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Abstract: Background: Heavy alcohol consumption (HAC) has a profound adverse effect on
human health. Unfortunately, there is a relative lack of tools that are easily implementable
in clinical settings and that can be used to supplement self-reporting in the diagnosis
and management of HAC. In part, this paucity is due to limitations of currently available
biological measures and a mismatch between available biological measures and the needs
of clinicians managing HAC. Objectives: We first review the pros and cons of existing
biological measures. Next, we review the underlying theory and the performance charac-
teristics of two recently developed methylation-sensitive digital PCR (MSdPCR) assays,
referred to as the Alcohol T Score (ATS) and ZSCAN25, for the assessment of chronic
and recent HAC, respectively. Finally, we outline a paradigm for improving the clinical
diagnosis and management of alcohol use disorders by utilizing these new markers of
alcohol consumption. Conclusions: We conclude that further studies to understand the test
performance characteristics of each of these epigenetic tools in larger, diverse populations
are in order.

Keywords: alcohol; alcohol dependence; seizures; DNA methylation; digital PCR;
in vitro diagnostics

1. Are the Harmful Effects of Heavy Alcohol Consumption Underestimated?

Heavy alcohol consumption is a significant medical concern. According to the United
States Centers for Disease Control (CDC), alcohol consumption is the third leading pre-
ventable cause of death in the United States [1,2]. Annually, the costs of treating alcohol
use disorders are estimated to exceed USD 100 billion [3]. Alarmingly, it is likely that this
high figure underestimates the true impact of alcohol use on the health of the American
public. Currently, the best estimates from the CDC are produced by the Alcohol-Related
Disease Impact (ARDI) program [4], and ARDI estimates of alcohol-attributable death and
alcohol-attributable fractions (AAF) of harms are calculated using estimates of the total
proportion of deaths for various causes that are attributable to alcohol use [4] based on the
current scientific literature. Unfortunately, for many of the alcohol-attributable conditions,
the vast majority of the scientific literature concerning the impact of alcohol on medical
outcomes is based on self-reports of the patients.

Relying on self-reported alcohol consumption is known to be problematic, especially
for those with patterns of heavy use [5,6]. In 2021, Neilsen and colleagues reviewed the
literature and found 11 studies that compared biomarker data to self-reports and found
substantial differences between objective indicators and self-reported levels of alcohol
consumption [6]. Yet, when calculating indirect AAFs, ARDI uses the self-reported alcohol
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use levels reported by those 20 years and older. This approach should be expected to lead
to substantial underestimates. Indeed, when nationwide data collected between 1993 and
2006 were analyzed by Neilsen and associates, they found that the per capita estimates
of alcohol sold were on average three to four times higher than self-reported per capita
consumption [7]. As a result, there is considerable reason to believe that the estimates
of both medical and economic impacts of alcohol are underestimates and that there is an
urgent need for better tools to assess alcohol use patterns.

One potential source of innovative approaches for the assessment of HAC relies on
advances in the use of DNA methylation to characterize alcohol use patterns. An inspiration
for this approach is the striking success using DNA methylation techniques to assess
another form of substance use, smoking status. With respect to smoking, measurements
of cg05575921 methylation are now generally accepted as a reliable and useful method
of establishing smoking status [8,9]. Still, progress in epigenetics has been slow, and it is
critical to note that this consensus with respect to ¢cg05575921 only occurred after hundreds
of studies on the matter, including large numbers of case/control analyses. Furthermore,
the pathway to consensus relied on the availability of existing, easily employed, Food and
Drug Administration-approved biomarkers, such as cotinine and exhaled carbon monoxide,
for confirming the presence or absence of smoking in study subjects. Unfortunately, there
are no FDA-approved biomarkers for heavy alcohol consumption (HAC), and the number
of high-quality DNA methylation analyses of alcohol use are more limited, with very few
of the studies actually employing existing alcohol use biomarkers to confirm the alcohol
use status.

In this communication, we review the extant literature of genome-wide methylation
studies of alcohol use, then describe a methylation-sensitive digital PCR (MSdPCR) ap-
proach for quantifying alcohol consumption. We will identify gaps in the literature and
suggest a framework for using methylation-based tools for characterizing alcohol use
patterns in the research and clinical settings.

2. Current Status for the Determination of Heavy Alcohol Consumption
2.1. Self-Report

The most common method of quantifying heavy alcohol consumption for both clinical
and research settings is self-report. To date, there is not extensive literature describing
the biochemical validation of self-reports of alcohol in the research setting. For example,
for the larger longitudinal biorepositories, such as the National Health and Nutrition
Examination Survey (NHANES), no alcohol biomarker testing was performed to validate
associations. In part, this lack of biochemical validation stems from the high costs of
conducting biological testing, the reluctance of many in the field to question the self-
reporting of their research subjects, and an absence of strong external forces to ensure
rigor. In addition, at lower levels of alcohol use, and in non-medical settings, self-report
may provide a useful and low-cost approach to characterizing individual differences in
alcohol use. However, the problem of underreporting alcohol use is particularly apparent
among heavy users [10], and this may attenuate correlations of HAC with social risk
factors, as well as medical consequences. Underreporting alcohol may be particularly
pronounced among binge drinkers [10,11], who are also of particular interest in medical
contexts. Indeed, the broader problem of underreporting of stigmatized behavior has been
very well illustrated for cigarette smoking, e.g., there was substantial underreporting of
smoking in the Framingham study, with only 8% self-reporting smoking, although almost
50% showed some biological evidence of smoking [11]. Again, reliance on self-reporting
in this context would suppress associations of smoking with concurrent chronic illness.
We expected similar problems with self-reported HAC [12,13], and have shown that both
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alcohol use and smoking are substantially underreported [11] and that these measurement
problems lead to non-significant associations of self-reported alcohol use and cigarette
consumption with accelerated aging and cardiac risk [14-18].

Given the elevated stakes of accurate assessment of HAC in healthcare settings, and
the problems with reliance on self-reporting, it is especially important that non-self-report
alternatives be available to supplement reliance on self-reports. This is well recognized in
many clinical contexts. For example, in order to receive a liver transplant, patients must
undergo extensive testing to ensure that they are not surreptitiously drinking [19]. In
both inpatient and substance use treatment, biochemical validation of alcohol use status
is routinely employed. For example, after holidays or weekends, outpatients in alcohol
treatment programs are often tested using breathalyzers or saliva testing to ensure that
relapse has not occurred. Life insurance underwriters routinely request biological testing
before agreeing to accept policy applications from potential clients. Finally, because of
the potential legal ramifications for both the failure to diagnose an alcohol use disorder
or potential alcohol withdrawal syndrome (AWS), clinicians in emergency rooms and in
patient alcohol treatment facilities routinely request biochemical assessment of alcohol
status. As we note below, the limitations of available assessments suggest the need for
additional methods.

2.2. Breathalyzer

In acute settings, clinicians rely on “breathalyzer” assessments that measure the
concentration of alcohol in exhaled air [20]. While extremely useful for determining current
intoxication, these assessments are not informative about longer-term consumption patterns.
Instead, for the assessments of more sustained consumption, clinicians rely on algorithms
that incorporate measured blood levels of liver proteins (e.g., alanine aminotransferase
(ALT), y-glutamyl transferase (GGT), aspartate aminotransferase (AST), or carbohydrate-
deficient transferrin (CDT)) or metabolites, such as ethyl glucuronide (EtG) [21,22].

2.3. Liver Function Tests (LFTs)

Generations of clinicians have used LFTs as their “go to” method for assessing chronic
alcohol use. In part, this reliance stems from the traditional utility of these assessments in
the general routine physical examinations of patients. For example, increased ALT levels
are indicative of hepatitis [23]. When used with respect to determining alcohol use status,
when present, elevated AST/ALT ratios are strongly indicative of alcohol-induced liver
damage [24]. However, overall, the use of liver enzymes is regarded too insensitive and
non-specific for quantifying alcohol consumption [25]. Furthermore, meta-analyses show
only a modest ability of LFTs for predicting potential important clinical consequences of
chronic alcohol use, such as AWS [26]. Therefore, clinicians are turning to more specific
“purpose-built” tests for assessing alcohol use patterns.

24.CDT

For the past thirty years, probably the most commonly used serological test that is
specifically used for assessing chronic alcohol consumption is the CDT [27]. First described
by Stibler and associates in 1978, CDT testing assesses the quantity of sialic acid residues
that are normally added to transferrin as part of post-translational processing [28]. The
level of sialyation of transferrin, a key iron transport protein, can be decreased by drinking
>80 g/day of alcohol for 2 to 3 weeks [24]. However, despite the promise of earlier studies,
more recent studies have concluded that the overall sensitivity of CDT assessments for
moderate current AUD is only 60%, with markedly lower sensitivity and specificity for
milder forms of AUD [24,29]. Still, overall, CDT testing is regarded by many as the most
accurate serum marker for chronic alcohol use [21,30]. Yet, in the clinical setting, CDT
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testing has increasingly been noted to have limitations. For example, for those clinicians
interested in determining whether a patient needs to be hospitalized acutely for alcohol
treatment, studies by two groups have shown that CDT has only modest power of the
assay to predict severe AWS [29,31]. Furthermore, since the development of the test, the use
of statins for the primary and secondary treatment of coronary heart disease has become
common. Unfortunately, statins increase the global sialyation of serum proteins and, as a
consequence, false-negative CDT results have been reported in those prescribed statins [32].

2.5. PEth

Phosphatidyl ethanolamine (PEth) may actually be better than CDT for detecting
recent HAC [33]. PEth is a family of alcohol-specific phospholipid isoforms formed from
phosphatidylcholine (PC) [34]. The exact frequency of each isoform is dependent on
genotype, with the PEth species having an average half-life of about four days [34,35].
However, there is still significant debate as to which PEth isoforms are most optimal
for quantifying alcohol consumption. Furthermore, PEth testing is typically performed
using mass spectroscopy. Because relatively few healthcare facilities have these devices,
and PEth levels of phlebotomy samples change as a function of time and temperature,
the shipping and storage requirements of samples for PEth testing can present further
challenges for clinical implementation [34]. Finally, with respect to potential for AWS,
Novak and colleagues found that PEth levels did not predict severe AWS [36].

2.6. EtG

The final commonly used biochemical marker of alcohol consumption is EtG. EtG is a
metabolite of alcohol whose accretion and excretion largely parallels that of alcohol, with
its area under the curve (AUC) being absolutely proportional to that of ethanol itself [37].
EtG can be detected in the urine for several days after heavy ingestion of alcohol [38].
However, it does not detect alcohol use outside of that window and, as such, is not used
for quantifying chronic use, nor is it useful for predicting AWS. Still, because the laboratory
methods for assessing EtG status are relatively simple, EtG assessments have found a niche
in less resource-intense care environments.

In summary, four types of biomarkers of alcohol intake: liver enzymes, CDT, PEth,
and EtG, have been used to assess the history of alcohol consumption and potential of AWS.
In the right settings, each of these tests can be extremely useful. However, at the current
time, limitations in the clinical utility or ease of performance have sharply limited their
use in both clinical and research settings. This situation has led to the need for alternative
methods to biologically verify both recent and longer-term HAC.

3. The White Blood Cell as a Biosensor for Alcohol

One of the commonalities of the previously mentioned laboratory methods for de-
tecting alcohol use is that to one extent or another, each of them rely on the liver [21,24].
The vast majority of serum AST, LDH, and AST levels originate from liver synthesis [21].
Similarly, transferrin is both synthesized and post-translationally modified in the liver [27].
Glucuronidation of alcohol mainly occurs in the liver [39]. Finally, while the pathway for
synthesis of PEth is complex and can occur throughout the soma, the preferential sites for
the majority of PEth found in mammals are in the muscle and liver [40]. Therefore, current
biochemical methods lean heavily on the response of the liver for their analytical validity.

However, under many circumstances, the assumption of an unbiased response of the
liver to alcohol intake is violated. For example, as previously noted, drugs such as statins
alter the degree of sialylation of hepatically derived proteins, such as transferrin [32,41].
Furthermore, some high-prevalence diseases, such as hepatitis B and C, can make serum en-
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zyme levels difficult to interpret [42]. Therefore, biological assessments whose outcomes are
not heavily dependent on hepatic function could offer new windows for assessing alcohol
consumption while side-stepping some of the potential limitations of current methods.

In this regard, epigenetic assessments of white blood cells (WBCs) may be a very
useful alternative method for assessing alcohol consumption. Although their optimal
function is dependent on a healthy liver, WBCs are part of the hematopoietic system, and
in adults are produced in the bone marrow [43]. Unlike their red blood cell counterparts,
their nucleus is both present and responsive to changes in the environment. For example,
as is well documented through previous studies on smoking, DNA in the aryl hydrocarbon
receptor repressor is demethylated and then actively transcribed in response to sustained
exposure to the polyaromatic hydrocarbons found in tobacco smoke [44,45]. Therefore,
there is considerable reason to believe that WBCs could serve as a biosensor, providing
source material for epigenetic assessments of alcohol consumption.

The potential basis for WBCs to serve as indicators of alcohol consumption has been
evident for many years. For example, the association of alcohol with alterations in WBC
production has been known for almost a century, and it is well known in the medical com-
munity that chronic HAC is associated with impaired innate immunity [46—48]. Similarly,
studies from the last century showed that chronic alcohol intake affects both the mobility
and enzymatic activity of WBCs [49,50]. Therefore, it seems logical that examination of the
relationship of changes in DNA methylation to heavy alcohol consumption could bear fruit
due to the role of methylation as a key regulator of cell fate and function.

4. Promise and Challenges in Prior Epigenetic Studies of Alcohol Consumption

Based on that premise, over the past 15 years, a large number of studies have exam-
ined the relationship of alcohol use and DNA methylation. A PubMed literature search
conducted in April of 2024 using the terms “alcohol”, “DNA methylation”, and “genome
wide” identified 216 studies. The vast majority of these studies utilized WBC DNA from
samples of convenience, such as large longitudinal studies, which had self-report data for
alcohol consumption (e.g., drinks per day) but did not conduct analyses with respect to
diagnostic classification schemes. In 2022, Dragic and colleagues conducted a systematic
review of that literature and identified 11 cross-sectional studies ranging in size from 88 to
9643 subjects, and concluded that “potential methylation markers had been identified, but
that further validation was needed” [51].

However, there are also a number of studies, such as Zhang and colleagues and
ourselves, who used populations enriched for “case” subjects who had been medically
ascertained to be heavy drinkers [52-54]. In 2021, Longley and colleagues conducted a
systematic review of 27 studies that focused on those with AUD, including a small number
of studies that examined brain tissue itself [55]. In contrast to the weaker findings of Dragic
and colleagues, Longley and colleagues concluded that “184 genes and 15 gene ontologi-
cal pathways were differentially methylated in at least two studies” [55]. Unfortunately,
although helpful in identifying lapses in the literature and opportunities for improve-
ment, neither review conducted a true meta-analysis of the methylation data themselves.
Nonetheless, jointly, these two well-written reviews indicate that the epigenomic response
to alcohol intake is complex, and that many, many regions of the epigenome are affected.

Dealing with heterogeneity in studies. The findings by Longley and colleagues, which
focused on those with AUD, were also complicated by at least two sources of heterogeneity:
first, the type of DNA specimen, and second, the method of proband classification (e.g.,
type of AUD or alcohol consumption pattern) included in the studies. Most studies cited
by Longley and colleagues used white blood cell DNA, but some analyses used brain or
blood and brain DNA together. Since the DNA methylation signature is the hallmark of a
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cell’s identity and the relative response of a cell epigenome to a given exposure can vary
as a function of cell type, some of the lack of consistency could be secondary to problems
related to cell heterogeneity.

However, variation in the method of case control classification and the rigor used in
assessing subjects is likely also a contributing factor. For example, given the difficulties
in collecting brain samples post-mortem from subjects, it is easy to realize that full-length
clinical interviews of subjects who contributed brains’ clinical status may not be available.
However, a likely greater source of variation may be in the alcohol consumption patterns
of subjects. The AUD “case” subjects included in the Longley meta-analysis included
those admitted for acute intoxication as well as those who, although previously diagnosed
with an AUD, may have not been drinking recently. Hence, with respect to the cadre of
epigenetic studies of those with AUD, there is a great deal of heterogeneity with respect to
type of DNA and the current clinical alcohol use patterns.

Understanding the effects of heterogeneity of case definition or DNA source on study
results is essential to constructing clinical tools for clinicians. At the time these studies
were conducted, it was not understood that the alcohol-induced methylation changes could
revert as a function of abstinence. During the initial development of the literature in the
field of substance use, this was not obvious, and often researchers would lump abstinent
and current heavy alcohol users together as one group.

Thankfully, the insight into the potential differences between “state and trait” was
provided by an unexpected source. During the course of reviewing one of our manuscripts,
a reviewer suggested that the problem that we were encountering in understanding the
epigenetic signal might be that the clinical diagnosis or “mindset” of the subject was
irrelevant—it was only the recent exposure to smoke that was important. This insight
directly led to use active, biochemically verified smokers and verified clean controls in our
case/control analyses and the subsequent discovery of cg05575921 and the aryl hydrocar-
bon receptor repressor, which is now generally accepted as a biomarker for smoking status
and intensity. To paraphrase the reviewer, “it is not what you think, it is what you do” that
alters DNA methylation.

Applying the same line of thought to the review by Longley and colleagues, it is easier
to understand the potential biases that may have contributed to the heterogeneity of the
findings. Subtle variations in the method of clinic ascertainment or case definition can
potentially result in marked changes in study results.

Applying these insights to our own processes has led to improvements in how we
conceptualize AUD and alcohol consumption. For example, understanding that the type
of DNA is critical to DNA methylation studies, we abandoned the use of lymphoblasts
and have exclusively focused on whole blood DNA samples. The reason for abandoning
lymphocytes is although they retain some of the signature of their donors, the methylation
signature is markedly altered by Epstein Barr immortalization and cell culture conditions.
This is regrettable because many, if not most, of the DNA collections at the Rutger’s
Repository are in the form of lymphoblast cell lines. Second, because of their reliance
on self-report, we have discontinued the use of DSM-based categories as the primary
classification categories and have instead classified subjects on the quantity of alcohol
consumed, such as the “heavy alcohol consumers” noted in our 2014, 2018, and 2019
studies. When possible, we have included only those subjects medically ascertained
for the use of alcohol as case subjects and have used additional biomarkers of alcohol
consumption, such as breathalyzer and carbohydrate-deficient transferrin levels, to provide
further objective evidence of the amount of alcohol consumed. Even so, we have found
unexpected heterogeneity in the type of heavy alcohol consumer that has been ascertained.
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5. Why Use MSdPCR for Assessing Methylation Status?

Before any DNA methylation test can be clinically implemented, it is vitally necessary
that it conform to the needs and expectations of the healthcare environment. First, to be
maximally useful, the test should be capable of being performed rapidly. Indeed, part
of the allure of the breathalyzer and, to a lesser extent, EtG analyses, is the rapid return
of clinical information. Second, the test should be sufficiently accurate or informative. It
should answer the clinical question being asked without the need for additional testing.
Third, unsurprisingly, the test should also be affordable. The provision of healthcare is
under increasing economic strain. Tests that inflate costs without delivering value do not
gain market traction.

In contrast to most, if not all, existing methods, MSAPCR assessments of alcohol
consumption successfully address each of these requirements. Table 1 provides a compari-
son of the four major methods of assessing DNA methylation currently used for in vitro
diagnostics purposes. The use of methylation arrays and bisulfite sequencing techniques is
limited by both reagent and instrumentation costs, as well as the time needed to conduct the
assessments. Furthermore, while capable of delivering global assessments, at the individual
locus level, array-based methods are the least accurate methods.

Table 1. Comparison of potential clinical methylation assessment methods.

Assay Precision Type Reference Speed Cost
Array Moderate Global Dependent 3-5 days High
Sequencing Variable Variable Independent  2-3 days High
MSqPCR Moderate  Single locus  Dependent ~4h low
MSdPCR High Single locus  Independent ~4h low

In contrast, both methylation-sensitive quantitative PCR (MSqPCR) and MSdPCR can
be quickly and inexpensively performed. Because dPCR methods use later-generation PCR
machines whose reagents can be a little more costly, dPCR-based methods have slightly
higher consumable costs [56]. However, at scale, and in comparison to the rest of the
laboratory costs, differences between the two PCR approaches are negligible and perhaps
completely negated by the need for additional standards when performing qPCR under
clinical conditions. From the operational standpoint, the principal differences between
the two techniques are in the level of precision and the freedom of the measurement from
an outside standard (see Table 1). Digital PCR is a reference-free technique whose level
of precision can be easily quantified at scale, whereas quantitative PCR is a reference-
dependent technique whose level of precision must be experimentally determined on an
individual basis [57].

At the current time, most basic science researchers are not familiar with the use of
MSAPCR to assess DNA methylation status. This is unfortunate, because this method is
increasingly being used to for in vitro diagnostic purposes [58,59]. Like bisulfite sequencing
and unlike both qPCR- and array-based methods, MSdPCR is a reference-free technique,
which allows easy direct comparisons of results. For example, in order to determine the
copy number of mRNA using qPCR, one must compare the rate of reaction in one tube to
the rate of reaction in one or more other “reference” tubes containing a known concentration
of the mRNA target. Conceptually, there are at least two sources of error in this approach.
Errors in assessing the rate of reactions in the reference and “test” wells, as well as errors in
the concentration of the mRNA in the “reference” well(s) [57]. In contrast, dPCR techniques
first partition the “test” solution into thousands of discrete “droplets” or microwells. Then,
after amplification is complete, they assess the presence or absence of a completed PCR
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reaction in each of the partitions. Finally, a Poisson distribution statistic is used to calculate
the absolute concentration of the measurand [57].

Additionally, the dPCR approach has been modified to measure methylation ratios. In
contrast to the original implementation of dPCR, which uses one reporter dye, MSdPCR
uses two hydrolysable fluorescent probes, one specific for the methylated or “C” version
of the original CpG site and one specific for the “T” allele representing the unmethylated
version of the CpG site. By assessing the absolute concentration of both the “C” and “T”
alleles, the percent of methylation and a 95% confidence interval of the measurement can
easily be determined (see Figure 1).

Genomic DNA of Unknown
Methylation Status

cTGCACCBBGCTGG

!

Bisulfite conversion

v { &

TTGTATTTIGGTTGG  TTG TAT GTTGG

Sequencing or quantitative PCR genotyping

Figure 1. Determining cg05575921 methylation. As a first step, genomic DNA is treated with sodium
bisulfite, which converts unmethylated cytosines to thymines while leaving methylated cytosine
residues intact. The number of DNA segments containing either a C or a T residue at the original
CpG site then can be determined using sequencing or PCR genotyping techniques.

Like most experimental techniques, a certain amount of planning is necessary to
achieve optimal results. For example, when using sequencing or MSdPCR, the precision
of the methylation ratio estimate is a function of the number of informative observa-
tions/droplets/wells. If the library copy number (i.e., number of independent copies of
DNA) in the original sample is high (e.g., >1000), an adequate number of informative
events are observed (e.g., >3000), there is no bias in any pre-amplification step, and the
fluorescent probes are specific, either method is a robust, precise method for determining
the methylation status of select CpG sites.

There are several different implementations of MSAPCR that have been described.
The Bio-Rad system uses a microfluidic process to partition a 22 pL reaction volume into
thousands of ~1 nanoliter aqueous droplets encapsulated in oil in each well of a standard
96-well plate. In contrast, the ThermoFisher AbsoluteQ and Qiagen Verati systems use
pressure to force ~10 pL reaction volumes through microscopic fluid channels into grids
of ~500 picoliter wells on specially designed flat chips containing up to 25,000 individual
compartments. In either case, after partitioning, the fluid inside the droplets or chips is
subjected to 3040 rounds of thermocycling to complete PCR amplification of the CpG-site-
containing amplicon and any requisite fluorescent probe hydrolysis. Then, each well or
fluid droplet is interrogated with a laser to determine whether fluorescence corresponding
to liberated “Fam” or “Hex” fluors is present. Using the Bio-Rad dPCR system, each of
the fourteen MSAPCR assays currently being used or in the process of being clinically
implemented have precisions of ~1% [45,58,60,61]. However, because each of the above
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dPCR systems are capable of assessing more than 15,000 droplets or wells in a single
reaction, in actual practice the precision of each of the systems is fairly similar.

There are several technical limitations in the use of MSdPCR to measure DNA methy-
lation. First, when using a single volume partition approach, there are fixed constraints
on precision, and achieving a 95% confidence interval of less than 0.5% requires the as-
sessments of hundreds of thousands of partitions [62]. Second, not all CpG sites whose
methylation can be quantified by sequencing can be modeled using PCR. For example, if
one or more polymorphic SNPs are immediately adjacent to the CpG site, it may be difficult
to design a probe that is specific for the given allele. Similarly, if the CpG site is in a low
GC content region, the low melting temperature of the resulting bisulfite-converted DNA
segment may also pose barriers to probe design. Still, we have found that by judicious
design of the PCR primers and probes specific for the C and T alleles of the target site,
excellent separation of the two fluorescent allele products for most variable CpG sites
can be performed. For example, Figure 2 illustrates the 2D electropherogram of one such
sample using the AbsoluteQQ dPCR system by ThermoFisher. As the figure demonstrates,
fluorescent Fam and Hex signals from the wells neatly segregate into clusters representing
“C”,“T”,“C + T”, or null allele outcomes. Perhaps equally critically, the signal clusters
in such a fashion as to allow “1D” calling of the allele signal, a property that makes the
MSAPCR process easily compatible with high-throughput assessment processes.

Fam Fluorescent signal

v

Hex Fluorescent signal

Figure 2. A typical 2D electropherogram output from methylation assessment using the AbsoluteQ
digital PCR system. The purple, green, orange and gray dots represent wells with only C amplicons,
Cand T amplicons, only T amplicons or no amplicons, respectively.

Like all assessments of DNA methylation, the potential for genetic confounding must
be addressed. As our studies to generate epigenetic tools for predicting incident heart
disease demonstrate, the vast majority of the set points of the variable portion of the WBC
methylome are modulated by cis and trans genetic variation [60]. Therefore, great care
must be taken to identify sites that are minimally affected. Furthermore, because genetic
variation can be ethnically specific, validation must be examined in diverse populations.

Finally, the speed and affordability of MSdPCR makes the approach highly scalable,
which can provide more granular understanding of DNA methylation at select sites. To
date, perhaps the best understood site using MSdPCR is that of cg05575921. We have
determined DNA methylation at this site in over 10,000 samples using MSdPCR. What
those studies have shown is that in both adolescents and adults who do not smoke, DNA
methylation is approximately 86.2 & 2.6%, with a non-linear dose-dependent demethylation
in response to smoking. Critically, because the precision of MSdPCR is approximately
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1%, it is clear that an essentially normally distributed natural variation of methylation
in non-smokers occurs. However, when measured by reference-dependent array-based
methods, the Beta value (or fractional methylation) for non-smokers can vary widely, in
part as a result of error introduced by the normalization of the array signal. As a result,
when using array-based measurements, average non-smoker values as high as 90% and as
low as 80% have been observed in longitudinal studies [63-65].

6. Designing a Test Specific for Chronic Heavy Alcohol Consumption

The purpose of the proceeding discussions is to show how steady progress in both
clinical and lab-analytical domains have set the stage for the use of MSAPCR assessments
of methylation for characterizing alcohol consumption patterns. In essence, from the purely
technological side, MSdPCR is a method that is capable of quickly, cheaply, and precisely
assessing methylation values using WBC DNA. That still leaves the matter of identifying
loci for MSAPCR assessment.

To identify CpG sites whose methylation is predictive of HAC, the first step that
had to be settled was the clinical phenotype of alcohol consumption for the case and
control analyses in which the algorithm would be developed and tested. We chose to
focus on current chronic HAC, which we defined in 2014 as drinking an average of six or
more drinks per day for the past eight weeks, because of the risk of this type of alcohol
consumption pattern for important medical outcomes and its alignment with our laboratory
understanding of how stable epigenetic signatures of environmental signatures evolve [66].
However, arriving at a case definition was not the only clinical issue that needed to be
addressed. Because most heavy drinkers smoke, the potential overlap or confounding
of the epigenetic signature of HAC with smoking still had to be addressed. Since up to
1/3 of the variable methylome can be affected by smoking, this is not a trivial task [67].
Therefore, in our 2018 genome-wide analyses of alcohol-associated DNA methylation, we
specifically conducted analyses of a subset of HAC case and abstinent control non-smoking
subjects, whose medical records, serological testing, and epigenetic testing confirmed
their self-reports (see Table 3 from Philibert et al., 2018) [68]. By selecting those loci that
were significantly differentiated in both the smoking and non-smoking subjects, but not
significantly differentially methylated in smokers who did not drink, we could identify a
set of markers specific to HAC itself.

In 2019, using this information and classification approach, we conducted a series
of stepwise regression modeling analyses, first using the genome-wide data, then the
MSdPCR data from 313 subjects (143 chronic HAC cases and 200 abstinent controls), to
identify a four-marker panel capable of predicting HAC [69]. Not all loci nor all clinical
subjects could be included in our analyses. First, because we intended to translate each
of the array assessments into MSAPCR assays, all loci forwarded for possible clinical
translation needed to have an arithmetic difference of methylation (i.e., Af) of greater
than 4% to ensure that the effect size of HAC was markedly greater than the precision of
the measurement. Second, in order to eliminate strong GxMethylation effects that could
confound assessments, the distribution of 3 values at these loci was evaluated in nearly
700 genome-wide methylation arrays from abstinent adult controls and adolescents. Third,
and finally, ensuring rigor in the assessments of the cases and controls was essential. All
the HAC cases were recruited from inpatient alcohol treatment centers with their clinical
records, including laboratory testing. These were reviewed to confirm their self-report data.
The controls were selected from university-affiliated staff, with all self-report data for both
cases and controls confirmed by biological testing. Only those cases and controls that met
our clinical criteria were included in the final analyses.
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Table 2 lists the four CpG sites that were identified and successfully translated into
the ATS panel. From a theoretical standpoint, each of the sites have strong biological face
validity. Cg02583484 is found in a cis-regulatory element (CRE) in HNRNPA1, a RNA-
binding “hub” protein whose expression is strongly affected by alcohol [70]. Cg04987734
maps to a CRE in CDC42BPB, as serine/threonine kinase that is a regulator of the key
cell cycle gene CDC42 that is critical for cytoskeletal organization and cell migration [71].
Cg09935388 maps to a CRE in GFI1, a zinc finger protein that is a critical regulator of
hematopoiesis and, in particular, neutrophil production [72]. Finally, cg04583842 maps to a
CRE in BANP, a direct negative regulator of p53 transcription [73]. Since defects in each of
these processes can be linked to clinical phenomenology associated with alcoholism, such
as neutropenia, altered immune function, and cancer, at face value, at a “70,000-foot level”,
their association with methylation changes in our studies of HAC is not surprising. Still,
the reason that they were selected is that the methylation status at each site independently
predicts HAC status well.

Table 2. A list of the CpG sites in the ATS.

Locus Gene Chromosome  Gene Function
cg02583484  HNRNPA1 12q13 RNA-binding protein

cg04987734  CDC42BPB 14932 Kinase tha.t regglates cytoskeleton
and cell migration
cg09935388 GFI1 1p22 Zinc finger transcriptional repressor

cg04583842  BANP 16q13 Negative regulator of P53

Interestingly, principal component analysis shows that methylation at these sites loads
on the same two principal components previously described for the methylomic response
to alcohol [68]. In essence, all four of these assays are all capturing the same biological
diathesis, with the improvement in prediction from their stepwise addition to the model
resulting from the reduction in noise afforded by the effects of averaging the repeated
measurements. Taking this step was necessary for gaining predictive reliability because,
as opposed to changes at the smoking marker, cg05575921, where the A{ is ~20%, the
magnitude of the average difference between the cases and controls is only in the order of
5-8%.

Unfortunately, the “lumping” of the results of several loci together precludes the use of
percent of methylation to describe the differences between the cases and controls. Therefore,
to express this averaging process of the signal into an easily understood clinical metric, we
converted each of the individual methylation assessments into Z scores (see the equation
below). The ATS is simply the sum of the four Z scores, with the caveat that because two
of the loci hypermethylated while the other two demethylated in response to alcohol, the
signs of the two demethylating Z scores are changed so that a methylation change in the
direction associated with alcohol use is always positive. The result of the manipulations is
an easily understandable metric for expressing the steady-state rate of alcohol, with higher
Z scores inferring steadily greater levels of alcohol consumption.

_ M observed — Mcontrol avg

z Control SD

where M = methylation and SD standard deviation.

Figure 3 illustrates the power of this method to distinguish chronic HAC subjects
from controls in our 2020 study, for whom CDT values were available. The ATS values
for abstinent individuals are zero-ordered with a standard deviation of 2.2. In response to
sustained HAC, the Z score increases. The average Z score of the 131 chronic HAC subjects
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is 6.7, with a marked left skewing in the distribution. In these subjects, the CDT is strongly
correlated with the ATS (r = 0.4, p < 0.0001) in the cases, but not in the controls (r = 0.01,
p <0.29). The overall area under the curve (AUC) for the ATS in differentiating cases from
controls in this study was 0.96, with no evidence of sex bias. In contrast, the AUC for the
CDT was only 0.87, with a marked gender bias.

Chronic HAC 25
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Figure 3. ATS values for inpatient subjects who reported chronic HAC (n = 131) and abstinent controls
(n=182).

Still, it is important to note that 35 of the subjects who reported chronic HAC and
whose medical records strongly supported this history had ATS values of less than 3.5 (the
high probability cutoff for HAC), while 80 HAC subjects had CDT levels of less than 1.6%,
which was the testing laboratory’s cutoff for HAC for the CDT. The outliers on the biological
tests suggest that either some of the subjects may have erroneously self-reported chronic
HAC or that some heavy users are protected against elevated ATS or CDT by unknown
factors. Since the average CDT of those with ATS < 3.5 was 1.33 & 1.30% (n = 35), while the
average CDT of those with an ATS > 3.5 was 3.14 & 3.67% (n = 96), it is likely that those
not predicted correctly using the ATS were lighter drinkers than those who were correctly
predicted. Still, 5 of the 35 subjects with ATS of less than 3.5 had CDT > 1.6%. So, some
false negatives for the ATS were heavy drinkers not identified by the ATS.

The above data show that the ATS is a powerful predictor of chronic HAC. But what
about lower levels of consumption? Can the ATS be used for characterizing lower levels of
alcohol consumption? To answer that question, we examined an alcohol dose-response
curve using data from a community sample of subjects (1 = 535; see Figure 4). As the
figure shows, the average ATS value was zero for those who do not drink, with a steady
non-linear increase in ATS as the average daily drinking consumption increased.

The relationship of the ATS to other clinical phenomena associated with HAC has been
explored in a number of communications. The ATS is strongly associated with epigenetic
aging [12,74,75]. The ATS strongly predicts immune WBC count [12]. Finally, and perhaps
critically, for those interested in understanding the co-morbidity of smoking with drinking,
the ATS has been repeatedly shown to strongly correlate (r values between 0.45 and 0.7)
with ¢g05575921-indicated smoking intensity [12,61,69,74-76]. As discussed below, the ATS
also predicts alcohol withdrawal seizures [61].

In summary, the ATS appears to be a reliable tool for predicting chronic HAC and
clinical phenomena associated with chronic HAC. The non-linear dose responsiveness of
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the index for lower levels of consumption also suggests a potential for the use of the metric
for studies attempting to quantify the health impact of lower levels of alcohol consumption.

10 ATS in Community Sample
N=435
5
2
<]
0 J_ J-
-5
0 <1 1to2 22
Drinks per Day over the Past Year

Figure 4. The distribution of ATS values in 435 community subjects characterized for alcohol intake.
The 95% Cl is indicated by error bars.

7. A Potential Marker of Recent HAC

A shortcoming of the ATS is its inability to distinguish more recent (e.g., the past three
weeks) from more remote HAC. This shortcoming is a natural consequence of the decision
to select for markers predicting six or more weeks of HAC. This insensitivity to more recent
HAC may be important because studies of prisoners conducted in the early 1950s showed
that vulnerability to AWS can occur in as little as 30 days of HAC [77,78]. Hence, the ATS
may not be positioned to be a strong predictor of AWS.

In our studies of smoking-induced DNA methylation, we noted that the loci that
demethylated the fastest in response to the initiation of smoking were also the fastest to
re-methylate in response to smoking cessation [63,79]. Therefore, in the hopes of isolating
similar loci for alcohol, we analyzed genome-wide methylation data from two studies
that collected DNA from subjects as they entered and exited 30-day alcohol treatment
programs to identify those loci that not only predicted HAC but also had large changes
in DNA methylation between the entry and exit time points [61]. These studies identified
several candidate loci, but the one that showed the most reliable changes between studies
was cg07375256, a residue in ZSCAN25, a gene previously associated with hypertension.
We then translated the array-based methylation measure into a MSdPCR assay, then re-
examined DNA samples from subjects entering and exiting alcohol treatment (an average
time period of 23 days). During this ~three-week period, according to array-based assess-
ments, the average methylation at this locus reverted over 5%, while its individual receiver
operator characteristic area under the curve for HAC by itself was greater than 0.8.

Next, the array-based measurements were translated into a MSdPCR format, and
we tested the hypothesis that cg07375256 (a.k.a. ZSCAN25) methylation would be a
potent predictor of AWS and AWS-related phenomena in 120 subjects admitted for the
consideration of AWS. Figure 5 shows the relationship between ZSCAN25 status and the
ATS and the need for treatment with phenobarbital, which is commonly given by clinicians
to patients thought to be at high risk for AWS [80], in 120 subjects admitted for consideration
of AWS [61]. As Figure 5 shows, ZSCAN25 and CDT (which like the ATS is more sensitive
to recent HAC) but not the ATS predicted the clinician’s choice to use phenobarbital.
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Figure 5. The relationship of (A) ZSCAN25 (%), (B) ATS (unitless), and (C) CDT (%) values with either
control status (control) or alcohol withdrawal treatment status in a group of 125 subjects admitted for
possible alcohol withdrawal syndrome (total 7 = 125). No tx (1 = 32) signifies that no pharmaceutical
treatment was administered. The benzodiazepine group (BZD) received only benzodiazepines
(n = 74), while the barbiturate group (BARB, n = 19) received phenobarbital as an alcohol withdrawal
preventative therapy. Data are from Andersen et al., 2023 [61].

However, use of phenobarbital is an imperfect outcome at best since the criteria for
using phenobarbital vary from practitioner to practitioner and not all clinicians at our
institution can or will use phenobarbital for prevention of severe AWS. However, the
occurrence of seizures is well recognized by all clinicians and is an easily assessed outcome
associated with severe AWS. Therefore, the relationship of AWS-associated seizures with
respect to the ATS, ZSCAN25, and CDT status was also analyzed. As Figure 6 demonstrates,
ZSCAN2S5 and, to a lesser extent, the ATS, but not the CDT, were strong predictors of AWS-
associated seizures.
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Figure 6. The relationship between (A) ZSCAN25 (Dcg07375256), (B) ATS, and (C) CDT and levels
and presence (1) or absence (0) of seizures. N = 7 for the seizure group, 116 for the no seizure group.
ZSCAN?25 methylation and CDT values are given in percent. Receiver operating characteristic area
under the curve (AUC) for predicting seizures is 0.95. Data are from Andersen et al., 2023 [61].

Taken as a whole, these findings suggest that ZSCAN25 methylation has promise as a
marker of relatively short-term HAC- and AWS-related phenomena. However, the current
conclusions are based on data from only 120, largely White, midwestern AWS subjects. A
more exacting understanding will require more extensive replication and extension.

8. A Pathway Forward

Ultimately, the goal of any clinical biomarker is to advance the diagnosis, treatment,
and prevention of illness. In fact, under the aegis of National Institutes of Alcohol and
Alcohol Abuse (NIAAA) funding, the ATS and the ZSCAN25 markers were developed
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for exactly those purposes. Still, at best, they are only good additions to an existing
armamentarium of tools for assessing patterns of alcohol consumption. Figure 7 outlines
some key parameters with respect to the existing biomarkers of alcohol consumption. All
of these biomarkers have significant value. However, depending on the question being
asked, some biomarkers may be better suited than others.

Test Detection Window Lab Time Predicts | AUC for
: > 3
ours Daye Weeks Seizure? | Seizures
Months
Breathalyzer Seconds No
hours
EtG 12 1-3 hours No
days
ZSCAN25
- - 4 hours Strong 0.96
ATS 4h Modest 0.81
% life ~4 months ours odes
coT % life unknown Mailout No 0.68
but probably
~eE 1 week
PEth 1 life Mailout No
~4 day 1 week

Figure 7. A comparison of the detection windows of the various testing technologies for alcohol
consumption. The ZSCAN25 assay predicts HAC over a short term, where the window for HAC
predicted by the alcohol signature is more remote. Please note that to date, none of the other tests have
published evidence supporting their use in alcohol withdrawal. AUC values are from Andersen et al.,
2023 [61].

Based on the available data, we believe that the ATS is well positioned as a predictor of
chronic HAC, which we define as drinking an average of six or more drinks per day for eight
or more weeks. Because the test can be performed quickly and easily by laboratories with
digital PCR machines, is compatible with standard DNA-based NextGen testing methods,
and is not subject to many of the limitations confronting liver-based assessments, we believe
that it will increasingly become a more common method of assessing levels of sustained
alcohol consumption for patients who would benefit from an objective assessment of
potential HAC in both the psychiatric and non-psychiatric settings. For example, based on
our work with those admitted for acute coronary syndrome [81], it appears that a substantial
reduction in morbidity and mortality could be achieved by implementing evidence-based
alcohol treatment therapies in many of those admitted for myocardial infarctions.

In addition, because of the relatively low cost of the test and minimal requirement
for blood, requiring only a few hundred nanograms of DNA, the ATS has the potential
to be used to retrospectively identify heavy alcohol consumption in biorepositories. This
would, for example, be advantageous for addressing the role of alcohol in cancer. Alcohol
is thought to be a potential risk factor for several types of cancer [82,83], but our current
inability to quantify chronic consumption at scale precludes policymakers from being
more certain.

In contrast, the exact utility of the ZSCAN25 marker has not yet been established.
Certainly, the unique ability of this marker to strongly predict the occurrence of AWS-
related seizures suggests the possibility that MSAPCR assessments could be used as part of
the triage process for deciding which patients in the emergency room need to be admitted
for potential serious AWS and which should be immediately referred to less cost-intensive
alcohol treatment settings. Still, the hallmark of a robust biomarker is its ability to repeatedly
predict in diverse populations. Furthermore, it may well be that like the ATS, it may be
more advantageous to measure several sites rather than just one site, to gain predictive
stability. Therefore, it is likely that many more clinical studies using additional markers
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and including patients from diverse settings will be needed before firm conclusions can be
made about this approach for assessing the risk of severe AWS-related phenomena.

It is also possible that there are additional potential uses of DNA methylation to
better characterize alcohol use disorders. For example, if we can identify methylation
sites that hyper/hypomethylate in response to alcohol in a matter of days, they could
serve as sentinels of very recent HAC. Likewise, we may gain a better understanding of
the relationship of bursts of alcohol use, such as those seen in binge drinking, to changes
in DNA methylation status, opening a range of important questions to more rigorous
examination. But, given the nature of binge drinking, it is notoriously hard to collect
uniform sets of subjects for case and control analyses. Finally, it may be possible isolate
markers of remote, but not recent HAC. If so, these markers could fill a much-needed gap
in helping understand the relationship between early HAC and later onset of illnesses, such
as dementia.

No matter what the application, methylation-based biomarkers are tools whose utility
relies on the right question being asked. For many questions, such as for determining
alcohol intoxication or use in the past several days, it may be the wrong tool. Indeed,
each of the assays listed in Figure 7 have significant utility under the right circumstances.
Determining which of the options from Figure 7 is the best tool for detecting EAC may also
require additional clinical information, such as the presence of co-morbidities or the use
of certain medications. Finally, the best choice under certain circumstances may be to use
several different biomarkers.

The first barrier to implementation of this technology is the need for access to dig-
ital PCR machinery. Currently, there are at least nine manufacturers of digital PCR ma-
chines, with the total market for 2023 for dPCR sales and services being estimated at
USD 8.6 billion [84]. The exact number of machines that have been placed to date by each
manufacturer is not known and appears to be a trade secret. But, given the rapid growth
projections for this market [84], it is likely that most major diagnostic markets will have
ready access to this technology in the near future.

However, the widespread adoption of these or any other markers is also hindered by
the need for regulatory approval and reimbursement. Notably, none of the biomarkers
currently used have received regulatory approval from the United States Food and Drug
Administration or the European Medicines Agency. However, there are able to be offered
as less well-regulated laboratory-developed tests (LDT) in the United States, with several of
the methods having both Current Procedural Terminology (CPT) codes and some coverage
by payors. Neither the ZSCAN25 or ATS have advanced to that point, and there are
significant financial and logistical challenges to their advancement. However, we do
note that the MSAPCR test for smoking is scheduled to be available as an LDT offered
through Quantigen (Indianapolis, IN USA) in March 2025 and is currently undergoing
pre-submission consideration by the FDA.

Finally, despite their clear promise, neither of these tests have been examined in large,
diverse populations. Typically, before a test receives FDA approval, repeated analyses
of test performance characteristics (i.e., sensitivity, specificity, and positive and negative
prediction values) in large, well-characterized, diverse subjects must be performed. To date,
these studies have yet to be conducted, and they will be necessary for optimal use of this
test in clinical settings.

9. Conclusions

In summary, in this manuscript, we have detailed the development and performance
characteristics of two MSAPCR tests for HAC. We believe that the rapid, precise, and afford-
able nature of MSAPCR makes these types of HAC assessments an option for both clinical
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and research applications, and that epigenetic tools will be increasingly utilized to guide
care of AUD and allow researchers to more rigorously test key theoretical propositions
regarding etiology, remission, and consequences of AUD.
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