable_Pull (cp)

15% BW 30% BW 15% BW 30% BW 15% BW 30% BW 15% BW 30% BW

absolute

Mean
± SD

0.442 0.760 0.418 0.712 0.650 1.026 0.611 1.09

±0.046 ±0.079 ±0.041 ±0.080 ±0.113 ±0.192 ±0.086 ±0.155

*
cc, cp cc, cp cc, cp cc, cp bf, bi bf, bi bf, bi bf, bi

30 15 30 15 30 15 30 15

3.2. Elbow

The resulting flexion-extension and supination-pronation RoMs and Mmax at the elbow
joint are given in Table 2. Elbow flexion-extension RoMs were significantly larger during
the bench press compared to the cable pulley exercises; elbow supination-pronation RoMs
showed opposite behavior, being significantly larger during the cable pulley compared
to the bench press exercises. Interestingly, elbow joint RoM was significantly different for
the cable cross-over exercise when increasing the load from 15% to 30%; yet, no significant
difference was found in elbow Mmax for the same exercise with increasing load. However,
a markedly higher SD in RoM and Mmax were present for the cable pulley exercises
compared to the bench press exercises, suggesting larger variations in joint motion and
loading patterns subjects.

3.3. Wrist

The resulting flexion-extension and supination-pronation RoMs and Mmax at the
wrist joint are given in Table 3. Flexion-extension and abduction-adduction RoMs of the
wrist were significantly larger during the cable pull-over exercise, while the wrist flexion-
extension Mmax was significantly different for the cable cross-over exercise compared to
all other exercises. Interestingly, no significant difference in joint RoM was found for any
exercise when increasing the load from 15% to 30% BW. Increasing the load also did not
result in significantly different abduction-adduction Mmax for the bench press exercises.



Sports 2022, 10, 19 6 of 11

However, a large SD in RoM and Mmax were found for all exercises, suggesting large
variations in joint motion and loading patterns between subjects.
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Table 2. Mean values and SD for elbow joint flexion-extension and supination-pronation RoM and
Mmax calculated across all 20 subjects. The rows associated with (*) indicate significant differences
(p < 0.0125) of the particular exercise with respect to flat bench press (bf), incline bench press (bi),
cable cross-over (cc) and/or cable pull-over (cp) with equal load, as well as significant differences
(p < 0.0125) of the particular exercise with respect to 15% BW or 30% BW, respectively.

Elbow
Bench_Flat (bf) Bench_Incline (bi) Cable_Cross (cc) Cable_Pull (cp)

15% BW 30% BW 15% BW 30% BW 15% BW 30% BW 15% BW 30% BW

R
oM

(◦
)

Flexion-
Extension

Mean
± SD

79.5 76.2 84.3 81.4 21.8 32.5 23.3 30.9

±6.2 ±6.4 ±6.4 ±6.2 ±10.9 ±15.2 ±6.5 ±8.8

*
cc, cp cc, cp cc, cp cc, cp bf, bi bf, bi bf, bi bf, bi

30 15 30 15

Supination-
Pronation

Mean
± SD

6.5 6.4 7.0 7.2 11.6 15.6 21.6 19.5

±1.9 ±1.7 ±2.8 ±2.8 ±6.1 ±10.6 ±5.3 ±4.6

*
cc, cp cc, cp cc, cp cc, cp bf, bi, cp bf, bi, cp bf, bi, cc bf, bi, cc

30 15

M
m

ax
(N

m
/k

g)

Flexion-
Extension

Mean
± SD

0.092 0.165 0.112 0.201 −0.042 −0.059 −0.004 0.004

±0.018 ±0.041 ±0.023 ±0.043 ±0.011 ±0.017 ±0.067 ±0.110

*
cc, cp cc, cp cc, cp cc, cp bf, bi, cp bf, bi, cp bf, bi, cc bf, bi, cc

30 15 30 15

Supination-
Pronation

Mean
± SD

0.016 0.030 0.016 0.030 −0.008 −0.017 0.165 0.237

±0.004 ±0.008 ±0.004 ±0.008 ±0.007 ±0.012 ±0.032 ±0.069

*
cp cp cp cp cp cp bf, bi, cc bf, bi, cc

30 15

Table 3. Mean values and SD for wrist joint flexion-extension and abduction-adduction RoM and
Mmax calculated across all 20 subjects. The rows associated with (*) indicate significant differences
(p < 0.0125) of the particular exercise with respect to flat bench press (bf), incline bench press (bi),
cable cross-over (cc) and/or cable pull-over (cp) with equal load, as well as significant differences
(p < 0.0125) of the particular exercise with respect to 15% BW or 30% BW, respectively.

Wrist
Bench_Flat (bf) Bench_Incline (bi) Cable_Cross (cc) Cable_Pull (cp)

15% BW 30% BW 15% BW 30% BW 15% BW 30% BW 15% BW 30% BW

R
oM

(◦
)

Flexion-
Extension

Mean
± SD

11.9 11.0 14.0 12.4 21.1 18.7 34.4 37.1

±4.0 ±2.7 ±3.7 ±3.9 ±8.6 ±7.8 ±13.8 ±11.9

*
cc, cp cc, cp cc, cp cc, cp bf, bi, cp bf, bi, cp bf, bi, cc bf, bi, cc

Abduction-
Adduction

Mean
± SD

9.8 9.8 10.6 10.4 11.7 12.1 33.8 31.1

±2.5 ±2.2 ±2.1 ±1.8 ±6.0 ±4.1 ±14.3 ±11.6

*
cp cp cp cp cp cp bf, bi, cc bf, bi, cc
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Table 3. Cont.

Wrist
Bench_Flat (bf) Bench_Incline (bi) Cable_Cross (cc) Cable_Pull (cp)

15% BW 30% BW 15% BW 30% BW 15% BW 30% BW 15% BW 30% BW

M
m

ax
(N

m
/k

g)

Flexion-
Extension

Mean
± SD

−0.015 −0.032 −0.017 −0.035 0.025 0.046 −0.017 −0.054

±0.005 ±0.012 ±0.006 ±0.011 ±0.009 ±0.012 ±0.031 ±0.034

*
cc cc, cp cc cc, cp bf, bi, cp bf, bi, cp cc bf, bi, cc

30 15 30 15 30 15 30 15

Abduction-
Adduction

Mean
± SD

0.011 0.019 0.010 0.018 −0.027 −0.040 0.021 0.053

±0.005 ±0.010 ±0.005 ±0.009 ±0.010 ±0.015 ±0.021 ±0.028

*
cc cc, cp cc cc, cp bf, bi, cp bf, bi, cp cc bf, bi, cc

30 15 30 15

4. Discussion

The present study reports on the kinematics and kinetics of the upper limbs during
four common strength exercises for chest muscles at moderate intensity. Biomechanical
assessment of chest muscle strengthening exercises is important for the establishment of
training guidelines to minimise injury risks, especially at the shoulder. To the authors’
knowledge, no study has previously compared upper limb kinematics and kinetics between
the selected types of exercises.

Biomechanically, the absolute joint moment is counterbalanced by active muscle forces
which leads to a reduction of the internally applied joint moments [25]. In resistance
training, the absolute joint moment is preferably high during the concentric phase to train
the agonist muscle and high during the eccentric phase to train the antagonist muscles,
respectively. Yet, a minimisation of the internal joint moments is desirable to avoid over-
stressing the joint and soft tissue structures [2]. Exercises with changing directions of joint
loading should be chosen with care, depending on the training goals, in order to target the
intended muscle groups and not their antagonists, as well as to avoid overloading the joint
due to a lack of inter-muscular coordination. Given the present results for the shoulder
joint, it appears that bench press exercises present with lower and less fluctuating joint
loading than cable pulley exercises (Figure 1), likely allowing for more targeted and safe
strengthening of the chest muscles.

Previous research suggests that muscle activation patterns during the bench press
exercise tend to demonstrate a specificity during moderate-intensity, non-fatiguing exercise
execution [8,10]. Thereby, declined bench press was found to induce a greater overall
activation of the pectoralis muscles as compared to the inclined bench press. Additionally,
it was shown that the anterior and medial deltoid muscles were more active during the
bench press performed using free weights compared to the machine [10]. Comparing
muscle activity during humeral external rotation with the cable pulley versus the variable
resistance machine, it was found that broader ranges of motion with the variable resistance
machine led to higher activation of the key movers, especially for heavier loading [6].
Given these results, it is likely that larger fluctuations of joint ranges of motion during cable
cross-over exercises in the present study also led to higher activation of the deltoid muscles
as joint stabiliser, as well as higher activation of the pectoralis muscle as key mover.

In order to maximise the effect of strength training, it is generally desirable to perform
the exercises with a large RoM. This applies for strength training in order to improve,
e.g., maximum isometric force, cross-sectional area and inter-/intra-muscular coordina-
tion [18,26], as well as for rehabilitation protocols with the aim to regain normal joint
function [27]. Additionally, flexibility can be improved if a large RoM during strength
training is accomplished [28]. In the present study, the largest flexion-extension RoMs were
found at the shoulder joint for the cable cross-over exercise, which also resulted in the
largest maximum absolute joint moment (Table 1). Interestingly, the cable cross-over exer-
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cise also resulted in significantly larger elbow flexion-extension and supination-pronation
RoM when increasing the load from 15% BW to 30% BW. This indicates that the sub-
jects struggled to stabilise the elbow joint during exercise execution with higher loading.
The present results suggest that cable pulley exercises may be suited to training intra-
muscular coordination across the upper limbs. Yet, care has to be taken when performing
cable cross-over exercise to ensure secure stabilisation of the joints during exercise execu-
tion, in particular in the rehabilitation setting, and proper supervision by a professional
instructor is highly recommended. In the present study, BW was used for the assignment
of loading. In the athletic setting, however, it is more common to use the so-called one-
repetition maximum (1RM) as a key indicator of an individual’s dynamic strength [29].
Using the 1RM instead of BW might have facilitated the comparison of the present results
with the literature. However, the direct assessment of 1RM is time-consuming and depends
on the athlete’s experience, motivation and fatigue, with risk of musculoskeletal injury
due to maximum loading [30]. As an explorative study, the main goal here was to, firstly,
characterise joint kinematics and kinetics at moderate intensities to improve training guide-
lines for injury prevention and rehabilitation settings. In the future, recent advances in
smartwatch-based technologies hold great potential to indirectly assess an individual’s
1RM via linear regression techniques without exposing subjects to maximum loading [29].
The future use of smartwatch-based technologies to complement the present study protocol
may also allow direct assessment of barbell force based on the acceleration for deriving
joint moments during the bench press exercise, without the need to use force platforms and
a bottom-up approach.

The key limitation of the present study is the simplified representation of the shoulder
joint for biomechanical analysis. In particular, shoulder kinematics were described as
the movement of the upper arm relative to the thorax without considering the intricate
movement of the shoulder girdle. For small joint ranges of motion, such a simplification
is considered valid. However, during the final part of the bench press exercise, protrac-
tion of the scapula is fundamental for reaching the final position of the barbell and, thus,
substantially contributes to shoulder joint kinematics and RoM. Anatomically, the gleno-
humeral joint is a ball-and-socket joint with three rotational degrees of freedom between
the scapula and the humerus, and the mobility of the shoulder complex is further increased
by the sternoclavicular, acromioclavicular and scapulothoracic joints. This complex range
of movement challenges the analysis of shoulder kinematics during dynamic exercises
using optical motion capture because of skin movement artefacts [22]. Further work should
concentrate on refining optical marker sets and fitting techniques to reduce skin movement
artefacts for the assessment of shoulder kinematics. Thereby, the clavicle and the scapula
are ideally defined as separate segments to investigate the intricate movement across the
shoulder girdle. This would not only be important for developing targeted guidelines for
chest strength training but also for orthopaedic and musculoskeletal research in general.

Detailed biomechanical analyses of both bench press and cable pulley exercises, in-
cluding muscle activation patterns, muscle force estimation and internal joint loading at
the shoulder joint, are recommended to gain further insights into the injury risks associated
with each type of exercise. Here, a refinement of study protocol based on good practice
rules for the assessment of the force–velocity relationship during strength training is advis-
able [31]. In particular, subjects may naturally express less effort in lifting lower loads if
lifting at maximum velocity is not ensured. Thus, heavier loads may have been lifted with
the same or even higher velocities compared to lighter loads, which may have biased the
present results. Furthermore, it is advisable to assess upper limb kinematics and kinetics
during the bench press exercise with different inclination angles in order to refine training
recommendations. In particular, further research may examine whether joint motion and
joint loading significantly change with bench inclination and for subjects with different
body constitution.
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5. Conclusions

A combination of bench press and cable pulley exercises, starting with smaller loads
and guided supervision, is recommended to achieve functional training of the chest muscles
to stabilise the upper limb and avoid overstressing the joint and soft tissue structures. Lower
and less fluctuating joint moments during bench press exercises imply more targeted
muscle strengthening with reduced need for inter-muscular control and coordination
compared to cable pulley exercises. Care has to be taken when performing cable cross-over
exercises to ensure proper stabilisation of the joints during exercise execution and avoid
joint overloading.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/sports10020019/s1, Additional File 1—Instructed Execution of
the Exercises; Additional File 2—Basic Motion Tasks; Additional File 3—Segment and Joint Coordinate
System Definitions.
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