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Abstract: SWI/SNF enzymes are heterogeneous multi-subunit complexes that utilize the energy
from ATP hydrolysis to remodel chromatin structure, facilitating transcription, DNA replication, and
repair. In mammalian cells, distinct sub-complexes, including cBAF, ncBAF, and PBAF exhibit varying
subunit compositions and have different genomic functions. Alterations in the SWI/SNF complex
and sub-complex functions are a prominent feature in cancer, making them attractive targets for
therapeutic intervention. Current strategies in cancer therapeutics involve the use of pharmacological
agents designed to bind and disrupt the activity of SWI/SNF complexes or specific sub-complexes.
Inhibitors targeting the catalytic subunits, SMARCA4/2, and small molecules binding SWI/SNF
bromodomains are the primary approaches for suppressing SWI/SNF function. Proteolysis-targeting
chimeras (PROTACs) were generated by the covalent linkage of the bromodomain or ATPase-binding
ligand to an E3 ligase-binding moiety. This engineered connection promotes the degradation of
specific SWI/SNF subunits, enhancing and extending the impact of this pharmacological intervention
in some cases. Extensive preclinical studies have underscored the therapeutic potential of these drugs
across diverse cancer types. Encouragingly, some of these agents have progressed from preclinical
research to clinical trials, indicating a promising stride toward the development of effective cancer
therapeutics targeting SWI/SNF complex and sub-complex functions.

Keywords: SWI/SNF chromatin-remodeling complexes; cancer; allosteric ATPAse inhibitors; bro-
modomain inhibitors; PROTACs; epigenetics; transcription; DNA damage

1. SWI/SNF Structure and Function

SWI/SNF chromatin-remodeling enzymes are multi-subunit complexes, conserved
across different eukaryotes, including fungi, plants, and animals [1]. Mammalian SWI/SNF
is composed of a central catalytic subunit with ATPase activity that is either SMARCA4
(BRG1) or SMARCA2 (BRM) and 8–15 associated subunits (BAFs) [2]. Distinct SWI/SNF
complexes have been purified from mammalian cells and designated as canonical (c)BAF,
non-canonical (nc) BAF, or PBAF depending on the identity of the catalytic subunit and BAF
composition [3–9] (Figure 1). In addition, mammalian complexes can vary in composition
and in a cell-specific manner [10,11].

SWI/SNF remodels chromatin structures by using the energy from ATP hydrolysis.
This results in DNA translocation around the nucleosome, making nucleosomal DNA
accessible to nuclear factors [12–14]. SWI/SNF can slide or evict nucleosomes and disrupt
the association of transcription factors from chromatin [15,16]. In vitro, either ATPase,
SMARCA4, or SMARCA2, is capable of remodeling nucleosomes, and this remodeling
activity is enhanced by a core complex containing SMARCB1 (INI1, BAF47), SMARCC1
(BAF155), and SMARCC2 (BAF170) [17]. The C-terminus of SMARCB1 interacts with an
acidic patch of the nucleosome, securing SWI/SNF to the nucleosome, thereby promoting
optimum chromatin-remodeling activity [18–20], while SMARCC1/2 assemble as dimers
to provide a scaffold needed for proper SWI/SNF assembly [21].
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to provide a scaffold needed for proper SWI/SNF assembly [21].  

 
Figure 1. SWI/SNF Chromatin-Remodeling Complexes. Different SWI/SNF complexes exist in the 
form of cBAF, PBAF, and ncBAF. Yellow: SMARCA4 and SMARCA2 catalytic subunits. Purple: 
cBAF specific subunits. Green: PBAF specific subunits. Red: ncBAF specific subunits. Blue: subunits 
that assemble into all three complexes. Grey: subunits that assemble into cBAF and PBAF. Orange: 
subunits that assemble into cBAF and ncBAF. 

Additional subunits provide features for optimal chromatin remodeling and impart 
structural specificity to the different SWI/SNF complexes. Both cBAF and PBAF complexes 
have a modular structure such that multiple subunits work together to interact with chro-
matin [6,20,22,23]. The largest subunit of cBAF complexes, ARID1A (and likely its paralog, 
ARID1B), serves as an assembly center for other BAF subunits and enhances nucleosome 
sliding activity in vitro [20]. ARID2 acts as a scaffold for the assembly of PBAF unique 
subunits, imparting architectural features that are distinct from BAF complexes as well as 
unique contacts with histone tails and nucleosomal DNA [22,23]. Actin-related proteins 
stabilize SWI/SNF complex formation and couple DNA translocation with ATP hydrolysis 
[24,25]. PBRM1, BRD7, and BRD9, as well as the catalytic subunits, SMARCA4 and 
SMARCA2, have bromodomains which bind acetylated histones, anchoring SWI/SNF to 
acetylated genomic sites [26–29]. Other BAFs such as SMARCD1, 2, and 3, and SMARCE1 
are important for mediating interactions with a diversity of nuclear factors that recruit 
SWI/SNF to specific genomic sites [30–38]. Due to the distinctive and shared composition 
of BAFs, the various SWI/SNF complexes not only shape chromatin in a highly regulated 
manner, but also exhibit specialized functions in vivo. This high level of SWI/SNF regula-
tion is frequently disrupted in cancer by mutations, altered subunit expression, activity, 
or aberrant SWI/SNF recruitment to genomic sites. 

All three major SWI/SNF complexes play a critical role in the regulation of gene ex-
pression. cBAF, PBAF, and ncBAF are required for transcription, especially for the activa-
tion and repression of gene expression, during embryonic development and cellular dif-
ferentiation, and in response to a plethora of external stimuli [8,39–45]. The various 
SWI/SNF complexes are targeted to different genomic regions to regulate overlapping and 
distinct genes and can compensate or have antagonistic roles. For example, SMARCA4 
and SMARCA2 are paralogous subunits that exist in different SWI/SNF complexes and 
can compensate for each other in RB signaling but have antagonistic roles in p53 signaling 
[46,47]. ARID1B can partially compensate for ARID1A loss in the regulation of enhancer 
architecture in colorectal cancer cells [48]. The PBAF and cBAF complexes have divergent 
roles in the regulation of exhausted T cell differentiation; PBAF preserves stemness, while 
cBAF promotes differentiation to effector T cells [49]. Deficiency of the PBAF subunit, 
PBRM1, constricts T cell exhaustion and has been associated with an improved response 

Figure 1. SWI/SNF Chromatin-Remodeling Complexes. Different SWI/SNF complexes exist in the
form of cBAF, PBAF, and ncBAF. Yellow: SMARCA4 and SMARCA2 catalytic subunits. Purple: cBAF
specific subunits. Green: PBAF specific subunits. Red: ncBAF specific subunits. Blue: subunits
that assemble into all three complexes. Grey: subunits that assemble into cBAF and PBAF. Orange:
subunits that assemble into cBAF and ncBAF.

Additional subunits provide features for optimal chromatin remodeling and impart
structural specificity to the different SWI/SNF complexes. Both cBAF and PBAF complexes
have a modular structure such that multiple subunits work together to interact with chro-
matin [6,20,22,23]. The largest subunit of cBAF complexes, ARID1A (and likely its paralog,
ARID1B), serves as an assembly center for other BAF subunits and enhances nucleosome
sliding activity in vitro [20]. ARID2 acts as a scaffold for the assembly of PBAF unique
subunits, imparting architectural features that are distinct from BAF complexes as well as
unique contacts with histone tails and nucleosomal DNA [22,23]. Actin-related proteins
stabilize SWI/SNF complex formation and couple DNA translocation with ATP hydrol-
ysis [24,25]. PBRM1, BRD7, and BRD9, as well as the catalytic subunits, SMARCA4 and
SMARCA2, have bromodomains which bind acetylated histones, anchoring SWI/SNF to
acetylated genomic sites [26–29]. Other BAFs such as SMARCD1, 2, and 3, and SMARCE1
are important for mediating interactions with a diversity of nuclear factors that recruit
SWI/SNF to specific genomic sites [30–38]. Due to the distinctive and shared composition
of BAFs, the various SWI/SNF complexes not only shape chromatin in a highly regulated
manner, but also exhibit specialized functions in vivo. This high level of SWI/SNF regula-
tion is frequently disrupted in cancer by mutations, altered subunit expression, activity, or
aberrant SWI/SNF recruitment to genomic sites.

All three major SWI/SNF complexes play a critical role in the regulation of gene
expression. cBAF, PBAF, and ncBAF are required for transcription, especially for the ac-
tivation and repression of gene expression, during embryonic development and cellular
differentiation, and in response to a plethora of external stimuli [8,39–45]. The various
SWI/SNF complexes are targeted to different genomic regions to regulate overlapping and
distinct genes and can compensate or have antagonistic roles. For example, SMARCA4
and SMARCA2 are paralogous subunits that exist in different SWI/SNF complexes and
can compensate for each other in RB signaling but have antagonistic roles in p53 signal-
ing [46,47]. ARID1B can partially compensate for ARID1A loss in the regulation of enhancer
architecture in colorectal cancer cells [48]. The PBAF and cBAF complexes have divergent
roles in the regulation of exhausted T cell differentiation; PBAF preserves stemness, while
cBAF promotes differentiation to effector T cells [49]. Deficiency of the PBAF subunit,
PBRM1, constricts T cell exhaustion and has been associated with an improved response
to immunotherapy in melanoma and clear cell renal cell carcinoma [50–52]. Some of the
distinct functions of the various complexes arise as a result of the genomic locations they
occupy. cBAF complex occupancy is concentrated at gene enhancers [53,54], PBAF com-
plexes at gene promoters [55], and ncBAF complexes at promoters and CTCF sites, which
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define topologically associated domain (TAD) boundaries [5]. Despite differential genome
localization, there appears to be cross talk between the different complexes that is relevant
in cancer. For example, the loss of PBAF results in the genomic re-distribution of cBAF
complexes in melanoma cells, and the loss of cBAF disturbs the genomic occupancy of
PBAF in transformed epithelial cells [55,56]. There is also the de-stabilization of cBAF
complexes by the loss of SMARCE1 deficiency in clear cell meningioma which increases
ncBAF activity [57]. SWI/SNF plays critical roles in transcription by regulating access to
the transcriptional machinery, maintaining chromatin architecture in order to establish
enhancer–promoter contacts [58]. Blocking SWI/SNF activity can have immediate conse-
quences on genome-wide chromatin accessibility, transcription factor binding, and gene
expression, indicating that SWI/SNF activity is continuously required to maintain proper
chromatin architecture [59–61]. Because of its critical role in transcription, perturbations
in the SWI/SNF complex structures and functions result in widespread gene expression
alterations that promote tumorigenesis.

SWI/SNF complexes play an important role in the maintenance of genome integrity
and cellular survival from DNA damage. In response to double-strand breaks (DSBs),
SWI/SNF complexes silence transcriptionally active genomic sites to facilitate efficient
repair by either homologous recombination (HR) or non-homologous end joining (NHEJ).
In HR, the PBAF and ncBAF complexes evict RNA polymerase II near the sites of DNA
damage to rapidly silence transcription, while the cBAF complex maintains transcriptional
silencing and promotes recruitment of the repair proteins, RNaseH1 and RAD52, to facil-
itate R loop resolution [62]. The BRD9 component of ncBAF also binds to an acetylated
lysine on RAD54 and promotes RAD54 and RAD51 interactions [63]. PBAF also medi-
ates transcriptional silencing and cBAF allows for recruitment of repair proteins during
NHEJ [64,65]. SWI/SNF complexes have also been implicated in nucleotide excision repair
(NER) through both the transcription-coupled repair (TCR) pathway and global genome
repair (GGR) [66]. SWI/SNF increases NER efficiency on nucleosomal DNA by making
it accessible to DNA repair enzymes [67,68] and has been reported to recruit NER fac-
tors, including XPC, ATM, XPG, PCNA, ERCC1, and ERCC5 in cells [69–71]. SWI/SNF
increases base excision repair (BER) of nucleosomal DNA in vitro [72]. ARID1A-deficient
cells accumulate abasic (AP) sites, exhibit delayed recruitment of BER repair proteins,
and are highly sensitive to the combination of temozolomide and PARP inhibitors [73].
ARID1A promotes mismatch repair (MMR) by recruiting MSH2 to chromatin during DNA
replication. A deficiency in SWI/SNF subunits is associated with defective mismatch repair
and enhanced mutation load, rendering ARID1A-deficient tumors responsive to immune
check point inhibitors [74–76]. Conversely, mismatch repair enzymes also interact with
SMARCA4 to rewire the chromatin landscape in a manner that is conducive to tumorigene-
sis [77]. The SMARCA4 subunit is required for replication fork progression [78], and both
SMARCA4 and ARID1A contribute to the resolution of transcription–replication conflicts
which can lead to replication stress [79,80]. SWI/SNF deficiency in lung cancer cells results
in increased origin firing, increased replication stress, and heightened sensitivity to ATR
inhibitors [81]. In combination, these findings point to an important role for SWI/SNF in
maintaining genome integrity and survival in response to DNA damage.

2. SWI/SNF in Cancer

Approximately 20% of human cancers have mutations in SWI/SNF genes, many of
which are loss-of-function mutations, suggesting that the disruption of SWI/SNF activity
promotes cancer initiation or progression [82,83]. Indeed, some SWI/SNF subunits are
verified tumor suppressors (see [84–87] for detailed recent reviews on SWI/SNF loss
in cancer). The loss of ARID1A occurs in a variety of human cancers and de-regulates
gene expression by disrupting SWI/SNF occupancy at enhancers, leading to the initiation
of liver cancer [53,88]. The disruption of the SMARCB1 subunit frequently occurs in
pediatric malignant rhabdoid tumors (MRT), epithelioid sarcomas, chordomas, and renal
medullary carcinomas [89]. In the absence of SMARCB1, SWI/SNF binding to lineage-
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specific enhancers is disrupted while binding to oncogenic super-enhancers is retained, thus
favoring tumorigenic gene expression [90]. The rescue of SMARCB1 in SMARCB1-deficient
cancer cells abrogates proliferation and promotes differentiation [91,92]. The disruption
of one allele of SMARCB1 in mice results in tumorigenesis with a loss of heterozygosity,
which is consistent with the classical definition of a tumor suppressor [93,94]. The loss of
ARID2 occurs frequently in hepatocellular carcinoma and melanoma [95,96] and disrupts
PBAF complex assembly, also altering BAF genomic distribution to favor the expression
of genes that promote invasion [55]. PBRM1 loss in renal clear cell carcinoma results in
histone modifications at promoters, leads to genomic re-distribution of PBAF complexes,
and promotes tumorigenic gene expression [97,98]. Many other studies indicate that
alterations in the SWI/SNF complex occurring in cancer perturb enhancer dynamics,
histone modifications, and transcription factor binding [48,99,100]. Hence, particular
SWI/SNF subunits are tumor suppressors and their loss in cancer leads to the de-regulation
of gene expression.

The SWI/SNF complex stands out as a highly promising target for cancer therapeutics.
Strategies directed at targeting SWI/SNF encompass the inhibition of its catalytic activity
or the suppression of specific subunit functions. The decision to inhibit the SWI/SNF
complex, despite its recognized tumor-suppressive function, is rooted in a multifaceted
rationale. SMARCA4 has a context-dependent pro-tumorigenic function. In hematolog-
ical malignancies, SMARCA4 promotes transcription factor binding to lineage-specific
MYC enhancer elements, driving long-range chromatin looping interactions with the MYC
promoter to favor oncogenic gene expression [101]. Similarly, SMARCA4 is required to
maintain chromatin accessibility at lineage-specific enhancers to favor binding of tran-
scription factors that drive prostate cancer cell proliferation [102]. In several cancer types,
SWI/SNF is also hijacked by oncogenes to elicit gene expression profiles that promote
tumorigenesis [98,103–107]. The pharmacological inhibition of SWI/SNF function is useful
in these cancer contexts.

The inhibition of SWI/SNF function is also useful in cancers where there is a loss
of a SWI/SNF subunit because residual SWI/SNF complexes can be rewired to take on
oncogenic roles. Synthetic lethal relationships among SWI/SNF subunits render cancers
with a loss-of-function mutation in one SWI/SNF subunit vulnerable to the inhibition
of a second subunit. For example, SMARCA4-deficient cancer cells lose tumorigenicity
and undergo cell cycle arrest and senescence upon the depletion of SMARCA2 [108–110].
ARID1A-deficient cancer cells are vulnerable to the loss of ARID1B, such that a concomitant
loss of ARID1A and ARID1B disturbs enhancer dynamics at growth promoting loci [48].
Cancer cells lacking SMARCB1 or SMARCE1 demonstrate heightened ncBAF activity,
leading to the induction of a growth-promoting gene expression signature. Consequently,
these tumors exhibit a heightened susceptibility to BRD9 inhibition [9,57]. Therefore, there
are multiple examples which show that SWI/SNF-deficient cancer cells can be targeted for
elimination by further impairing SWI/SNF function.

SWI/SNF subunit loss can sensitize cancer cells to a wide range of therapeutics. There
is a synthetic lethal relationship between SMARCA4 and the PTEN tumor suppressor in
prostate cancer, rendering PTEN-deficient cells sensitive to SMARCA4 inhibition [111].
SMARCA4 loss sensitizes non-small cell lung cancer cells to CDK4/6 inhibition [112].
ARID1A loss in ovarian, breast, and pancreatic cancer cells sensitizes them to HDAC
inhibitors [113–115]. SMARCA4-deficient lung and ovarian cancer cells are insensitive to
HDAC inhibition but are highly sensitive to KDM6 histone demethylase inhibition [116].
The loss of other SWI/SNF subunits has been associated with an enhanced response
to CDK4/6 inhibitors, immunotherapy, and other therapeutics [73,81,117]. In a recent
Phase I clinical trial, durable responses to the ATR inhibitor, Ceralasertib, occurred in
patients whose tumors were ARID1A-deficient and had high levels of DNA damage and
inflammation [118]. In some contexts, SWI/SNF activity is required for proliferation and
tumorigenesis [119], with high levels of SWI/SNF subunits associated with poorer patient
survival [120,121]. Some missense mutations in SMARCA4 have been determined to be
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gain-of-function mutations, increasing remodeling efficiency and promoting promiscu-
ous chromatin accessibility [25]. These observations have been the impetus to develop
pharmacological approaches that intentionally inhibit SWI/SNF function in order to in-
duce synthetic lethality or to exploit vulnerabilities that render tumors responsive to
cancer therapeutics.

3. Pharmacological Inhibition of SWI/SNF Function

Several types of drugs are available to pharmacologically suppress SWI/SNF function
(Table 1).

Table 1. Drugs that inhibit SWI/SNF function and their effects on cancer cells.

Drug Name Mechanism of Action Cancer Models in Which Drug Is
Effective

ADAADi Inhibitor of DNA-dependent ATPAse
activity

Prostate, breast, hepatoblastoma,
lung cancers, and HeLa cells

BRM014 Allosteric inhibitor of SMARCA4/2
catalytic activity Glioma, leukemia

BRM011 Allosteric inhibitor of SMARCA4/2
catalytic activity Leukemia

JQ-dS-4
PROTAC: CRBN-based allosteric

inhibitor of SMARCA4/2 catalytic
activity

Glioma

FHD-286 Allosteric inhibitor of SMARCA4/2
catalytic activity Leukemia, uveal melanoma

PFI-3
Class VIII-selective SWI/SNF

bromodomain inhibitor: SMARCA4/2,
PBRM1

Multiple myeloma, glioblastoma
when combined with

temozolomide

PB16 PBRM1-selective bromodomain
inhibitor Prostate cancer

GNE-235 PBRM1-selective bromodomain
inhibitor Not yet tested

ACBI1
PROTAC: VHL-based Class VIII

bromodomain-selective ligand that
degrades SMARCA4/2 and PBRM1

Alveolar rhabdomyosarcoma,
leukemia

AU15330
PROTAC: VHL-based Class VIII

bromodomain-selective ligand that
degrades SMARCA4/2 and PBRM1

Prostate, glioma, breast cancers,
multiple myeloma, lymphoma,

EWING sarcoma, SMARCA4-null
melanoma, synergistic with

enzalutamide in prostate cancer

A947
PROTAC: VHL-based Class VIII

bromodomain-selective ligand that
selectively degrades SMARCA2

Lung cancer

LP99 Class IV bromodomain inhibitor that
inhibits BRD9 and BRD7 Germ tumor cells

BI-7271 Class IV bromodomain inhibitor that
selectively inhibits BRD9 Leukemia

BI-7273 Class IV bromodomain inhibitor that
selectively inhibits BRD9 Leukemia

BI-9564 Class IV bromodomain inhibitor that
selectively inhibits BRD9 Leukemia
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Table 1. Cont.

Drug Name Mechanism of Action Cancer Models in Which Drug Is
Effective

I-BRD9 Class IV bromodomain inhibitor that
selectively inhibits BRD9

Leukemia, clear cell renal
carcinoma, colorectal cancer,

ovarian cancer in combination
with DNA damaging agents

T-472 Class IV bromodomain inhibitor that
selectively inhibits BRD9

Melanoma and uterine
leiomyosarcoma

dBRD9
PROTAC: CRBN-based Class VIII

bromodomain-selective ligand (uses
BI7273) that degrades BRD9

Leukemia, synovial sarcoma,
multiple myeloma, clear cell

meningioma

C6
PROTAC: CRBN-based Class VIII

bromodomain-selective ligand (uses
BI7271) that degrades BRD9

Leukemia

VZ-185
PROTAC: VHL-based Class VIII

bromodomain-selective ligand that
degrades BRD7 and BRD9

Leukemia, malignant rhabdoid
tumor

CFT8634
PROTAC: CRBN-based Class VIII
bromodomain -elective ligand that

degrades BRD9

Synovial sarcoma and soft-tissue
sarcomas null for SMARCB1

FHD-609
PROTAC: CRBN-based Class VIII

bromodomain-selective ligand that
degrades BRD9

Synovial sarcoma and soft-tissue
sarcomas null for SMARCB1

I-78 Class IV bromodomain inhibitor that
selectively inhibits BRD7 Prostate cancer

2-77 Class IV bromodomain inhibitor that
selectively inhibits BRD7 Prostate cancer

BD98 cBAF inhibitor, binds to cBAF
complexes, and de-represses BMI1

Colon and breast cancer cells
when combined with ATR

inhibitor

A unique approach that led to identification of cBAF-specific inhibitors involved
screening molecules for the ability to de-repress the expression of the BMI1 gene [122]. The
binding of the macrolactam inhibitor, BD98, phenocopied some features of ARID1A/ARID1B
loss and synergized with ATR inhibitors to kill a diverse array of cancer cells. The inhibition
of ARID1A/ARID1B with BD98 in naïve CD8+T cells also improved the efficacy of adoptive
T cell therapy by preventing differentiation [123]. Although BD98 is a promising drug, the
most common approaches to pharmacologically suppress SWI/SNF function have been to
use inhibitors of the SMARCA4/2 ATPases (Figure 2A) or with small molecules that bind
Family VIII SWI/SNF bromodomains in SMARCA4, SMARCA2, PBRM1 (Figure 2A,B), as
well as Family IV bromodomains in BRD7 and BRD9 (Figure 2C,D).



Epigenomes 2024, 8, 7 7 of 22
Epigenomes 2024, 8, x FOR PEER REVIEW 7 of 23 
 

 

 
Figure 2. SWI/SNF subunits and the targeted domains. The most frequent approaches to inhibiting 
SWI/SNF function include the following: (A) Inhibition of the SMARCA4/SMARCA2 ATPase or in-
hibition of the SMARCA4 and SMARCA2 bromodomains with Family VIII inhibitors. (B) Family 
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ing proteolysis-targeting chimeras (PROTACs) [124], which covalently link the bromo-
domain or ATPase-binding ligand to an E3 ligase-binding ligand to achieve degradation 
of particular SWI/SNF subunits. An ample number of preclinical studies on these drugs 
have provided evidence of their therapeutic potential. Some of the drugs have recently 
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AML, R/R MDS, and 
R/R CMML not in 
blast crisis 

FHD-286, low-
dose cytara-
bine, decitabine 

Selective, oral in-
hibitor of 
SMARCA4/2  
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FHD-286 in 
Subjects With 
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noma 
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Metastatic uveal mela-
noma  
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Advanced or 
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ing 
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Figure 2. SWI/SNF subunits and the targeted domains. The most frequent approaches to inhibiting
SWI/SNF function include the following: (A) Inhibition of the SMARCA4/SMARCA2 ATPase or
inhibition of the SMARCA4 and SMARCA2 bromodomains with Family VIII inhibitors. (B) Family
VIII inhibitors also bind to PBRM1 bromodomains. There are also several PBRM1-selective inhibitors.
(C,D) Family IV bromodomain inhibitors bind to BRD7 and BRD9 bromodomains with varying
selectivity for BRD9 or BRD7.

The effectiveness of these small molecules can be extended or enhanced by construct-
ing proteolysis-targeting chimeras (PROTACs) [124], which covalently link the bromod-
omain or ATPase-binding ligand to an E3 ligase-binding ligand to achieve degradation
of particular SWI/SNF subunits. An ample number of preclinical studies on these drugs
have provided evidence of their therapeutic potential. Some of the drugs have recently
progressed to clinical trials (Table 2).

Table 2. Clinical trials that target SWI/SNF components (https://clinicaltrials.gov/). Accessed on 28
December 2023.

Study Title NCT Number Phase/Status Conditions Drug/
Intervention:

Mechanism References

FHD-286 as
Monotherapy or
Combination
Therapy in Subjects
With Advanced
Hematologic
Malignancies

NCT04891757 Phase
1/recruiting

Advanced
hematologic
malignancies like
R/R AML, R/R
MDS, and R/R
CMML not in blast
crisis

FHD-286,
low-dose
cytarabine,
decitabine

Selective, oral
inhibitor of
SMARCA4/2

[125]

FHD-286 in Subjects
With Metastatic
Uveal Melanoma

NCT04879017 Phase 1/active,
not recruiting

Metastatic uveal
melanoma

FHD-286 Selective, oral
inhibitor of
SMARCA4/2

[126]

A Study of PRT3789
in Participants With
Select Advanced or
Metastatic Solid
Tumors With a
SMARCA4 Mutation

NCT05639751 Phase
1/recruiting

Advanced,
recurrent, or
metastatic solid
tumor
malignancies with
loss of SMARCA4
due to truncating
mutation and/or
deletion without
concomitant
SMARCA2
mutation or loss of
SMARCA2 protein
expression

PRT3789 Smarca2-
bromodomain-
binding
degrader

[127]

https://clinicaltrials.gov/
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Table 2. Cont.

Study Title NCT Number Phase/Status Conditions Drug/
Intervention:

Mechanism References

FHD-609 in Subjects
With Advanced
Synovial Sarcoma or
Advanced
SMARCB1-Loss
Tumors

NCT04965753 Phase 1/active,
not recruiting

Advanced synovial
sarcoma or
advanced
SMARCB1-loss
tumors

FHD-609 Intravenously
administered
agent that
binds the
BRD9 bro-
modomain
and leads to
degradation
of the BRD9
protein

[128]

A Study to Assess the
Safety and
Tolerability of
CFT8634 in Locally
Advanced or
Metastatic
SMARCB1-
Perturbed Cancers,
Including Synovial
Sarcoma and
SMARCB1-Null
Tumors

NCT05355753 Phase 1, Phase
2/active, not
recruiting

Synovial or soft
tissue sarcoma and
SMARCB1-null
tumors who have
received prior
systemic therapy,
have re-
lapsed/refractory
tumors, have
unresectable or
metastatic disease,
and are not
candidates for
available therapies
known to confer
clinical benefit

CFT8634 Orally taken
agent that
binds the
BRD9 bro-
modomain
and leads to
BRD9
degradation

[129]

3.1. Inhibitors of SWI/SNF Catalytic Activity

Active DNA-dependent ATPase A Domain inhibitor (ADAADi), generated by the
activity of aminoglycoside phosphotransferases, was the first inhibitor of SWI/SNF cat-
alytic activity to be discovered [130]. ADAADi competes with DNA for binding to DNA-
dependent ATPase domains and potently inhibits SWI/SNF ATPase activity and ATP-
dependent chromatin remodeling [131,132]. ADAADi was found to suppress prostate
cancer tumor growth and to sensitize breast cancer cells to chemotherapeutics [133,134].
ADAADi also potently suppressed the proliferation of a number of other cancer cells,
including HeLa, lung cancer, and hepatoblastoma cells. Although it is unclear how specific
ADAADi is for SWI/SNF ATPases over that of other DNA-dependent ATPases, as the first
SWI/SNF inhibitor, it has laid the foundation for subsequent advancements in this field.

Allosteric inhibitors of the SMARCA4/SMARCA2 ATPase domains such as the com-
pound, BRM014, are promising drugs for specific inhibition of SWI/SNF activity [135].
BRM014 and other ATPase inhibitors elicit very rapid changes in chromatin accessibility,
occurring within minutes [59,60]. BRM014 potently inhibited the growth of an aggressive
type of glioma harboring the histone H3 lysine 27 to a methionine mutation (H3K27M)
in vitro and in vivo [136,137]. An ATPase degrader, JQ-dS-4, constructed by linking a BRG1
ATPase inhibitor to a phthalimide, which is a target for cereblon (CRBN) ubiquitin ligase,
led to a reduction in chromatin accessibility at BRG1 binding sites and reduced the prolifer-
ation of H3K27M-driven gliomas. However, the degrader was less effective at curtailing
tumor growth than the original ATPase inhibitor compound when used in an H3K27M
glioma subcutaneous xenograft model, likely due to a reduced bioavailability of the drug.
This study has demonstrated the potent anti-tumor effects of a SWI/SNF allosteric ATPase
inhibitor on a highly aggressive brain cancer. It remains unclear whether generating a
PROTAC from SWI/SNF ATPase inhibitors will be therapeutically advantageous over the
unlinked molecule. Although promising, this study did not find that the drugs could cross
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the blood–brain barrier. This is a major challenge for translating these SWI/SNF inhibitors
to the clinic for treating gliomas and other brain cancers.

Acute myeloid leukemia (AML) cells were found to be highly sensitive to allosteric
SMARCA4/SMARCA2 inhibitors, BRM011 and BRM014 [138]. Previous studies had deter-
mined that a subset of AML cells that are dependent on the MYC oncogene are sensitive
to SMARCA4 depletion [101]. However, these allosteric ATPase compounds curtailed the
proliferation of a wider range of leukemia cells. These cells were sensitive to the dual
depletion of SMARCA4 and SMARCA2, but not to the depletion of SMARCA4 alone.
BRM011 promoted both apoptosis and differentiation through the regulation of MYC and
other oncogenic pathways, including mTORC1, IL2/STAT5, KRAS, and EMT pathways,
curtailing tumor growth in AML xenograft models with no evidence of toxicity. The
SMARCA4/SMARCA2 allosteric inhibitor, FHD-286, effectively suppressed the prolifer-
ation of a broad collection of patient-derived AML cells, promoted differentiation, and
decreased tumor growth in vivo [125]. FHD-286 is currently in Phase I clinical trials as a
monotherapy or combination therapy with the DNA-hypomethylating agent, decitabine,
and low-dose antimetabolite, cytarabine, for patients with advanced hematological malig-
nancies.

Uveal melanoma is another cancer type that is highly sensitive to treatment with
allosteric SMARCA4/SMARCA2 inhibitors [139]. This rare melanoma of the eye is
dependent on the cooperation between the SWI/SNF complex and the melanocyte-
inducing transcription factor (MITF) to drive a transcriptional program essential for uveal
melanoma cell survival. Some uveal melanoma cell lines were highly sensitive to the
depletion of SMARCA4 alone and others were only sensitive to the dual depletion of
both SMARCA4 and SMARCA2. The treatment of uveal melanoma cells with BRM011
decreased chromatin accessibility at MITF binding sites and suppressed MITF and MITF
target gene expression. Furthermore, BRM011 suppressed tumor growth in a uveal
melanoma xenograft model, with no evidence of toxicity. The potential use of allosteric
inhibitors of SMARCA4/SMARCA2 is a significant breakthrough for a cancer type that has
few treatment options. Uveal melanoma is a highly aggressive cancer that metastasizes
in half of all patients and, unlike cutaneous melanoma, does not respond to targeted and
immunotherapy approaches [140]. The inhibition of SMARCA4/SMARCA2 with FHD-286
has advanced to Phase I clinical trials for patients with metastatic uveal melanoma [126].

3.2. Targeting SWI/SNF Bromodomains

An alternative approach toward inhibiting SWI/SNF function is with the use of bro-
modomain inhibitors that selectively bind any of the five SWI/SNF subunits bearing
bromodomains [141]. Bromodomains are protein modules that bind acetylated lysines on
histones and other proteins. They are important readers of the epigenetic code and can help
recruit chromatin-remodeling complexes to regions containing acetylated chromatin [142].
In mammalian cells, the sixty-one different bromodomains are contained within forty-six
proteins, all sharing a conserved structural motif consisting of a left-handed bundle of
four α helices, linked by loop regions of variable length to form a hydrophobic pocket.
Although the bromodomain is a conserved module, there are considerable sequence vari-
ations that impart specificity in the recognition of acetylated lysine motifs. The different
bromodomains are classified into eight different families based on sequence and struc-
tural similarities. The enormous therapeutic potential of drugs, which selectively bind the
extraterminal (BET) family of bromodomains in Family II, has stimulated interest in devel-
oping selective drugs that target other cancer-relevant bromodomains [143–148]. Drugs
that selectively target Family VIII bromodomains, including SMARCA4, SMARCA2, and
PBRM1, [141,149] as well as those which target Family IV, including BRD7 and BRD9 [150],
disrupt SWI/SNF interactions with chromatin, and thereby exert genomic effects.
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3.2.1. Targeting SWI/SNF Family VIII Bromodomains

Several small molecules that bind Family VIII were developed and studied for their
potential as cancer therapeutic agents. The first of these drugs to be characterized was PFI-3,
which selectively binds to the bromodomains of SMARCA4, SMARCA2, and PBRM1 [151].
PFI-3-compromised embryonic stem cell maintenance and lineage specification, inhibited
myogenesis and adipogenesis, and had mild effects on melanogenesis [152–155]. However,
the inhibition with PFI-3 as a single drug had limited effects on breast cancer cell prolifera-
tion [156]. PFI-3 failed to completely displace SWI/SNF catalytic subunits from chromatin
and did not re-capitulate synthetic lethality in SWI/SNF-deficient cancer cells as did the
loss of the ATPase domain [157]. However, in multiple myeloma cells, PFI-3 displaced
SMARCA2 and the oncogenic driver, NSD, from chromatin, suppressing oncogenic gene
expression and tumor growth [158]. PFI-3 also enhanced the anti-cancer effects of temozolo-
mide and sensitized highly resistant glioblastoma cells to the drug [159]. In combination
with other DNA damaging drugs, PFI-3 induced death by displacing SMARCA4 from
chromatin, compromising DSB repair [160]. These studies demonstrate that the anti-cancer
effects of PFI-3 are contingent on whether the SWI/SNF VIII bromodomains are required
for SWI/SNF recruitment to specific genomic sites that promote tumorigenesis or affect
sensitivity to other chemotherapeutics. Furthermore, there is therapeutic potential in com-
bining Family VIII bromodomain inhibitors with chemotherapeutics. Building upon PFI-3,
next generation Family VIII bromodomain inhibitors were developed, which exert cellular
effects [161,162]. Some of these newer drugs enhance cytotoxicity when combined with
DNA-damaging agents in glioblastoma cells [161].

Family VIII inhibitors that are selective for PBRM1 bromodomains over those of
SMARCA4 and SMARCA2 have also been developed and studied for anti-cancer ef-
fects [163–165]. Although a tumor suppressor in some cancers [166], PBRM1 promotes
prostate cancer growth and progression [167,168]. As discussed previously, cancers with a
loss of PBRM1 are more responsive to DNA damage and immune checkpoint inhibitors [50–
52], suggesting that small molecule inhibitors selective for PBRM1 would be therapeutically
useful. PBRM1-selective compounds were developed by targeting the second bromod-
omain of PBRM1 using an NMR-based fragment screen [164]. These drugs effectively
inhibited the proliferation of an androgen receptor (AR)-positive prostate cancer cell line,
with the most potent compound, PB16, exerting its effects in the sub-micromolar range.
GNE-235 is a promising new PBRM1-selective inhibitor that has not yet been tested for its
anti-tumor effects [165]. The promising results obtained with PB16 suggest that GNE-235
and other PBRM1-selective inhibitors should be further explored for anti-cancer effects as
single drugs and in combination with DNA damaging agents and checkpoint inhibitors.

The anti-cancer effects of Class VIII SWI/SNF bromodomain inhibitors can be en-
hanced by linking the bromodomain-binding ligand to an E3 ligase-binding ligand [102,
165,169]. These PROTACs expand the anti-cancer effects of bromodomain inhibitors by
degrading the bromodomain-containing subunits and taking them out of action. As a
result, there is an inhibition of the whole subunit, not just the bromodomain. This strategy
can displace SWI/SNF and suppress SWI/SNF activity at sites or in contexts that do not
require SWI/SNF bromodomains for tumorigenesis.

The PROTAC, ACBI1, is a Class VIII bromodomain-binding ligand [169] linked to a lig-
and of the von Hippel–Lindau (VHL) E3 ubiquitin ligase that induces rapid degradation of
SMARCA4, SMARCA2, and PBRM1, altering the composition of both BAF and PBAF com-
plexes. In contrast to the non-degrader form of ACBI1, which had no anti-cancer effect, the
ACBI1 PROTAC killed SMARCA4-dependent leukemia cells as well as SWI/SNF-deficient
cancer cells that are dependent on residual SWI/SNF activity. ACBI1 also compromised
the growth of alveolar rhabdomyosarcoma tumors harboring the PAX3:FOX01 oncogene,
demonstrating its anti-cancer effects in vivo [170].

AU-15330 is another SWI/SNF subunit degrader that similarly links a Class VIII
bromodomain ligand to the VHL ligand to rapidly degrade SMARCA4, SMARCA2, and
PBRM1 [102]. The treatment of AR-positive prostate cancer cells with AU-15330 reduced
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DNA accessibility at oncogenic enhancer elements and disrupted enhancer–promoter loops
and AR and FOXA1 occupancy, thereby suppressing oncogenic gene expression. Changes in
chromatin accessibility were also elicited by the concurrent genetic depletion of SMARCA4
and SMARCA2, indicating that the degradation of the catalytic subunits underlies the
effects of AU-1530. AU-1530 suppressed tumor growth in xenograft models of prostate
cancer and synergized with the AR antagonist, enzalutamide. AU-1530 was effective in
other cancer types. The proliferation of MYC-driven multiple myeloma cells and estrogen
receptor (ER)- and/or AR-positive breast cancer cells was also inhibited by AU-15330, with
no toxicity to normal cells or to animals. H3K27M gliomas were highly sensitive to AU-
15330 [171]. AU-15330 reduced chromatin accessibility at non-promoter sites, including the
FOX01 enhancer. The loss of FOX01 expression led to the loss of oncogenic gene expression
and suppression of glioma cell proliferation. The anti-cancer effects of AU-15330 were
attributed to the loss of SMARCA4. SMARCA4 was found to maintain gliomas in an
undifferentiated stem cell state, regulate genes involved in cell growth and extracellular
matrix, and promote tumor growth in vivo in an H3K27M-dependent manner [136,137].
These studies demonstrate that AU-15330 suppresses SWI/SNF activity to exert anti-cancer
effects on multiple cancer types driven by oncogenic enhancer circuitry. Furthermore, the
synergy observed with the AU-15330 and enzalutamide combination provides compelling
evidence for combining these drugs to enhance the effects of other therapeutics.

A SMARCA2-selective degrader, A947, was generated by linking a Family IV bro-
modomain ligand to a moiety that is targeted to the von Hippel–Lindau (VHL) ubiquitin
ligase complex [172]. Although the ligand could bind to SMARCA4, SMARCA2, and
PBRM1 bromodomains, A947 rapidly degraded SMARCA2 with moderate selectivity over
SMARCA4 and PBRM1. This change in ligand selectivity upon the generation of a PRO-
TAC has been previously demonstrated and likely involves differential protein–protein
interactions between the target proteins and the E3 ligase with some favoring degradation
more than others [173]. Hence, the enhanced target selectivity that can be achieved with the
proper design of the PROTAC demonstrates another advantage of using these molecules
for inhibiting SWI/SNF bromodomains. A947 suppressed SMARCA4 mutant lung cancer
growth in vivo and synergized with an inhibitor to the MCL1 anti-apoptotic protein to
enhance apoptosis. PRT3789 is another potent and selective SMARCA2-targeted degrader
that demonstrated synthetic lethality in SMARCA4-deficient cancers in vitro and in vivo
and is currently in Phase I clinical trials for patients with SMARCA4 mutant solid tumors
that express SMARCA2 [127].

3.2.2. Targeting SWI/SNF Family IV Bromodomains

BRD9 and BRD7 are paralogous subunits with highly similar Family IV bromod-
omains [141], but are assembled into different SWI/SNF complexes (Figure 1). Loss-of-
function mutations in the gene encoding BRD9 are rare; the BRD9 gene is amplified in
multiple cancers [82] and is considered an oncogene in some of them. BRD9 is therefore an
attractive target in cancer. The paralog, BRD7, has context-dependent tumor suppressive
or tumor-promoting functions [174–176]. The depletion of BRD7 improves the response
to the immune checkpoint and CHK1 inhibitors [52,177], suggesting that BRD7 is also a
potential therapeutic target in some cancers. LP99 was the first drug to bind the BRD9 and
BRD7 bromodomains, displacing both proteins from acetylated histones and inhibiting the
proliferation of germ tumor cell lines, with EC50s in the micromolar range [178,179]. Drugs
with higher potency and varying selectivity for either BRD9 and/or BRD7 have since been
developed and tested for their anti-cancer effects [180].

Many inhibitors of the SWI/SNF Family IV bromodomains have focused on BRD9.
BI-7271, BI-7273, and BI-9564 are potent selective BRD9 inhibitors that suppress leukemia
cell proliferation [181]. AML cells depend on BRD9 to sustain the expression of the MYC
oncogene and MYC transcriptional programs to prevent differentiation and promote pro-
liferation. BI-7273 suppressed the MYC transcriptional program and proliferation in a
BRD9 bromodomain-dependent manner, but did not affect proliferation of epithelial cancer
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cells [106]. I-BRD9, which has 700-fold selectivity over the BET family and 200-fold selectiv-
ity over BRD7 [182], also effectively suppressed leukemia cell proliferation [183]. I-BRD9
has been studied for its anti-cancer effects in a wide variety of cancers. I-BRD9 suppressed
clear cell renal carcinoma tumor growth, a cancer in which BRD9 is up-regulated by FTO
and recruited with SOX17 to enhancers that promote oncogenic gene expression [184].
I-BRD9 also blocked colorectal adenocarcinoma tumor growth through a mechanism that
involves the regulation of glycolytic gene expression by BRD9 [185]. Natural phenols that
inhibit BRD9 as well as I-BRD9 reduced colon cancer cell viability and colony formation
by increasing DNA damage and apoptosis [186]. I-BRD9 sensitized ovarian cancer cells
to DNA damaging agents, synergizing with PARP inhibitors to suppress ovarian cancer
tumor growth [63]. TP-472, which has less selectivity for BRD9 over BRD7 compared to
other BRD9 inhibitors, blocked melanoma tumorigenicity and tumor growth in vivo [121]
as well as suppressed the proliferation of uterine leiomyosarcoma cells [187]. However,
it is unclear whether BRD9 or BRD7, or both, were responsible for TP-472 anti-cancer
effects. Another caveat is that TP-472 has been reported to have off-target effects on the
efflux transporter ATP-binding cassette subfamily G member 2 (ABCG2) [188]. Therefore,
although studies indicate that BRD9 inhibitors abrogate tumorigenicity in diverse cancer
types, because the drugs differ in their selectivity, confirmation of the target via genetic
depletion is crucial to understand drug mechanism in a particular cellular context.

Several BRD9 PROTACs have been constructed and shown to exert anti-cancer ef-
fects [189]. In an initial attempt to generate a BRD9 PROTAC, GSK39, a molecule with
a structure similar to I-BRD9 was conjugated to a ligand that binds the cereblon (CRBN)
ubiquitin ligase complex [182,190]. This compound was highly potent, but also degraded
BRD7 and BET proteins, showing off-target effects. dBRD9 was then developed by utilizing
BI-7273 to make the CRBN-targeting molecule. dBRD9 was highly selective for BRD9, did
not degrade BRD7 or BET proteins in treated AML cells, and effectively blocked AML
proliferation. dBRD9 suppressed oncogenic gene expression and induced synthetic lethality
in synovial sarcoma cells more effectively than the parent compound, BI-7273, suggesting
that a complete loss of the BRD9 protein is more deleterious than the sole inhibition of the
bromodomain [5]. This is due, at least in part, to the bromodomain-independent binding
of BRD9 to chromatin and the disruption of ncBAF when BRD9 expression is lost [191].
dBRD9 also suppressed multiple myeloma tumor growth by down-regulating ribosome
biogenesis gene expression through a mechanism involving cooperation between BRD9 and
BRD4, thereby increasing MYC transcriptional activity [192]. Clear cell meningioma cells
with a loss of SMARCE1 were also highly sensitive to dBRD9 [57]. C6 is a recently devel-
oped orally active PROTAC that utilizes BI-7271 to make a CRBN-targeting molecule. This
compound selectively degraded BRD9, did not demonstrate any observable degradation
of BRD4 or BRD7, and potently suppressed AML growth in vitro and in vivo [193]. Other
variations on BRD9 degraders include VZ-185, which degrades both BRD9 and BRD7 [194].
VZ-185 is VHL-based degrader that potently suppresses leukemia and malignant rhabdoid
tumor cell proliferation. CFT8634 is a highly potent and orally bioavailable CRBN-based
BRD9 degrader that is currently undergoing clinical trials for synovial or soft tissue sar-
comas and SMARCB1-null tumors [129]. FHD-609 is a CRBN-based BRD9 degrader that
is administered intravenously and is currently in Phase I clinical trials for patients with
advanced synovial sarcoma or advanced SMARCB1-deficient tumors [128]. Hence, BRD9
inhibitors and degraders are promising drugs for the treatment of diverse cancers.

The first BRD7-selective inhibitors were recently developed and characterized [195].
The compounds 1-78 and 2-77 showed significantly increased affinity to the BRD7 bromod-
omain over that of BRD9 and were unable to displace BRD9 from chromatin, even at high
concentrations. Both 1-78 and 2-77 inhibited AR target gene expression and cell growth
in prostate cancer cells in a BRD7-dependent manner at sub-micromolar concentrations.
In contrast, the BRD9 inhibitor, BI7273, had no effect on prostate cancer growth. These
findings clearly demonstrate the selectivity of these compounds for BRD7. Interestingly,
there was a high level of overlap in differentially regulated genes elicited via 2-77 and
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the SMARCA4/SMARCA2 degrader (ACBI1) as well as the PBRM1 inhibitor (PB16), and
less overlap with the BRD9 degrader (dBRD9) and cBAF inhibitor (BD98), suggesting
sub-complex specific regulation of gene regulation in prostate cancer cells. These promising
findings on these novel BRD7-selective inhibitors deserve further exploration in other
cancer types and in mouse models.

4. Conclusions

The pharmacological inhibition of SWI/SNF complexes is a novel approach to treat
cancer. The most frequently employed approaches for inhibiting SWI/SNF function are to
utilize allosteric inhibitors of the SWI/SNF ATPases or compounds that selectively bind to
the SWI/SNF bromodomains. All of these methods exert anti-cancer effects in a context-
dependent manner and are surprisingly non-toxic even when combined with other drugs. It
is difficult to predict which approach is better in a particular context because of the limited
number of studies that have compared these different approaches. Allosteric inhibitors of
ATPase function offer the advantage of rapid and effective suppression of all SWI/SNF
chromatin-remodeling activities. According to one study, making a PROTAC from allosteric
inhibitor molecules does not increase anti-cancer effects in vitro and may decrease efficiency
in vivo due to lower bioavailability [136]. This suggests that generating PROTACs from
SWI/SNF allosteric inhibitors may not be advantageous. However, given that SMARCA4
and SMARCA2 exhibit functions independent of catalytic activity [196], the development
of a bioavailable PROTAC from allosteric inhibitors may hold therapeutic potential and
deserves further exploration. Several studies indicate that combining bromodomain ligands
to degraders frequently generates more potent molecules that can also be more selective.
These studies demonstrate that, in many cases, the PROTACs areadvantageous compared
to the single-bromodomain ligands [169,172]. Despite the powerful effects of inhibiting
bromodomain subunits, one study indicated that a disruption of SWI/SNF remodeling
activity has a more profound effect on gene expression than the disruption of SWI/SNF
sub-complexes through bromodomain inhibition and degradation [195]. However, the loss
of ATPase subunits does not necessarily eliminate all SWI/SNF functions, as seen in cancers
such as small cell carcinoma of the ovary—hypercalcemic type (SCCOHT)—where there
is a dual loss of SMARCA4/2, but which retain residual complexes without the catalytic
activity that may contribute to oncogenic gene expression [196].

While the chemical inhibition of SWI/SNF is a promising approach for treating many
cancers, there are still unanswered questions and challenges to overcome. Although
gliomas, as well as many cancers that metastasize to the brain, are sensitive to SWI/SNF
inhibition, the inability to cross the blood–brain barrier will deter their efficacy in these
contexts. Furthermore, although not toxic, the long-term effects of drugs that inhibit
SWI/SNF function are not known. Given its tumor suppressor role, a long-term pharmaco-
logical inhibition of SWI/SNF could predispose cancer patients to secondary malignancies.
Extended SWI/SNF inhibition may also compromise adult stem cell maintenance, the
heart, and tissues that require SWI/SNF activity. Studies on long-term exposure, potential
development of drug resistance, and the identification of biomarkers that predict efficacy
are among the issues that need to be further explored.
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