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Abstract

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly heterogeneous ma-
lignancy, characterized by low tumor cellularity, a dense stromal response, and intricate
cellular and molecular interactions within the tumor microenvironment (TME). Although
bulk omics technologies have enhanced our understanding of the molecular landscape
of PDAC, the specific contributions of non-malignant immune and stromal components
to tumor progression and therapeutic response remain poorly understood. Methods:
We explored genome-wide DNA methylation and transcriptomic data from the Cancer
Genome Atlas Pancreatic Adenocarcinoma cohort (TCGA-PAAD) to profile the immune
composition of the TME and uncover gene co-expression networks. Bioinformatic analyses
included DNA methylation profiling followed by hierarchical deconvolution, epigenetic
age estimation, and a weighted gene co-expression network analysis (WGCNA). Results:
The unsupervised clustering of methylation profiles identified two major tumor groups,
with Group 2 (n = 98) exhibiting higher tumor purity and a greater frequency of KRAS mu-
tations compared to Group 1 (n = 87) (p < 0.0001). The hierarchical deconvolution of DNA
methylation data revealed three distinct TME subtypes, termed hypo-inflamed (immune-
deserted), myeloid-enriched, and lymphoid-enriched (notably T-cell predominant). These
immune clusters were further supported by co-expression modules identified via WGCNA,
which were enriched in immune regulatory and signaling pathways. Conclusions: This
integrative epigenomic—transcriptomic analysis offers a robust framework for stratifying
PDAC patients based on the tumor immune microenvironment (TIME), providing valuable
insights for biomarker discovery and the development of precision immunotherapies.

Keywords: immune microenvironment; tumor purity; DNA methylation age; gene modules;
regulatory networks

1. Introduction

The tumor microenvironment (TME) is a complex ecosystem comprising malignant
epithelial cells, stromal elements, infiltrating immune cells, and an extensive extracellular
matrix. Interactions among these components regulate key aspects of tumor biology,
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including proliferation, invasion, and metastasis [1,2]. While transcriptomic profiling has
been used to characterize TME heterogeneity, recent advances have positioned cell-type
deconvolution of DNA methylation data as a robust method to infer immune and stromal
cell abundances in bulk tumor tissues due to its stability and cell lineage specificity [3].
Furthermore, genomic and transcriptomic analyses have revealed distinct TME signatures
across different cancer types, underscoring the tissue-specific nature of TME interactions
and their implications for cancer progression and therapeutic response [4-8]. For instance,
stromal cells, such as cancer-associated fibroblasts (CAFs), can modulate TME composition
and communicate with immune cells to influence tumor development. Studies have shown
that CAFs not only promote but also inhibit tumors in addition to the heterogeneity of
the TME [9,10]. The immune microenvironment is a critical component of the TME and
influences both antitumor immunity and immune evasion mechanisms. Immunotherapies
have demonstrated remarkable efficacy in certain types of cancers by harnessing the host
immune response against malignant cells [11,12]. TME heterogeneity is also influenced by
the diverse nature of driver mutations within tumors, which are responsible for initiating
and maintaining neoplastic growth [13,14].

Among solid tumors, pancreatic ductal adenocarcinoma (PDAC) is particularly dis-
tinguished by its dense stromal architecture and unique patterns of immune infiltration,
both of which contribute to its dismal prognosis and resistance to therapy. As a result,
pancreatic cancer represents a major public health challenge. Difficulties in early detection,
the lack of specific signs or symptoms, the absence of effective screening strategies, and the
inherently aggressive behavior of the disease are associated with the advanced staging at
diagnosis and resistance to available treatment modalities, leading to therapeutic failure
and unfavorable clinical outcomes [15].

Morphological and molecular intra- and inter-tumor heterogeneity in pancreatic cancer
are closely associated with disease progression. Histologically, this malignancy is character-
ized by a pronounced desmoplastic reaction, featuring dense fibrotic stroma and low tumor
cellularity (5-20% cancer cells), which poses a significant challenge for the interpretation of
molecular data obtained from tumor biopsies. The desmoplastic profile within the TME
of pancreatic cancer could also pose a problem for drug delivery [16,17]. Although the
pancreatic TME usually has an immunosuppressive profile, it varies considerably across
different tumor subtypes and undergoes dynamic changes during disease progression [18].
Using an in vivo model, Li et al. investigated cell-intrinsic factors contributing to tumor
immune heterogeneity and sensitivity to immunotherapy. By co-injecting pancreatic cancer
cell clones into immunocompetent mice, the authors identified distinct tumor immune
microenvironments (TIMEs), recapitulating both T cell-inflamed and non-T cell-inflamed
phenotypes. Moreover, they observed that the non-T cell-inflamed phenotype was domi-
nant and that intra-tumoral CD8* T cells played a critical role in determining the response
to immunotherapy [12].

The integration of multi-omics profiling data provided by the Cancer Genome Atlas
(TCGA) enables a comprehensive understanding of tumor biology by linking genomic,
epigenomic, transcriptomic, and clinical features across diverse cancer types. It should
be highlighted that analysis of the mutational profile revealed that KRAS oncogene is
mutated in approximately 93% of samples, with a subset of pancreatic tumors showing
multiple variants in this gene, in addition to evidence of biallelic mutations [16]. Also,
60% of cancers negative for KRAS mutation had a mutation in the RAS-MAPK signaling
pathway gene, such as RREBI (ras responsive element binding protein 1) [16,19]. Gain-
of-function variants of KRAS occur in the early stages of pancreatic cancer, before its
progression to invasive carcinoma [20,21]. Beyond its well-established oncogenic functions,
emerging evidence suggests that pathogenic KRAS variants also contribute to shaping
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the immunosuppressive phenotype of the tumor microenvironment including lung and
pancreatic cancers [22]. Recent DNA methylation profiling has identified distinct subgroups
within lung adenocarcinoma, which are associated with specific oncogenic drivers (KRAS
and TP53 mutations) and with varying compositions of immune cell populations [23].

In recent years, novel computational methodologies have been used to infer the
complex composition of tumors into their constituent cellular elements. These methods
deconvolve tumor samples based on various types of genomic information, such as microar-
ray [24], transcriptomic [25,26], and methylation data [27]. In this study, we reanalyzed
publicly available DNA methylation data from TCGA to evaluate the heterogeneity of
pancreatic cancer. To gain new insights into the relationship between the pancreatic cancer
methylome and the tumor immune microenvironment (TIME), we first assessed the influ-
ence of tumor sample purity on DNA methylation-based clustering and epigenetic age. The
hierarchical deconvolution of the TIME was then conducted to predict immune and stromal
cell-type composition, following PAM (partitioning around medoids) clustering, which
was used to classify tumor samples based on estimated tumor cell fractions. Finally, we
examined TIME patterns in relation to the expression of specific gene modules, co-regulated
networks, and histomorphological parameters.

2. Results
2.1. Global DNA Methylation Profiling Identifies Distinct Patterns in Pancreatic Cancer

Differential methylation analysis revealed distinct methylation patterns in pancreatic
cancer compared with their normal counterparts, identifying 11,139 differentially methy-
lated positions (DMPs). These positions were associated with 3328 unique gene coordinates
obtained from the UCSC Genome Browser (UCSC Genes track, hg38 assembly). Figure 1A
shows the distribution of hypo- and hypermethylated positions according to CpG content,
neighborhood context, and functional genome distribution. Hypomethylated positions
(n = 4327) were concentrated in the open sea (64.25%) and gene body (55.83%) regions,
whereas hypermethylated positions (n = 6812) were mapped to the CpG islands (69.92%)
and promoter regions (33.93%) (Supplementary Table S1).

The unsupervised hierarchical clustering of DMPs identified two major groups with
distinct molecular and clinical characteristics. Group 1 included 87 tumor samples and
9 normal samples, whereas Group 2 consisted predominantly of tumor samples, with only
one normal sample among a total of 96. These distinct methylation profiles were associated
with specific tumor features. Notably, Group 1 was enriched for low/medium-low purity,
whereas Group 2 was predominantly composed of medium-high/high purity samples,
showing a highly significant difference between groups (p < 0.0001) (Table 1). In addition,
Group 2 exhibited a significantly higher frequency of KRAS mutations compared to Group 1
(p < 0.0001) (Figure 1B). KRAS mutation status was also associated with positive epigenetic
age acceleration (p = 0.0128; Supplementary Figure S1). Furthermore, the overall survival
outcomes differed significantly between the clusters, and Group 2 had a lower survival rate
(p = 0.0046) (Figure 1B; Table 1).
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Figure 1. Differentially methylated positions (DMPs) in pancreatic cancer between tumor and normal
samples (FDR < 5%; | AB | >0.2). (A) Frequency distribution of DMPs according to their CpG content
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and neighborhood context (shore, shelf, open sea, and island) and functional genomic distribution
(3’UTR, body, 1st exon, 5’'UTR, TSS1500, and TSS200). (B) Heatmap of DNA methylation profile of
DMPs. Samples’ clinicopathological and molecular features are shown at the bottom.

Table 1. Clinical and molecular distribution of TCGA-PAAD data used in DNA methylation profiling
using 182 tumor samples.

Group 1 Group 2
. Samples o o "

Variables Total N (%) N (%) p-Value
Gender 182 87 95 (100%) 0.6553
Female 41 41

Male 46 54 (100%)

Age (years) 87 95 0.6362
<50 11 9

>50 76 86

Overall Survival 182 87 (100%) 95 (100%) 0.0046
Alive 50 (57.5%) 34 (35.8%)

Dead 37 (42.5%) 61 (64.2%)

KRAS mutation 173 80 (100%) 93 (100%) <0.0001
Presence 30 (37.5%) 84 (90.3%)

Absence 50 (62.5%) 9 (9.7%)

Tumor purity 182 87 (100%) 95 (100%) <0.0001
Low 46 (52.9%) 2 (2.1%)
Medium-low 27 (31.0%) 12 (12.6%)
Medium-high 13 (14.9%) 37 (38.9%)

High 1 (1.1%) 44 (46.3%)

* Fisher’s exact test.

2.2. Hierarchical DNA Methylation-Based Tumor Deconvolution Reveals Distinct Patterns of
Tumor Immune Microenvironment in Pancreatic Cancer

Figure 2A shows the heterogeneous patterns of the estimated cell population composi-
tion across 178 TCGA-PAAD tumor samples. The hierarchical distribution of the cell-type
fractions is shown in Figure 2B (Supplementary Table S2a). PAM clustering distinguishes
three sets characterized by distinct cellular compositions. Cluster 1 contained a higher pro-
portion of tumor cells (Figure 2B). Although the proportion of tumor cells was comparable
between clusters 2 and 3, the composition of non-tumor cells differed (Figure 2B,C). Our
analysis revealed the distinct distributions of angiogenic components across the identified
clusters. Specifically, cluster 2 exhibited higher levels of epithelial and stromal cells than
clusters 1 and 3 did. Conversely, cluster 1 displayed an elevated proportion of endothelial
cells compared with clusters 2 and 3. Regarding immune components, we identified the
distinct enrichment of myeloid and lymphoid cell populations within PAM clusters. Cluster
2 exhibited higher levels of basophils, eosinophils, neutrophils, monocytes, and dendritic
cells than clusters 1 and 3 did within the myeloid cell subset. Additionally, the proportion
of dendritic cells differed between clusters 1 and 3. Regarding lymphoid cells, cluster 1
displayed lower levels of natural killer and T regulatory cells than clusters 2 and 3. Fur-
thermore, cluster 3 demonstrated elevated proportions of B memory, CD4*T memory, and
CD8*T naive cells compared to clusters 1 and 2. CD8"T memory cells exhibited a similar
pattern to dendritic cells, with cluster 3 having higher levels than clusters 1 and 2, while
cluster 2 also displayed higher levels than cluster 1. Notably, no significant differences
were observed between the three clusters in the naive B and CD4*T naive cell popula-
tions (Figure 2C). Thus, the three identified PAM clusters were named according to their
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non-tumoral cells, was designated hypo-inflamed (immune-deserted). Cluster 2 displayed
a predominance of myeloid cells and was labeled as myeloid-enriched. Cluster 3, enriched
with lymphoid cells, notably T cells, was named as lymphoid-enriched. Interestingly, no
difference (p = 0.7749) was observed in overall survival when comparing the three PAM
clusters, despite their different cell composition profiles (Figure 2D).
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Figure 2. DNA methylation-based tumor deconvolution. (A) Distribution of cell composition in
TCGA-PAAD tumor samples (n = 178). The structure of the hierarchical model used to deconvolve
pancreatic cancer tumor samples is illustrated below the X axis, showing the six hierarchical layers
represented in the graph. (B) Tumor cell distribution of the three clusters. Clusters were distinguished
using HiTIMED cell fractions PAM clustering. (C) Comparison of non-tumor cell populations in PAM
clustering-derived groups of TCGA-PAAD. ANOVA with Tukey’s post hoc multiple comparisons
test was employed to assess the differences between clusters (* p < 0.05; ** p < 0.01; *** p < 0.001;
#% p < 0.0001). (D) Overall survival of pancreatic cancer patients stratified according to PAM-clusters
(Mantel-Cox test; p-value 0.7749).

A high concordance rate was observed between the predicted PAM clusters and
the histomorphological analysis. The lymphoid-enriched group was characterized by
the presence of lymphoid aggregates, whereas the myeloid-enriched samples exhibited
histiocytic and macrophagic infiltrates. Extensive desmoplasia was confirmed as the
main feature of hypo-inflamed samples (Supplementary Figure S2 and Supplementary
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Table S2b). To further support these findings, the expression levels of a panel of immune
cell marker genes were compared across the clusters. The lymphoid cell marker genes
CD3D, CD3E, CD247, CD8A, and KLRD1 showed significantly increased expression in the
lymphoid-enriched group compared with the hypo-inflamed and myeloid-enriched groups
(Supplementary Figure S3).

2.3. Weighted Correlation Network Analysis (WGCNA) Uncovers Group of Genes Associated with
Immune Groups in Pancreatic Cancer

In our analysis of the TCGA-PAAD RNA-seq dataset, WGCNA revealed the pres-
ence of 14 modules representing consensus clusters (Figure 3A). The correlation between
each module and immune group is shown in Figure 3B. Subsequent enrichment analy-
ses were conducted to elucidate the biological pathways and functions associated with
these co-expressed gene modules. Notably, our investigation identified module (ME)
10 as pivotal for the three predicted immune phenotypes, showing a negative correla-
tion with the immune-deserted cluster and a positive correlation with immune-enriched
clusters. Furthermore, KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment
analysis revealed that the network comprising genes closely associated with pancreatic
function (Figure 3C).
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in gene expression patterns of primary solid tumors and adjacent normal samples associated with
pancreatic cancer. Each color displayed in the bar below the dendrogram represents a module, which
signifies a cluster of genes. Genes displayed in white indicate a lack of similar expression patterns
resulting in their exclusion from any specific module. Clusters within the unmerged bar represent the
diverse patterns of expression initially identified. Unmerged clusters were combined according to
their similarity, resulting in the final clusters represented in the merged bar. (B) Correlation analysis
of module eigengenes with traits-disease status (cancer vs. normal samples) or immune tumor
groups (hypo-inflamed, myeloid-enriched, and lymphoid-enriched), with the correlation values
between module eigengenes and traits shown numerically within the cells.The color gradient of
the cells corresponds to the correlation values, as illustrated by the scale bar on the right. Asterisks
within the cells signify the level of statistical significance (* p < 0.05; ** p < 0.01; **p < 0.001).
(©) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for module 10.
(D-G) Reactome pathway enrichment analysis of ME1, ME6, ME11, and ME12 genes, respectively.

Genes in ME1 were negatively correlated with hypo-inflamed clusters and positively
correlated with the lymphoid-enriched clusters. ME6 was negatively correlated with
myeloid enrichment and positively correlated with lymphoid-enriched clusters. Similarly,
ME11 exhibited a negative correlation with hypo-inflamed and a positive correlation with
lymphoid-enrichment, whereas ME12 demonstrated a negative correlation with hypo-
inflamed samples and a positive correlation with myeloid-enrichment (Figure 3B).

Reactome enrichment analysis revealed the distinct biological processes and pathways
associated with each network. ME1 was enriched in processes related to immunoregulatory
pathways (Figure 3D). ME6 and ME11 were enriched in the signaling and regulatory
pathways (Figure 3E,F). Finally, ME12 was enriched in processes related to cellular signaling
and cytoskeletal regulation pathways (Figure 3G).

3. Discussion

Unraveling intratumor heterogeneity at both molecular and cellular levels is essential
for advancing our understanding of pancreatic cancer biology, particularly regarding how
complex interactions influence clinical outcomes and responses to therapy in this disease
defined by an immunosuppressive TME. The molecular and histological landscapes of the
PDAC vary widely within individual tumors, and the diverse cell populations present in
the TME influence prognosis and clinical outcomes [18,28]. At the molecular level, distinct
tumor cell subpopulations can be identified within a single tumor because of myriad
factors, such as clonal evolution and acquired genetic and epigenetic alterations [29,30].
Furthermore, tumor tissues also comprise non-tumor cells, including stromal, vascular,
and immune components, thus conferring cellular heterogeneity [18]. The heterogeneity
of epithelial cancer cells observed in precursor lesions of pancreatic cancer intensifies
as the disease advances toward invasive carcinoma [31]. Additionally, there are non-
tumoral cell populations, including immune cells, that also displayed intra- and inter-tumor
heterogeneity distributions in pancreatic cancer [32]. Here, we adopted a multidimensional
methodology to explore tumor heterogeneity using DNA methylation profiling, DNA
methylation age, RNA-seq, and mutational data to characterize and classify tumor samples
based on their predicted TME composition. Distinct tumor microenvironments with distinct
immune profiles have also been identified. In addition, we observed an association between
KRAS pathogenic variants and positive epigenetic age acceleration.

We first employed traditional bulk analysis techniques, including genomic, transcrip-
tomic, and epigenomic approaches. The unsupervised clustering of differentially methy-
lated positions (DMPs) revealed two distinct DNA methylation profiles. We observed a
significant association between tumor purity and methylation profiles, with lower-purity
tumors exhibiting distinct patterns compared to higher-purity tumors. These distinct pro-



Epigenomes 2025, 9, 34

90f19

files in low-purity samples are consistent with admixture and likely reflect the contribution
of non-tumor cell populations, particularly stromal and immune cells, which dilute or mask
tumor-specific methylation signals. Also, the group with the highest tumor purity also
exhibited a higher frequency of KRAS pathogenic variants, which are driver mutations
commonly associated with pancreatic cancer. This association suggests a potential link
between tumor purity and the detection of KRAS mutations. It is plausible that, in samples
with lower purity, the abundance of non-tumor cells may dilute the presence of tumor-
derived epithelial cells, potentially impacting the detection sensitivity for KRAS mutations.
Consequently, the observed enrichment of KRAS mutations in samples with higher tumor
purity may reflect a greater proportion of tumor cells capable of harboring this driver
mutation. However, traditional bulk methods do not consider diversity within the TME.
The advent of single-cell and spatial analysis technologies has enabled the characterization
of distinct cell populations and their spatial organization within tumors [28,29]. Moreover,
these technologies have facilitated the identification of gene expression patterns within
specific cell populations associated with treatment responses in pancreatic cancer [30]. Inte-
grative approaches offer valuable insights into the prognostic significance of TIME profiles
in PDAC and hold promise for advancing our understanding of the tumor microenviron-
ment and its influence on pancreatic cancer outcomes and therapeutic response [31-33].
However, univariate survival analysis showed no significant association between the three
TIME-predicted subtypes and overall survival. This lack of difference may reflect the
influence of additional factors in overall survival. A recent study [34] reported that genes
correlated with T cell enrichment patterns exhibited subtype-specific prognostic effects.
Multivariable analysis indicated improvements in median overall survival for patients with
high methylation levels of TGFB2, IFI27, and TGFB3, whereas high TGFB1 methylation
was associated with shorter median survival. These findings highlight how gene-specific
methylation patterns and immune contexture can differentially influence survival, under-
scoring the importance of integrating molecular and clinical variables in future analyses.
Another study [35] combined immunophenotyping, stromal scoring, and histomorpho-
logical profiling in a cohort of 112 PDAC cases, including 25 long-term survivors. While
no distinct mutational differences were observed between short- and long-term survivors,
variations in TIME composition were evident. Notably, macrophage infiltration correlated
with poorer overall survival, whereas long-term survivors showed increased CD4* T cell
infiltration and predominantly inactive stromal profiles [35].

KRAS driver mutations have been implicated in modulating the tumor epigenome, par-
ticularly by inducing focal changes in DNA methylation patterns rather than widespread
global alterations. These effects are likely context-dependent and mediated through down-
stream signaling pathways that regulate epigenetic modifiers. A comprehensive analysis
involving 47 cell lines underscored the significant impact of tumor cell type on DNA
methylation profiling, overshadowing the influence of KRAS driver mutations. However,
investigations into 11 pancreatic cancer isogenic cell line pairs revealed that KRAS knock-
down induced cell line-specific alterations in DNA methylation, suggesting a role for KRAS
in mediating epigenetic regulation [36]. In a recent study, lung cancer samples were cate-
gorized into hot or cold immune phenotypes using deconvolution results obtained with
MethylCIBERSORT. Consistent with our results, a lower DNA methylation age was also
correlated with the presence of driver gene mutations in lung cancer [23].

Our findings using the cell-type deconvolution of DNA methylation data also re-
vealed distinct subtypes of pancreatic cancer, and we were able to identify three clusters
with distinct TIME compositions. These methylation patterns revealed heterogeneous
cellular compositions that reflected the tumor microenvironment. We observed pancreatic
tumors with low immune infiltration (hypo-inflamed) and tumors exhibiting different
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immune infiltrates (myeloid-enriched and lymphoid-enriched) characterized by distinct
immune lineage cell populations. Remarkably, the cellular subtypes predicted by decon-
volution closely align with the characterization of the tumor immune microenvironment
using cell type-specific markers and multiplex immunohistochemical imaging [37]. This
analysis highlights the inherent heterogeneity of immune profiles within pancreatic tu-
mors, which is laborious and time-consuming to capture fully through routine clinical
assessment using histopathological approaches. The deconvolution approach provides a
powerful, high-throughput alternative for directly profiling the complex immune landscape
of these tumors.

Weighted correlation network analysis (WGCNA) uncovered distinct gene modules
associated with immune subtypes in pancreatic cancer, revealing the underlying tumor-
immune interactions. Of particular significance are ME1, ME6, ME10, ME11, and ME12,
which exhibit distinct gene expression patterns that correlate with their respective immune
profiles. Remarkably, genes within ME10 were associated with all the three immune groups
predicted in our study. KEGG enrichment analysis revealed their relevance in pancreatic
function (Figure 3C). This observation supports the validity of our analysis, underscoring
its appropriateness given the utilization of pancreatic cancer samples.

Cluster 2 was enriched with myeloid lineage cells (myeloid-enriched), which are the
main hematopoietic cells in the human body. The reactome pathways enriched in module
12 may be involved in the cytoskeletal rearrangements necessary for myeloid cell migration
and phagocytosis. For instance, cell-extracellular matrix (ECM) interactions are crucial
for myeloid cells, such as macrophages and neutrophils. These interactions influence the
migration, adhesion, and pro-inflammatory activities of myeloid cells within the tumor
by remodeling the ECM [38]. The RHO family of small GTPases is a key regulator of
actin cytoskeleton in myeloid cells. Macrophages can promote angiogenesis within tumors
by secreting factors, such as Sema4D and VEGEF, which activate RHO GTPases [39,40].
Activation of these RHO GTPases and their downstream effectors, such as ROCKs (Rho-
associated protein kinases), PAK (p21-activated kinases), and PKNs (protein kinases N),
triggers cytoskeletal rearrangements that drive myeloid cell migration and infiltration into
the tumor [41,42].

Cluster 3 displayed a predominance of lymphoid cells (lymphoid-enriched), notably
CD4*T memory, CD8*T-naive, and CD8"T memory cells (Figure 2C). Upon activation by
antigens, naive T cells become effector cells that target and destroy cancer cells as a part
of the immediate immune response. After tumor cells are cleared, memory T cells remain
vigilant within the immune system, ready to proliferate, and respond more efficiently if
the same antigen reappears [43]. The enrichment terms in modules were positively corre-
lated with the lymphoid-enriched cluster (ME1, ME6, and ME11), as immunoregulatory
interactions between lymphoid and non-lymphoid cells are crucial for the activation and
function of T cells, which interact with antigen-presenting cells [43]. Processes such as the
translocation of ZAP-70 (Zeta-chain-associated protein kinase 70) to the immunological
synapse and subsequent phosphorylation of CD3 and TCR zeta chains are key events in
T cell activation and signaling pathways [44]. The PD-1 signaling pathway, represented
by programmed cell death protein 1 (PD-1), is a fundamental inhibitory receptor univer-
sally expressed by activated T-cells [45,46]. Pathways essential for antigen processing and
presentation alongside CD22-mediated B-cell receptor (BCR) regulation are pivotal for
adaptive immunity mediated by lymphoid lineage cells [47,48]. Additionally, classical
antibody-mediated complement activation, the initial triggering of complement, and the
regulation of the complement cascade support the action of effector T cells by facilitating
tumor cell destruction and promoting inflammation to recruit additional immune cells [49].
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Together, the complementary approaches applied in our study provide converging
evidence that specific co-regulated gene modules capture immune-related variation and
may underlie functional differences among the predicted TIME subtypes. Nonetheless, we
acknowledge the limitations inherent to findings derived and tested within the same cohort.
Therefore, further investigations in larger independent cohorts are required to confirm the
robustness of these results. In addition, future validation in both experimental models and
well-annotated clinical datasets will be essential to reinforce the translational relevance of
our observations and to support their potential application in clinical practice.

4. Materials and Methods

A flowchart summarizing the study design and methodology employed for the identifi-
cation of tumor-infiltrating immune cells from DNA methylation data and the construction
of a weighted gene correlation network from RNA-Seq is shown in Figure 4.
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Figure 4. Flowchart summarizing the study design and the methodology employed for the identifica-
tion of tumor-infiltrating immune cells from methylation data and the construction of a weighted
gene correlation network from RNA-Seq in pancreatic cancer.
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4.1. DNA Methylation Profiling in Pancreatic Cancer
4.1.1. Data Acquisition and Pre-Processing

DNA methylation data from the TCGA Pancreatic Cancer (TCGA-PAAD) cohort,
sourced from the Cancer Genome Atlas Research Network (https://www.cancer.gov/tcga;
accessed on 20 February 2024) (RRID:SCR_003193), were selected for this study. Raw inten-
sity data (IDAT) files were retrieved from the Genomic Data Commons (GDC) database
with TCGA biolinks R package (v.2.26.0) [50]. Data were preprocessed using the Minfi
Bioconductor R package (v.1.44.0) (RRID:SCR_012830) [51] and functional normalization, an
unsupervised approach that leverages control probes as surrogates for unwanted variation,
was applied as recommended [52]. Following functional normalization, one tumor sample
was excluded because it failed to pass the quality control (QC) parameters (probes with
low quality, probes mapped to X/Y chromosomes, cross-reactive probes, and those overlap-
ping positions were removed). Subsequently, cross-reactive probes that could potentially
hybridize to multiple genomic locations owing to sequence similarity [53], probes located
on the X or Y chromosome, and polymorphic CpGs that overlapped Single Nucleotide
Variants (SNVs) with a minor allele frequency (MAF < 0.05) based on dbSNP 137 using the
annotation file for the 450 K array at the University of California at Santa Cruz (UCSC) hg19
assembly (GRCh37 build reference sequence) [54] were filtered. In addition, probes with
poor-quality signals (detection p < 0.05) and low bead counts (<3) in >5% of the samples
were removed. DNA methylation values, described as beta values, were calculated for
192 tissue samples, including 182 pancreatic tumor samples and 10 normal samples.

Clinicopathological information was retrieved from the cBioPortal (https://www.
cbioportal.org/, accessed on 26 July 2024) (RRID:SCR_014555). The MC3 public-version
mutation data [55] for KRAS mutations in tumor samples were obtained from the UCSC
Xena repository (https:/ /xena.ucsc.edu/, accessed on 26 July 2024). The tumor purity of
TCGA-PAAD samples was estimated using the InfiniumPurify package (v.1.3.1) [56].

4.1.2. Differentially Methylated Positions Analysis

Differentially methylated CpG positions (DMPs) between tumor and normal samples
were detected using the Minfi R package (v.1.44.0) [51]. Probes meeting the criteria of a
False Discovery Rate (FDR) of less than 5% and | Af3 | > 0.2 were considered statistically
significant. The significant probes were annotated using a manifest file [57]. The probes
resulting from the DMP analysis were annotated to UCSC Reference Sequencing (RefSeq)
genes (RRID:SCR_003496) using the annotation file for the 450 K array in the UCSC hg19
assembly [54]. DMPs were categorized based on their CpG content, neighborhood context
(shore, shelf, open sea, and island), and functional genomic distribution (3’-UTR, body, 1st
exon, 5’-UTR, TSS1500, and TSS200).

4.2. DNA Methylation Age Analysis

DNA methylation (DNAm) age was determined using Horvath clock, a multi-tissue
algorithm that employs a weighted average of methylation levels at specific CpG sites
throughout the genome to predict epigenetic age directly from IDAT files [58]. The epige-
netic age acceleration (EAA) was subsequently defined based on the residuals obtained
by regressing the DNAm age on chronological age. A positive EAA (>0) indicates an
acceleration of epigenetic aging, whereas a negative EAA (<0) indicates a deceleration
relative to chronological aging (Supplementary Figure Sla).

4.3. Hierarchical DNA Methylation-Based Tumor Deconvolution

The proportion of cell types in each sample was determined using HITIMED R package
(v.0.99.3) [59]. This analysis utilized beta values from the TCGA-PAAD dataset using a six-


https://www.cancer.gov/tcga
https://www.cbioportal.org/
https://www.cbioportal.org/
https://xena.ucsc.edu/

Epigenomes 2025, 9, 34

13 of 19

layer-tumor-type-specific model. A total of 17 cell types representing the three major com-
ponents of the tumor microenvironment were identified: tumor, angiogenic (endothelial,
epithelial, and stromal), and immune (basophil, eosinophil, neutrophil, monocyte, dendritic,
natural killer (NK), B-naive, B-memory, CD4* T-naive, CD4*T memory, T regulatory, CD8*T-
naive, and CD8"T memory) cells [59]. The cluster R package (RRID:SCR_013505) [60] was
used for partitioning around medoid (PAM) clustering to identify TIME patterns based on
the obtained specific cell fractions.

4.4. Gene Expression Analysis Using a Network-Based Approach
4.4.1. Data Acquisition and Pre-Processing

The TCGA-PAAD gene expression quantification cohort was obtained from the Ge-
nomic Data Commons (GDC) database (RRID:SCR_014514) using TCGAbiolinks R package
(v2.26.0) [50] as raw counts aligned to the human genome using the STAR RNA-seq
aligner (RRID:SCR_004463) [61]. The dataset comprised 182 samples (178 primary solid
tumors and four adjacent normal tissues) and 60,660 distinct transcripts. Normalized
expression levels of selected genes were retrieved directly from UCSC Xena repository
(https:/ /xena.ucsc.edu/, accessed on 26 July 2024).

The data were preprocessed according to weighted correlation network analysis
(WGCNA) recommendations [62]. Initially, low-count genes (<15) in > 75% of samples were
excluded. Subsequently, the raw counts were normalized by the median ratio method fol-
lowed by variance-stabilizing transformations (VST) using the DESeq2 R package (v1.41.10)
(RRID:SCR_015687) [63]. Quality control (QC), employing the goodSamplesGenes function
from the WGCNA R package (v1.72-1) [61], deemed all samples and genes acceptable.
Outlier samples were identified using two distinct methodologies: hierarchical clustering
and principal component analysis (PCA) and removed.

4.4.2. Weighted Gene Correlation Network Analysis (WGCNA)

The WGCNA R package (v.1.72-1) (RRID:SCR_003302) [62] blockwise modules func-
tion was used to construct a weighted co-expression network, where genes were represented
as nodes and the connectivity between them was established based on pairwise correlations
derived from their expression profiles [64]. To obtain a scale-free topology, a power of 14
was chosen as the soft threshold for creating an adjacency matrix. Genes were grouped into
different modules according to their similar expression patterns using a topological overlap
matrix (TOM) of dissimilarity measures and the branches of a dendrogram derived from the
average linkage hierarchical clustering. The identified modules were then correlated with
sample traits (sample type and deconvolution-derived immune groups) using Pearson’s
correlation coefficients. Key driver genes in the modules of interest were identified using
intramodular connectivity.

4.4.3. Enrichment Analysis of WGCNA Modules

Entrez gene identifiers (Entrez ID) for the UCSC RefSeq genes of each module were
retrieved using the biomaRt R package (v2.58.0) [65,66] using an annotation database [67].
Kyoto Encyclopedia of Genes and Genomes (KEGG) (RRID:SCR_012773) and Reactome
(RRID:SCR_003485) pathway enrichment analyses were performed for selected WGCNA
modules using the ClusterProfiler R package (v.4.10.0) (RRID:SCR_016884) [68]. KEGG and
Reactome enrichment were analyzed using the Benjamini-Hochberg (BH) method to adjust
the p-values (p-value < 0.05; g-value < 0.2).

4.5. Histopathological Analysis

Histopathological evaluation was performed using slides from the Cancer Digital Slide
Archive (http://cancer.digitalslidearchive.net, accessed on 15 August 2025) [69], which


https://xena.ucsc.edu/
http://cancer.digitalslidearchive.net

Epigenomes 2025, 9, 34

14 of 19

integrates pathology imaging with clinical and omics data from TCGA project. Manually
curated annotations of lymphocytic aggregates, eosinophils, histiocytes, macrophages,
and desmoplasia were assessed in hematoxylin and eosin (H&E)-stained sections and
compared across the three predicted TIME patterns. The semiquantitative analysis of
lymphoid aggregates considered the number and density (<2 aggregates were scored as 1
when loosely organized and 2 when densely compacted, whereas cases with >2 aggregates
were scored as 3 and 4, when loosely organized or densely compacted, respectively).
Histiocytic infiltrates were classified according to their density as well as their peri or intra
tumoral localization. Sixty tissue samples were included, comprising twenty randomly
selected cases per predicted TIME group.

4.6. Statistical Analysis

The EAA was calculated based on the residuals obtained through linear regression
of DNAm age on chronological age. Fisher’s exact test was used to assess the association
between DNA methylation-based groups and the clinical and molecular characteristics of
pancreatic cancer. ANOVA with Tukey’s post hoc multiple comparisons test was employed
to assess the differences in HITIMED-estimated cell subpopulations among PAM clustering-
derived groups. The overall survival of PAM clusters was calculated using the Mantel-Cox
test. Statistical analysis was performed using the GraphPad Prism software (v10.2.1)
(RRID:SCR_002798) (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

5. Conclusions

In summary, this study reveals distinct TIME subtypes in pancreatic cancer based
on DNA methylation patterns, reflecting underlying immune heterogeneity and aligning
with prior histological classifications. The integration of methylation-based deconvolution
and gene co-expression analysis supports a robust framework for patient stratification
and highlights potential immune-related biomarkers and therapeutic epi-targets. These
findings offer new avenues for improving prognostic accuracy and treatment strategies in
pancreatic cancer.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/epigenomes9030034/s1, Supplementary Figures: Supplemen-
tary Figure S1: A. Epigenetic age acceleration (EAA) is defined based on the residuals from the
linear regression of DNAm age on chronological age. B. KRAS mutation status and EAA exhibit
a significant relationship (Fisher’s exact test; p = 0.0128); Supplementary Figure S2: Representa-
tive tissue slides of TIME patterns; Supplementary Figure S3: Distribution of expression levels
of selected genes encoding lymphoid cell markers across the predicted TIME groups. Table S1:
Supplementary Table Sla: List of 4327 hypomethylated probes); Supplementary Table S1b: List of
6812 hypermethylated probes, (FDR < 5%; A > 0.2 and A3 < —0.2, respectively) in tumor samples
of the Cancer Genome Atlas (TCGA) Pancreatic Cancer (PAAD) cohort. Table S2: Supplementary
Table S2a. DNA methylation-based tumor deconvolution of cell types in the Cancer Genome At-
las (TCGA) Pancreatic Cancer (PAAD) cohort. Supplementary Table S2b. Comparison between
HiTIMED-predicted groups and histopathological evaluation of slides from the Cancer Digital
Slide Archive (http://cancer.digitalslidearchive.net, accessed on 15 August 2025) for a subset of
TCGA-PAAD cohort.
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Abbreviations

The following abbreviations are used in this manuscript:

BCR B-cell receptor

CAFs Cancer-associated fibroblasts

CD22 Cluster of Differentiation 22

CD247 CD247 molecule

CD3 Cluster of differentiation 3

CD4*T Cluster of differentiation 4 T lymphocyte
CD3D CD3 delta subunit of T-cell receptor complex
CD3E CD3 epsilon subunit of T-cell receptor complex
CD3G CD3 gamma subunit of T-cell receptor complex
CD8A CD8 subunit alpha

CD8*T Cluster of differentiation cytotoxic T lymphocytes
CpG Cytosine Guanine dinucleotide

DMP Differentially methylated position

DNAmM DNA methylation

EAA Epigenetic Age Acceleration

ECM Extracellular matrix

FDR False discovery rate

GDC Genomic Data Commons

GTPase Guanosine triphosphatases

HiTIMED Hierarchical Tumor Immune Microenvironment Epigenetic Deconvolution
IFI127 Interferon alpha inducible protein 27

IDAT Ilumina Data (raw intensity data)

KLRD1 Killer cell lectin-like receptor D1

KEGG Kyoto Encyclopedia of Genes and Genomes
KRAS Kirsten rat sarcoma viral oncogene

MS4A1 Membrane spanning 4-domains Al

MC3 Multi-Center Mutation Calling in Multiple Cancers
ME Module Eigengene

NCAM1 Neural cell adhesion molecule 1

PAAD Pancreatic adenocarcinoma

PAKs p21-activated kinase

PAM Partitioning around medoids

PD-1 Programmed cell death protein 1

PDAC Pancreatic ductal adenocarcinoma

PKNs Protein kinases N

RAS-MAPK Ras-mitogen-activated protein kinase

RHO Ras homolog

ROCKs Rho-associated protein kinases

RREB1 Ras-responsive element binding protein 1
RRID Research Resource Identifier

Sema4D Semaphorin 4D
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SNP Single Nucleotide Polymorphism

TCGA-PAAD The Cancer Genome Atlas—Pancreatic adenocarcinoma cohort
TCR T cell receptor

TGFB1 Transforming growth factor beta 1

TGFB2 Transforming growth factor beta 2

TGFB3 Transforming growth factor beta 3

TIME Tumor immune microenvironment

TME Tumor microenvironment

TOM Topological overlap matrix

TP53 Tumor suppressor p53 gene

TSS Transcription Start Site

ucsC The University of California, Santa Cruz

UTR Untranslated region

VEGF Vascular Endothelial Growth Factor

WGCNA Weighted Gene Co-expression Network Analysis
ZAP-70 Zeta-chain-associated protein kinase 70
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