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Abstract: DNA methylation (DNAm) is a plausible mechanism underlying cardiometabolic abnor-
malities, but evidence is limited among youth. This analysis included 410 offspring of the Early
Life Exposure in Mexico to Environmental Toxicants (ELEMENT) birth cohort followed up to two
time points in late childhood/adolescence. At Time 1, DNAm was quantified in blood leukocytes at
long interspersed nuclear elements (LINE-1), H19, and 11β-hydroxysteroid dehydrogenase type 2
(11β-HSD-2), and at Time 2 in peroxisome proliferator-activated receptor alpha (PPAR-α). At each
time point, cardiometabolic risk factors were assessed including lipid profiles, glucose, blood pres-
sure, and anthropometry. Linear mixed effects models were used for LINE-1, H19, and 11β-HSD-2
to account for the repeated-measure outcomes. Linear regression models were conducted for the
cross-sectional association between PPAR-α with the outcomes. DNAm at LINE-1 was associated
with log glucose at site 1 [β = −0.029, p = 0.0006] and with log high-density lipoprotein cholesterol at
site 3 [β = 0.063, p = 0.0072]. 11β-HSD-2 DNAm at site 4 was associated with log glucose (β = −0.018,
p = 0.0018). DNAm at LINE-1 and 11β-HSD-2 was associated with few cardiometabolic risk factors
among youth in a locus-specific manner. These findings underscore the potential for epigenetic
biomarkers to increase our understanding of cardiometabolic risk earlier in life.

Keywords: cardiometabolic risk factors; population-based study; children and adolescents; Mexicans;
biomarkers; epigenetics; DNA methylation

1. Introduction

Obesity is rising worldwide among children aged 5–19 years. In Latin America
and the Caribbean region, prevalence rose over a 40-year period from 1.6% and 1.8%
in 1975 to 10.4% and 13.4% in 2016 for girls and boys, respectively [1]. Obesity has been
associated with increases in the risk and prevalence of cardiometabolic abnormalities among
youth [2–4]. A cluster of cardiometabolic abnormalities, called metabolic syndrome [5,6], is
considered a risk factor for cardiovascular disease (CVD) incidence, cardiovascular-related
mortality, all-cause mortality [7,8], and other chronic diseases [9,10]. Rising prevalence of
metabolic syndrome may be a driver of the CVD and type-2 diabetes epidemics [11]. Even
though CVD outcomes are manifested in middle and late adulthood, cardiometabolic risk
factors may become evident during childhood [12–17] and track into adulthood [4,18,19].
Identifying the determinants of cardiometabolic risk factors in youth could serve as a
fundamental step for risk reduction and prevention [4,20].
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Epigenetic modification is one potential underlying mechanism in obesity, cardiometabolic
abnormalities, and CVD [21–28]. Previous research highlighted the importance of epige-
netics as a potential biomarker for screening, diagnosis, prognosis, and individualized
treatment regimens [23,24,29–31]. DNA methylation (DNAm), a commonly studied epige-
netic modification, has been associated with CVD [21–27,32,33] and cardiometabolic risk
factors, mainly in adults [21,28,34–36]. Existing evidence showed that DNAm during early
development was associated with obesity and CVD risk later in life [37]; early embryo-
genesis is a particularly sensitive time period for epigenetic alteration by environmental
factors that may contribute to disease risk [38]. However, adolescence is also a susceptible
period for the impact of environmental stimuli on DNAm [39,40]. Furthermore, adoles-
cence is characterized by changes in body composition and hormonal milieu [41]—the
hallmarks for cardiometabolic abnormalities [42]. Despite the importance of this milestone,
scare evidence is available investigating the potential of using DNAm as biomarkers for
cardiometabolic health among children and adolescents.

The current study will address this gap in knowledge by examining the association of
DNAm in blood leukocytes with cardiometabolic risk factors among Mexican children and
adolescents enrolled in the Early Life Exposures in Mexico to ENvironmental Toxicants (EL-
EMENT) Cohort. Specifically, we quantified CpG site-specific DNAm at repetitive elements
(long interspersed nuclear element-1, LINE-1), which comprises 15–17% of the human
genome [43,44]. DNAm of LINE-1 is often used as a proxy measure for global DNAm [45],
and it has been found to associate with CVD independent from well-established CVD risk
factors in adults [46]. The other three genes are H19, 11β -hydroxysteroid dehydrogenase
type 2 (11β-HSD-2), and peroxisome proliferator-activated receptor alpha (PPAR-α), which
were selected based on their associations with components of cardiometabolic health. H19
is an imprinted gene with a role in regulating cell formation and proliferation, body weight,
adipogenesis, and brown adipose tissue thermogenesis [47–50], and abnormal fat parti-
tioning is a crucial underlying factor in impaired cardiometabolic health [51]. 11β-HSD-2
converts cortisol to an inactive metabolite called cortisone [52,53]. Previous studies have
associated 11β-HSD-2 regulation with blood pressure [54–56], insulin sensitivity [57], and
type 2 diabetes [58]. Blood pressure and glucose hemostasis are cornerstones in assess-
ing cardiometabolic health; however, the latter is of great interest for Hispanic youth as
insulin resistance was reported among normal-weight Mexican youth [59]. Lastly, PPAR-α
controls multiple lipid metabolism pathways [60,61], and it was associated with serum
triglycerides [62]. PPAR-α dysregulation is thought to play a role in dyslipidemia, diabetes,
and obesity [63]. Based on functions of the genes and results from related studies, we
hypothesized that altered DNAm of these regions would associate with cardiometabolic
health measures (waist circumference, blood pressure, and serum glucose, high-density
lipoprotein cholesterol, and triglycerides) in children and adolescents.

2. Results

We assessed DNAm and cardiometabolic outcomes at one to two time points each in
children from the ELEMENT cohort. The final sample sizes for LINE-1, 11β-HSD-2, and H19
were 242, 229, and 245 subjects, respectively, with DNAm at Time 1 and outcomes at Time 1
and/or Time 2. For PPAR-α, 345 subjects had DNAm and outcomes at Time 2 (Figure 1).
Table 1 shows the demographic characteristics of the 410 children by time point. At Time 1,
the mean (standard deviation (SD)) age of the sample was 10.34 (1.67) years and 53.25% were
female. At Time 2, the mean age was 14.08 (2.03) years and 51.32% were female. Among
cardiometabolic risk factors, only waist circumference and serum triglycerides values were
greater at Time 2 than at Time 1. We examined the crude association between DNAm values
across sites within each genomic region. We found that LINE-1, H19, and PPAR-α were
moderately to strongly correlated with one another. 11β-HSD-2 sites were less correlated
as we have observed in past studies with this same gene (Supplementary Tables S1–S4).
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Figure 1. Summary of the Main Predictors and Outcomes for this Study and Number of Participants
with the Data from the Early Life Exposures in Mexico to ENvironmental Toxicants (ELEMENT)
Cohort. Abbreviations: DNAm = DNA methylation; Long interspersed nuclear elements (LINE-1);
11β-hydroxysteroid dehydrogenase type 2 (11β-HSD-2); Peroxisome proliferator-activated receptor
alpha (PPAR-α).

Table 1. Descriptive Statistics of Mother and Child Characteristics of the Early Life Exposures in the
Mexico to ENvironmental Toxicants (ELEMENT) Analytical Sample.

Time 1
n = 246

Time 2
n = 380

Maternal Characteristics (At Time of Child’s Birth)

Years of education, %

<12 years 121 (49.19) 1 196 (51.58) 2

12 years 90 (36.59) 1 131 (34.47) 2

>12 years 34 (13.82) 1 52 (13.68) 2

Age at childbirth, (years) 26.86 (5.64) 1 26.47 (5.46) 2

Parity, %
1 90 (36.59) 1 144 (37.89) 2

2 89 (36.18) 1 135 (35.53) 2

≥3 66 (26.83) 1 100 (26.32) 2

Marital status, %

Married 175 (71.14) 1 274 (72.11) 2

Other 70 (28.46) 1 105 (27.63) 2

Enrollment in calcium supplementation study, %

Not enrolled 152 (61.79) 1 257 (67.63) 2

Enrolled 93 (37.80) 1 122 (32.11) 2

Child Characteristics (At birth)

Female, % 131 (53.25) 195 (51.32)
Gestation age, (weeks) 38.85 (1.49) 3 38.79 (1.61) 4

Mode of delivery, %
Vaginal delivery 140 (56.91) 5 220 (57.89) 6

C-Section 103 (41.87) 5 158 (41.58) 6

Birth weight, (kg) 3.15 (0.45) 7 3.15 (0.48) 6

Breastfeeding duration, (months) 8.15 (5.91) 1 8.09 (6.07) 2

Child Characteristics (At follow-up visits)

Age, (years) 10.34 (1.67) 14.08 (2.03)
Body mass index Z-score for age 0.85 (1.24) 0.53 (1.26) 6

Metabolic equivalents, (METs/week) 31.38 (19.97) 60.63 (38.76)
Total caloric intake, (kcal/day) 2636.32 (839.83) 2371.62 (936.82)

Pubertal onset, % 103 (41.87) 350 (92.11) 8
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Table 1. Cont.

Time 1
n = 246

Time 2
n = 380

Cardiometabolic risk factors (Outcomes)

Waist circumference, (cm) 70.81 (10.71) 79.14 (11.42)
Systolic blood pressure, (mmHg) 102.74 (10.24) 97.23 (9.62)
Diastolic blood pressure, (mmHg) 65.58 (7.31) 62.24 (6.71)

Fasting glucose, (mg/dL) 86.98 (9.38) 77.48 (7.05) 9

High-density lipoprotein cholesterol, (mg/dL) 58.76 (11.92) 42.95 (8.87) 9

Triglycerides, (mg/dL) 87.89 (44.40) 105.81 (57.47) 9

DNAm (Predictors)

LINE-1 DNAm, % (averaged across 4 CpG sites) 78.49 (2.31) 5 N/A
11β-HSD-2 DNAm, % (averaged across 5 CpG sites) a −0.85 (1.34) N/A

H19 DNAm, % (averaged across 4 CpG sites) 58.31 (5.16) 1 N/A
PPAR-α DNAm, % (averaged across 2 CpG sites) N/A 10.62 (2.09) 10

Means (SD) or count (percentages) are presented for continuous or categorical variables, respectively. Number
of missing values 1 n = 245, 2 n = 379, 3 n = 242, 4 n = 377, 5 n = 243, 6 n = 378, 7 n = 244, 8 n = 373, 9 n = 342,
10 n = 358. a Negative values appear for 11β-HSD-2 because values are standardized to controls included on each
plate to reduce the impact of pyrosequencing batch effects. Abbreviations: DNAm = DNA methylation; Long
interspersed nuclear elements (LINE-1); 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD-2); Peroxisome
proliferator-activated receptor alpha (PPAR-α).

2.1. Associations between the DNAm z-Score at LINE-1 and Repeated Measures of Cardiometabolic
Risk Factors

In adjusted models, LINE-1 methylation levels were inversely associated with log
serum fasting glucose at site 1 [β = −0.029, p = 0.0006]; for each one standard deviation
increase in DNAm (i.e., +4%), there was an approximately 3% decrease in log fasting
glucose. In addition, a positive association was detected between DNAm at site 3 and log
serum fasting high-density lipoprotein cholesterol [β = 0.063, p = 0.0072], which means that
for each one standard deviation increase in DNAm (i.e., +3%), there was an approximately
6% increase in log high-density lipoprotein cholesterol (Table 2). Sensitivity analysis
(i.e., additionally adjusting for pubertal onset) did not attenuate the detected associations
(Supplementary Table S5).

2.2. Associations between the DNAm z-Score at 11β-HSD-2 and Repeated Measures of
Cardiometabolic Risk Factors

DNAm at site 4 showed an inverse association with log serum fasting glucose (mg/dL)
[β = −0.018, p = 0.0018] (Table 3). In sensitivity analysis (i.e., additionally adjusting for
pubertal onset), associations found with fasting glucose maintained similar magnitude and
significance (Supplementary Table S6).

2.3. Associations between the DNAm z-Score at H19 and Repeated Measures of Cardiometabolic
Risk Factors

In the adjusted models, DNAm at none of the individual CpG sites was associated
with the cardiometabolic outcomes (Supplementary Table S7). Results did not change in
the two sensitivity analyses (Supplementary Tables S8 and S9).

2.4. Cross-Sectional Associations between the DNAm z-Score at PPAR-α and Cardiometabolic
Risk Factors

In a cross-sectional analysis, DNAm was not associated with the cardiometabolic risk
factors (Table 4). The sensitivity analysis (i.e., after adjusting for pubertal onset) showed
the same result (Supplementary Table S10).

As an explanatory analysis, we assessed the crude association between DNAm values
and gene expression for PPAR-α. RNA-seq data were available for a small subset of subjects
at the same time point (i.e., Time 3) (n = 65). Weak non-significant positive correlations
were identified between mRNA and DNAm (site 1: Spearman’s correlation [rs] = 0.14,
(p = 0.26); site 2: rs = 0.10, (p = 0.42); average of the two sites rs = 0.12, (p = 0.33)).
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Table 2. Associations between the DNAm z-score at LINE-1 and Repeated Measures of Car-
diometabolic Risk Factors using Mixed-effects Models (n = 242).

LINE-1 z-Score at Site 1 LINE-1 z-Score at Site 2 LINE-1 z-Score at Site 3 LINE-1 z-Score at Site 4

Estimate (SE) p-Value Estimate (SE) p-Value Estimate (SE) p-Value Estimate (SE) p-Value

Waist circumference (cm)
(Total number of observations = 441, of which 43 (17.77%) subjects had one measurement

and 199 (82.23%) subjects had two measurements)

Model 1 −0.5960
(1.0435) 0.5684 1.1418 (1.4217) 0.4227 −0.4783

(1.1510) 0.6781 0.2997 (0.9013) 0.7398

Model 2 0.5615 (1.0072) 0.5777 0.9837 (1.3686) 0.4730 −1.7757
(1.1106) 0.1111 0.3214 (0.8710) 0.7124

Systolic blood pressure (mmHg)
(Total number of observations = 441, of which 43 (17.77%) subjects had one measurement

and 199 (82.23%) subjects had two measurements)

Model 1 −0.4560
(0.8541) 0.5939 −0.1855

(1.1698) 0.8741 0.1632 (0.9435) 0.8628 0.9703 (0.7361) 0.1887

Model 2 −0.9634
(0.8928) 0.2817 −0.00023

(1.2181) 0.9999 0.4640 (0.9898) 0.6397 0.8922 (0.7676) 0.2464

Diastolic blood pressure (mmHg)
(Total number of observations = 441, of which 43 (17.77%) subjects had one measurement

and 199 (82.23%) subjects had two measurements)

Model 1 −0.5185
(0.5769) 0.3697 −0.1316

(0.7927) 0.8682 0.2271 (0.6379) 0.7221 0.3619 (0.4966) 0.4669

Model 2 −0.6759
(0.5947) 0.2570 −0.04549

(0.8136) 0.9555 0.3404 (0.6613) 0.6072 0.3674 (0.5094) 0.4716

Log-transformed fasting glucose (mg/dL)
(Total number of observations = 438, of which 46 (19.01%) subjects had one measurement

and 196 (80.99%) subjects had two measurements)

Model 1 −0.01570
(0.007838) 0.0463 0.02427

(0.01086) 0.0263 −0.00357
(0.008708) 0.6825 −0.00361

(0.006726) 0.5917

Model 2 −0.02864
(0.008211) 0.0006 * 0.02729

(0.01124) 0.0160 0.01135
(0.009149) 0.2162 −0.00142

(0.007028) 0.8402

Log-transformed high-density lipoprotein cholesterol (mg/dL)
(Total number of observations = 438, of which 46 (19.01%) subjects had one measurement

and 196 (80.99%) subjects had two measurements)

Model 1 0.02078
(0.01893) 0.2733 −0.02664

(0.02610) 0.3083 0.01023
(0.02099) 0.6265 −0.01677

(0.01627) 0.3039

Model 2 −0.01466
(0.02111) 0.4881 −0.02801

(0.02873) 0.3306 0.06331
(0.02334) 0.0072 * −0.00571

(0.01822) 0.7543

Log-transformed triglycerides (mg/dL)
(Total number of observations = 438, of which 46 (19.01%) subjects had one measurement

and 196 (80.99%) subjects had two measurements

Model 1 −0.05170
(0.04055) 0.2035 −0.03424

(0.05541) 0.5372 0.05445
(0.04481) 0.2255 −0.00392

(0.03498) 0.9109

Model 2 −0.02698
(0.03945) 0.4947 −0.04343

(0.05383) 0.4205 0.05072
(0.04378) 0.2477 0.009633

(0.03392) 0.7766

Long interspersed nuclear elements (LINE-1). Model 1 included LINE-1 z-scores at CpG sites 1, 2, 3, and 4 as
fixed effects and a compound symmetry matrix structure to model the covariance structure of the repeated
measurements for each outcome. Model 2 was additionally adjusted for the following fixed effects: age, sex, and
duration of breastfeeding. * p < 0.008.
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Table 3. Associations between the DNAm z-score at 11β-HSD-2 and Repeated Measures of Car-
diometabolic Risk Factors using Mixed-effects Models (n = 229).

11β-HSD-2 z-Score
at Site 1

11β-HSD-2 z-Score at
Site 2

11β-HSD-2 z-Score
at Site 3

11β-HSD-2 z-Score
at Site 4

11β-HSD-2 z-Score
at Site 5

Estimate
(SE) p-Value Estimate

(SE) p-Value Estimate
(SE) p-Value Estimate

(SE) p-Value Estimate
(SE) p-Value

Waist circumference (cm)
(Total number of observations = 415, of which 43 (18.78%) subjects had one measurement and 186 (81.22%) subjects had two measurements)

Model 1 −0.3822
(1.0424) 0.7142 −0.08657

(0.7980) 0.9137 0.2635
(0.9701) 0.7862 0.5264

(0.7690) 0.4943 0.2132
(0.7252) 0.7690

Model 2 −1.1319
(1.0012) 0.2595 0.2204

(0.7707) 0.7751 0.6173
(0.9303) 0.5076 0.5578

(0.7361) 0.4493 −0.1382
(0.6969) 0.8430

Systolic blood pressure (mmHg)
(Total number of observations = 415, of which 43 (18.78%) subjects had one measurement and 186 (81.22%) subjects had two measurements)

Model 1 −1.6096
(0.8326) 0.0545 −0.7568

(0.6372) 0.2362 1.2770
(0.7754) 0.1010 0.3766

(0.6161) 0.5416 −0.4901
(0.5780) 0.3974

Model 2 −1.4026
(0.8695) 0.1083 −0.7320

(0.6688) 0.2751 1.1599
(0.8074) 0.1524 0.3305

(0.6404) 0.6064 −0.3520
(0.6029) 0.5600

Diastolic blood pressure (mmHg)
(Total number of observations = 415, of which 43 (18.78%) subjects had one measurement and 186 (81.22%) subjects had two measurements)

Model 1 −0.9251
(0.5519) 0.0951 −0.8601

(0.4222) 0.0428 0.3540
(0.5143) 0.4920 0.4535

(0.4092) 0.2690 −0.01360
(0.3827) 0.9717

Model 2 −0.8686
(0.5624) 0.1240 −0.8775

(0.4322) 0.0436 0.3201
(0.5221) 0.5404 0.4519

(0.4148) 0.2771 0.01427
(0.3888) 0.9708

Log-transformed fasting glucose(mg/dL)
(Total number of observations = 412, of which 46 (20.09%) subjects had one measurement and 183 (79.91%) subjects had two measurements)

Model 1 −0.00076
(0.007513) 0.9193 0.001955

(0.005764) 0.7348 0.006329
(0.006998) 0.3668 −0.01869

(0.005586) 0.0010 * 0.002692
(0.005216) 0.6064

Model 2 0.009223
(0.007893) 0.2440 −0.00184

(0.006079) 0.7624 0.001102
(0.007320) 0.8805 −0.01837

(0.005817) 0.0018 * 0.007427
(0.005472) 0.1762

Log-transformed high-density lipoprotein cholesterol (mg/dL)
(Total number of observations = 412, of which 46 (20.09%) subjects had one measurement and 183 (79.91%) subjects had two measurements)

Model 1 0.002550
(0.01874) 0.8919 −0.00550

(0.01438) 0.7026 −0.00829
(0.01745) 0.6351 −0.01132

(0.01390) 0.4161 0.005434
(0.01303) 0.6770

Model 2 0.02693
(0.02073) 0.1952 −0.02151

(0.01596) 0.1793 −0.02199
(0.01925) 0.2545 −0.01714

(0.01524) 0.2620 0.01880
(0.01442) 0.1938

Log-transformed triglycerides (mg/dL)
(Total number of observations = 412, of which 46 (20.09%) subjects had one measurement and 183 (79.91%) subjects had measurements)

Model 1 0.02425
(0.04126) 0.5572 0.03580

(0.03163) 0.2588 0.004623
(0.03838) 0.9042 0.01794

(0.03047) 0.5566 −0.00972
(0.02872) 0.7354

Model 2 0.01469
(0.04003) 0.7140 0.03065

(0.03084) 0.3212 0.01000
(0.03715) 0.7880 0.01977

(0.02946) 0.5029 −0.01685
(0.02782) 0.5453

11β-hydroxysteroid dehydrogenase type 2 (11β-HSD-2). Model 1 included 11β-HSD-2 z-scores for CpG sites 1, 2,
3, 4, and 5 as fixed effects and a compound symmetry matrix structure to model the covariance structure of the
repeated measurements for each outcome. Model 2 was additionally adjusted for the following fixed effects: age,
and sex. * p < 0.008.

Table 4. Cross-sectional Associations between DNAm z-scores at PPAR-α and Cardiometabolic Risk
Factors using Linear Regression (n = 345).

PPAR-α z-Score at Site 1 PPAR-α z-Score at Site 2

Estimate (SE) p-Value Estimate (SE) p-Value

Waist circumference (cm) (n = 345)

Model 1 0.71915 (0.71474) 0.3150 −1.70941
(0.65445) 0.0094

Model 2 0.99917 (0.70529) 0.1575 −1.68127
(0.64618) 0.0097
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Table 4. Cont.

PPAR-α z-Score at Site 1 PPAR-α z-Score at Site 2

Estimate (SE) p-Value Estimate (SE) p-Value

Systolic blood pressure (mmHg) (n = 345)

Model 1 0.58582 (0.60305) 0.3320 −1.02922
(0.55218) 0.0632

Model 2 0.49623 (0.57982) 0.3927 −0.66490
(0.53123) 0.2116

Diastolic blood pressure (mmHg) (n = 345)

Model 1 0.58530 (0.42242) 0.1668 −0.57466
(0.38679) 0.1383

Model 2 0.58072 (0.40724) 0.1548 −0.34026
(0.37311) 0.3624

Log-transformed fasting glucose (mg/dL) (n = 310)

Model 1 0.00598 (0.00614) 0.3305 0.00016627
(0.00600) 0.9779

Model 2 0.00282 (0.00609) 0.6443 0.00159 (0.00596) 0.7900

Log-transformed high-density lipoprotein cholesterol (mg/dL) (n = 310)

Model 1 −0.00813
(0.01303) 0.5329 0.01206 (0.01273) 0.3445

Model 2 −0.00419
(0.01309) 0.7490 0.00857 (0.01280) 0.5035

Log-transformed triglycerides (mg/dL) (n = 310)

Model 1 0.01232 (0.03058) 0.6873 0.00118 (0.02989) 0.9684

Model 2 0.02086 (0.03057) 0.4956 −0.01116
(0.02989) 0.7092

Peroxisome proliferator-activated receptor alpha (PPAR-α). Model 1 included PPAR-α z-scores for CpG sites
1 and 2. Model 2 was additionally adjusted for age, and sex.

3. Discussion

In this study, the relationships between DNAm at LINE-1, 11β-HSD-2, H19, and
PPAR-α with cardiometabolic risk factors were investigated among Mexican children
and adolescents enrolled in a well-characterized birth cohort from Mexico City. Among
cardiometabolic components, fasting glucose and high-density lipoprotein cholesterol were
associated with DNAm of at least one genomic region. To the best of our knowledge, this is
the first study investigating the potential of DNAm as a biomarker for cardiometabolic risk
factors among Mexican youth using hypothesis-driven genomic regions.

The inverse and positive associations between LINE-1 DNAm and glucose and high-
density lipoprotein cholesterol are in line with current evidence linking LINE-1 hypomethy-
lation with genomic instability and CVD [46,64–66]. Furthermore, few studies conducted
on adult populations showed inverse relationships between LINE-1 DNAm and impaired
carbohydrate metabolism [67] and fasting glucose [62,68]. Scare and inconsistent evi-
dence is available among pediatric populations with regard to cardiometabolic health and
LINE-1 DNAm [69,70], where an inverse association detected with the waist circumference
z-score [69] and null associations were reported with adiposity markers [70]. We acknowl-
edge the complexity of crude comparisons across the studies because of the mismatch
in the study endpoints and sample characteristics; therefore, future prospective studies
are needed to strengthen the use of LINE-1 DNAm as a proxy for cardiometabolic health
among youth.

We found that a one standard deviation increase in 11β-HSD-2 DNAm at site 4 (i.e.,
+2%) was associated with a decrease of 2% in fasting glucose. Our results could be explained
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in light of the limited studies that investigated the connection between 11β-HSD-2 and
glucose metabolism in adult populations [57,58]. Müssig et al. reported inverse association
between 1β-HSD2 activity and insulin sensitivity [57], and Jang and colleagues found
higher 11β-HSD2 enzyme activity among subjects with type 2 diabetes [58]. It is worth not-
ing that not only is 11β-HSD-2 expression regulated by other epigenetic modifications [71],
age [72], and lifestyle factors [73], but a lack of association was also documented earlier
between 11β-HSD2 enzyme activity and mRNA expression [58]. As our results showed
the potential of 11β-HSD-2 DNAm as a cardiometabolic biomarker among youth, future
studies are needed combining DNAm, gene expression, and enzyme activity assessment to
strengthen the evidence for the role of 11β-HSD-2 in cardiometabolic risk.

The present study has multiple strengths, including the prospective assessment of
the association between DNAm at four genomic regions and up to two repeated mea-
sures of cardiometabolic risk factors during a sensitive period of growth, development,
and maturation. We used a robust statistical model to account for the longitudinal data
structure and conducted site-specific analyses for examining the association between the
DNAm of each region with cardiometabolic risk factors. Site-specific approaches may
be better when the data are not as correlated or when some CpG sites are much more
variable than others in order to capture the complexity of the data. Our data come from
a well-characterized birth cohort, ELEMENT, which allowed for assessing whether any
of the mother’s sociodemographic and reproductive characteristics would be potential
confounding factors to account for. Furthermore, peripheral blood was used to quantify
the DNAm because blood is an accessible tissue and commonly collected in clinical setting
and epidemiological studies [31], which is a strength for investigating potential biomarkers
for cardiometabolic risk factors among children.

With regard to the study limitations, the use of bisulfite treatment to measure DNAm
does not distinguish between cytosine methylation (5mC) and cytosine hydroxymethyla-
tion (5hmC) [74], and 5hmC has its own distinct impact on gene regulation, which was not
captured by our method. Therefore, the DNAm values might be confounded by hydrox-
ymethylation because both 5hmC and 5mC are captured in the total DNAm percentage.
Future studies should apply laboratory techniques that allow for distinguishing between
5hmC and 5mC. Additionally, our work has the limitation of including only DNAm without
gene expression data for three of the four regions assessed. Because gene expression could
be influenced by multiple factors, including other epigenetic modifications, physiological
conditions, and lifestyle factors, we recommend future studies supplement the assessment
of DNAm with gene expression and carefully take into account the other potential factors
that influence gene expression. Such evidence will strengthen the use of DNAm as a clinical
biomarker for cardiometabolic health if clinical validation studies confirm its utility.

We acknowledge the age heterogeneity as our analysis includes pre-teenagers and
teenagers; given our small sample size, we did not explore the relationships stratified
by age groups. Thus, future studies are needed to investigate the potential role of age in
modifying the association between DNAm and cardiometabolic risk factors during pubertal
transition. Additionally, the magnitude of detected associations was small, which might not
be of clinical significance. However, small effect sizes are typically reported in epigenetic
studies [62,65,67,68,75]. Because small effects may still have relevance for children’s health
outcomes [75], further studies are needed to enhance our understanding of the cause-and-
effect relationship between DNAm and cardiometabolic health by validating our results in
independent large-scale population-based youth populations with objective assessment
of lifestyle patterns known to influence DNAm. Such evidence will facilitate the progress
toward increasing the reproducibility and strengthening the biological relevance of DNAm
biomarkers. Additionally, despite our consideration for addressing multiple testing, we
still acknowledge the possibility of reporting false positive results due to chance. Lastly,
the possibility of residual confounding—such as smoking status and genetic variants—and
reverse causation between DNAm and cardiometabolic outcomes cannot be ruled out.
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4. Materials and Methods
4.1. Study Population

The analytical sample consisted of offspring who participated in two of three se-
quentially enrolled birth cohorts of the ELEMENT project in Mexico City, Mexico. A
comprehensive description of the ELEMENT project and the eligibility and exclusion cri-
teria are available elsewhere [76]. Briefly, the ELEMENT project included mother–child
dyads recruited from maternity hospitals representing women from low- to middle-income
population groups from 1997 to 2005 [77]. Mothers recruited for one of the birth cohorts
were enrolled in a randomized controlled trial (RCT) that examined the role of daily calcium
supplementation during pregnancy (1200 mg/day) in mitigating the effect of lead exposure
on the neurobehavioral and physical developmental outcomes in offspring [76]. Offspring
were followed at multiple time points in childhood and through adolescence; the aim of the
follow-up visits was to follow as many children from the original birth cohort as possible,
prioritizing younger ages at specific time points. The sample size for each follow-up visit
was determined by the aims for the original grant-funded visit.

We utilized available data from two follow-up visits. In the first follow-up visit,
herein called Time 1, we planned to follow 250 children aged between 8 and 15 years. We
prioritized children according to availability of prenatal biological samples for offspring
from the original birth cohorts [76]. The second follow up visit, Time 2, was conducted on
average 2 years later (maximum time to follow-up was 4.6 years). We planned to follow
>500 children from the original birth cohorts. We prioritized the 250 subjects from the
Time 1 visit (of which a large majority (~90%) returned) and added additional ELEMENT
children who were not included in the Time 1 visit. Based on a statistical power calculation
and available funds, we selected a sub-sample of these for epigenetic analysis (all children
at Time 1 and >350 at Time 2). Children were 10–18 years of age at Time 2.

The analytical sample for the genomic regions LINE-1, H19, and 11β-HSD-2 included
children and adolescents who had DNAm data at Time 1 and had data for at least one
of the six cardiometabolic risk factors (i.e., waist circumference, systolic and diastolic
blood pressure, fasting glucose, triglycerides, high density lipoprotein cholesterol) at
Time 1 and/or Time 2. DNAm at PPAR-α was measured only at Time 2; subjects with
these data and at least one of the six cardiometabolic risk factors were included for the
analytical sample for PPAR-α models. The National Institute of Public Health of Mexico
and the University of Michigan institutional review boards approved the research protocols.
Written informed consents were collected from mothers upon their enrollments and assent
from adolescents.

4.2. Laboratory Measurements and Outcomes
4.2.1. DNA Methylation Analysis

The current study limits its focus to four genomic regions, which have previously
been associated with cardiometabolic risk factors. Whole blood samples were collected
via venipuncture into tubes containing ethylenediaminetetraacetic acid (EDTA) preserva-
tive (Paxgene and BD Vacutainer) by trained staff following standard protocols. High-
molecular-weight DNA was extracted from blood leukocytes with the PAXgene Blood DNA
kit (PreAnalytix, Switzerland) or the Flexigene kit (Qiagen). The extracted DNA samples
were treated with sodium bisulfite using Epitect (Qiagen, Valencia, CA, USA) or EZ DNA
Methylation kits (Zymo Research, Irvine, CA, USA) following the standard methods previ-
ously published [78]. The purpose of bisulfite treatment was to convert the un-methylated
cytosines to uracil and to preserve the methylated cytosines. The bisulfite-treated DNA
samples were amplified using HotStarTaq Master Mix (Qiagen), and primers designed to
amplify each region of interest. Pyrosequencing was performed using either PyroMark
Q96 MD (Qiagen) or PyroMark Q96 ID (Qiagen). Pyro Q-CpG Software calculated the
percent methylation and performed internal quality control checks. At Time 1, DNAm
was quantified for H19 (4 CpG sites in the imprinting control region), for LINE-1 (4 CpG
sites in a conserved region across many LINE-1s), and for 11β-HSD-2 (5 CpG sites in the
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promoter region) and at Time 2 for PPAR-α (2 CpG sites in the promoter region) following
the protocols published previously [79–81]. Information on these genomic regions and
the primer sequences is presented in Supplementary Table S11 [77]. More than 10% of all
samples and controls of human DNA with known percentages of DNAm (0%, 25%, 50%,
75%, and 100%) were run in duplicate and included in each pyrosequencing batch (96-well
plate). The average of duplicate samples was used when applicable [82]. DNAm data from
LINE-1, 11β-HSD-2, and H19 suggested a batch effect, and the methylation percentages
were standardized to adjust for the batch effects as described previously [82]. We then
standardized DNAm values for each region to have mean 0 standard deviation 1 based on
the sample’s mean and standard deviation values to express the DNAm as a z-score, and
these z-scores were used in statistical analysis.

Samples collected at Time 1 were not preserved for downstream RNA isolation. At
Time 2, blood leukocytes preserved for RNA isolation were collected from all participants
and archived. Of these, 72 were selected for next-generation sequencing of RNA (‘RNA-
Seq’). Samples were prioritized for selection that had the highest quality and quantity of
RNA and had complete datasets needed for previous questions of interest [83]. Of those,
65 were from participants included in this manuscript. The read count of PPAR-α from
the RNA-seq was used to assess the relationship between DNAm and gene expression for
PPAR-α. The RNA-seq protocol followed was previously described [83].

4.2.2. Cardiometabolic Risk Factors
Anthropometric Measures

Duplicate measurements were collected by trained research staff for body weight
to the nearest 0.1 kg using a digital scale (BAME Model 420; Catálogo Médico) and In-
Body 230 (Biospace Co, Ltd, Seoul, Republic of Korea), height to the nearest 0.5 cm, and
waist circumference to the nearest 0.1 cm using a non-stretchable measuring tape SECA
(model 201, Hamburg, Germany) [84]. The average of the two measurements was used for
the analysis [85]. These measurements were conducted at Time 1 and Time 2.

Blood Pressure Measurements

Duplicate readings of systolic and diastolic blood pressure were recorded in a seated
position using a mercury sphygmomanometer (TXJ-10 MD 3000 model, Homecare, Nan-
jing, China), and the average of the two measurements was used for the analysis. These
measurements were conducted at Time 1 and Time 2.

Fasting Biomarkers

At each follow-up visit (T1 and T2), trained research staff collected blood samples from
children after an 8 h overnight fast. Fasting glucose and lipids were measured in serum at
the Michigan Diabetes Research Center Chemistry Laboratory. Specifically, fasting glucose
was assessed via automated chemiluminescence immunoassay (Immulite 1000; Siemens
Medical Solutions). Triglycerides were quantified via an enzymatic colorimetric method
using a Cobas Mira automated chemistry analyzer (Roche Diagnostics, Indianapolis, IN,
USA). The level of high-density lipoprotein cholesterol was obtained by using direct high-
density lipoprotein cholesterol (Roche Diagnostics) [85]. All serum markers were above the
limit of detection (LOD).

4.3. Covariates

Based on prior knowledge of cardiovascular and metabolic health, covariates assessed
for this research were classified as (1) maternal and child characteristics around the time
of birth (sex, birth weight, gestation age, mode of delivery, duration of breastfeeding,
and mothers’ age, marital status, parity, years of education, and enrollment in the calcium
supplementation study during pregnancy) and (2) follow-up characteristics for the children,
which were measured at the baseline visit for each exposure, e.g., child’s age, total caloric
intake, physical activity measured as metabolic equivalents, and pubertal onset. In our
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statistical analysis section, we explained our rationale for selecting covariates in each
adjusted model.

After childbirth, mothers reported household and demographic information, including
their ages, marital status (married compared to any other status), parity status (1, 2, ≥3),
and years of education (<12 yrs, 12 yrs, or >12 yrs), gestational age estimated by a registered
nurse, and mode of delivery (vaginal, or C-section childbirth). The newborns were followed
until 5 years of age, and information about self-reported breastfeeding duration was
estimated [86]. Since cohort 3 was an RCT for daily calcium supplementation during the
first trimester of pregnancy until 1-year postpartum and cohort 2 participants were not part
of a trial, we created a binary indicator for mothers who received the calcium treatment
(yes/no) with all mothers from cohort 2 falling into the ‘no’ category [76,87].

During each of two follow-up visits, total caloric intake was quantified using a semi-
quantitative food frequency questionnaire (FFQ) that captured the intake over the previous
week [84,88]. The FFQ was adapted from the Mexican National Health and Nutrition
Survey, and FFQs were analyzed using food composition software developed by the
National Institute of Public Health, Mexico [89]. A physical activity questionnaire was
developed based on the Youth Activity Questionnaire (YAQ) and validated relative to
24 h physical activity recall among Mexican school-children aged 10 to 14 years in Mexico
City [90]. For each self-reported physical activity, the corresponding metabolic equivalent
was multiplied by the activity intensity [91]. The total metabolic equivalents per week were
calculated by summing the metabolic equivalents for all activities. Puberty was assessed
through Tanner staging for breast and pubic hair (for girls) or genitalia and pubic hair (for
boys) [92,93] by trained physicians [94]. Consistent with previous ELEMENT publications
in which pubertal onset was a covariate, we classified children as having pubertal onset
when the Tanner Stage for either or both of pubic hair and genital development (boys) or
pubic hair and breast development (girls) was greater than one [95–97].

4.4. Statistical Analysis

Outcomes were cardiometabolic risk factors: waist circumference, systolic blood
pressure, diastolic blood pressure, glucose, high-density lipoprotein cholesterol, and triglyc-
erides. Dependent variables of interest were DNAm z-scores at LINE-1, 11β-HSD-2, H19,
and PPAR-α after standardizing the values based on the sample’s mean and standard
deviation for each site. Outcomes and exposures were treated as continuous in our models.
The demographic characteristics of the study participants were presented as the mean (SD)
and counts (proportions) for continuous and categorical variables, respectively.

DNAm percentages were quantified at multiple loci (CpG sites) within the same
genomic region (i.e., H19: 4 CpG sites, LINE-1: 4 CpG sites, 11β-HSD-2: 5 CpG sites, and
PPAR-α:2 CpG sites). For each genomic region, the DNAm percentages at all CpG sites
were included as repeated measures of the same variable in models of each outcome. To
illustrate, the LINE-1 z-scores at CpG site 1, 2, 3, and 4 were included as four fixed effects
in our models, and the same strategy was applied for other genes. This analytical approach
was used in previous publications [98].

To examine the relationship between DNAm at Time 1 for LINE-1, 11β-HSD-2, and
H19 and each cardiovascular risk factor outcome, separate linear mixed-effects models with
a compound symmetry covariance structure were used to model the covariance structure
of the repeated outcome assessed at Time 1 and 2. We used linear regression to assess the
cross-sectional association between DNAm at PPAR-α and the outcomes because this gene
was only measured at Time 2. For each exposure, the crude model included only DNAm
z-scores at multiple CpG sites for a genomic region. Due to the biological plausibility for
the sex and age difference in DNAm, we considered age and sex as mandatory covariates in
any fully adjusted model. For the other covariates, we followed a parsimonious approach.
Therefore, covariates were adjusted for only if they were potential confounders among our
study population based on the significance of their statistical association with each gene of
interest (i.e., p < 0.05). We investigated the confounding factors for each genomic region
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by examining the distribution of childbirth and follow-up characteristics across quartiles
of average DNAm z-scores of all loci within the region using either analysis of variance
or Kruskal-Wallis H tests for continuous covariates that were normally and non-normally
distributed, respectively, and a chi-squared test for categorical covariates. Based on these
investigations to select the confounding factors, only LINE-1 DNAm was associated with
breastfeeding duration. Therefore, LINE-1 models included breastfeeding duration, in
addition to age and sex (Supplementary Tables S12–S15).

Our mixed-effects models’ tables show information about the total sample size (i.e.,
number of unique subjects), total number of observations used in each model, and number
of subjects with repeated measures for each outcome. Our linear regression models’ tables
show information about the total sample size for each outcome. Collinearity was assessed
in the linear regression models using variance inflation factors. We conducted sensitivity
analyses. First, we adjusted for the pubertal onset at Time 1 for LINE-1, 11β-HSD-2, and
H19 and at Time 2 for PPAR-α because puberty has been associated with DNAm [39]. We
also repeated the analysis after excluding one outlier value in DNAm for H19. The SAS
statistical software package, version 9.4, was used for analyses (SAS Corp, Cary, NC), and
a p < 0.008 was considered a statistically significant association following correction for
multiple testing of six outcomes (p < 0.008 or 0.05/6).

5. Conclusions

In conclusion, we observed associations between DNAm at specific CpG sites for
LINE-1 and glucose and high-density lipoprotein cholesterol and for 11β-HSD-2 and glu-
cose in a sample of Mexican youth. Our finding supplemented existing knowledge on the
potential of epigenetics to identify the molecular mechanism underlying cardiometabolic
abnormalities, and it could open the door for targeted interventions among youth. Nev-
ertheless, our results merit further investigation to replicate, validate, and expand on the
use of DNAm though carefully designed prospective studies in multiple independent
pediatric populations. Moreover, since our study only focused on four genomic regions, we
recommend future studies employ epigenome-wide approaches to identify all important
genes for these outcomes in youth.

Supplementary Materials: The following supporting information can be downloaded at:
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correlation coefficients between the DNAm z-scores at 11β-HSD-2 CpG sites; Table S3: Spearman’s
rank correlation coefficients between the DNAm z-scores at H19 CpG sites; Table S4: Spearman’s
rank correlation coefficients between the DNAm z-scores at PPAR-α CpG sites; Table S5: Associations
between the DNAm z-score at LINE- 1 and Repeated Measures of Cardiometabolic Risk Factors
using Mixed-effects Models Adjusted for Pubertal Onset (n = 242); Table S6: Associations between
the DNAm z-score at 11β-HSD-2 and Repeated Measures of Cardiometabolic Risk Factors using
Mixed-effects Models Adjusted for Pubertal Onset (n = 229); Table S7: Associations between the
DNAm z-score at H19 and Repeated Measures of Cardiometabolic Risk Factors using Mixed-effects
Models (n = 245); Table S8: Associations between the DNAm z-score at H19 and Repeated Measures
of Cardiometabolic Risk Factors using Mixed-effects Models after the Removal of Outlier DNAm
Values (n = 244); Table S9: Associations between the DNAm z-score at H19 and Repeated Measures
of Cardiometabolic Risk Factors using Mixed-effects Models Adjusted for Pubertal Onset (n = 245);
Table S10: Cross-sectional Associations between the DNAm z-score at PPAR-α and Cardiometabolic
Risk Factors using Linear Regression Adjusted for Pubertal Onset (n = 345); Table S11: Primer
Sequences and Details of CpG Sites Assessed; Table S12: Average DNAm z-score at LINE-1 and
Confounder Selection; Table S13: Average DNAm z-score at 11β-HSD-2 and Confounder Selection;
Table S14: Average DNAm z-score at H19 and Confounder Selection; Table S15: Average DNAm
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