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Abstract: The centrosome plays a central role for cellular signaling and is critical for several funda-
mental cellular processes in human cells. Centrosome abnormalities have been linked to multiple
solid tumors and hematological malignancies. We sought to explore the potential role of the DNA
methylation, a critical epigenetic modification, of centrosome-related genes in different cancers. The
450K array DNA methylation data and RNA-seq data were downloaded for ~4000 tumor samples
and ~500 normal controls from The Cancer Genome Atlas (TCGA) project, covering 11 major cancer
types. Cancers with more than 30 normal controls were retained for analysis. Differentially modified
CpGs of centrosome genes were identified, and cancer-specific epigenetic models were developed
using a machine-learning algorithm for each cancer type. The association between the methylation
level of differential CpGs and the corresponding gene expression, as well as the co-localization of
the differential CpGs and cis-regulatory elements were evaluated. In total, 2761 CpGs located on
160 centrosome genes for 6 cancers were included in the analysis. Cancer-specific models demon-
strated a high accuracy in terms of the area under the receiver operating characteristic (ROC) curve
(AUC > 0.9) in five cancers and showed tissue specificity. This study enhanced our understanding of
the epigenetic mechanisms underlying the DNA methylation of centrosome-related genes in cancers,
and showed the potential of these epigenetic modifications as novel cancer biomarkers.
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1. Introduction

The centrosome is a non-membranous organelle comprised of centrioles surrounded by
pericentriolar material (PCM) [1–3] and over 150 proteins [4,5]. The centrosome functions as
the major microtubule organizing center (MTOC) of human cells. The architecture of PCM
changes during mitosis with the inner layer expansion and further components addition.
Together, their activities result in a mature centrosome with a maximal MTOC activity [6,7].
In human cells, the centrosome consists of a pair of orthogonally positioned centrioles. The
mother centriole, the older one of the two centrioles, functions as the fundamental structure
that assembles the primary cilium, which plays a central role for cellular signaling [8].
Several fundamental cellular processes, such as polarity and division, are governed by the
centrosome [9], indicating its potential role in the pathogenesis of human diseases.

Specifically, centrosome abnormalities have been implicated in solid tumors such as
lung, breast, prostate, colon, ovarian and pancreatic cancer [10–14], as well as hematological
malignancies such as multiple myeloma, lymphomas, and acute and chronic myeloid
leukemia [15,16]. However, how centrosome abnormalities affect tumorigenesis remains
largely unknown. Molecularly, centrosome abnormality involves multiple genetic and
epigenetic factors. Thus, investigating DNA methylation in centrosomes, where critical
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epigenetic modifications may contribute to tumorigenesis, would yield novel insights into
human cancers [17–21] and provide a new opportunity for cancer diagnosis. Elucidating the
association between DNA methylation and centrosome-related genes in cancers, whether
direct or indirect, could therefore provide novel insights into the underlying mechanisms
of tumorigenesis.

In the current study, we systematically analyzed the DNA methylation data from
The Cancer Genome Atlas (TCGA) Project [22], specifically the 450K array data covering
11 major cancer types [23]. A targeted analysis of highly informative CpG sites located
in over 150 centrosomal genes [4,5] was conducted. This study helped us understand the
epigenetic mechanism underlying the DNA methylation of centrosome-related genes in cancers,
and laid the foundation for utilizing these epigenetic modifications as novel cancer biomarkers.

2. Results
2.1. Identification of Cancer-Specific CpGs

Table 1 shows a summary of the available data from TCGA. In total, 2761 CpGs located
on 160 centrosome genes were retained for analysis. The relative distribution along the genic
region was 37% (promoter), 49% (gene body), and 14% (downstream of TES), respectively
(Figure 1). This distribution appeared to follow the general distribution of probes from the
450K array. Table 2 shows the summary of the detected cancer-specific CpGs and genes. In
total, 701 CpGs (123 genes) in breast invasive carcinomas (BRCA), 531 CpGs (121 genes) in
head and neck squamous cell carcinomas (HNSC), 1283 CpGs (133 genes) in kidney renal
papillary cell carcinomas (KIRC), 228 CpGs (87 genes) in lung adenocarcinomas (LUAD),
1366 CpGs (136 genes) in lung squamous cell carcinomas (LUSC), and 489 CpGs (112 genes)
in uterine corpus endometrial carcinomas (UCEC) with FDR < 0.05 were identified as being
differentially methylated between tumors and corresponding normal controls. Among
them, 33 CpGs were shared by all cancer types. After comparing across all cancer types,
as described in Figure 2, the number of cancer-specific CpGs was 89 (54 genes) in BRCA,
86 (62 genes) in HNSC, 186 (88 genes) in KIRC, nine (five genes) in LUAD, 320 (110 genes)
in LUSC, and 45 (37 genes) in UCEC for each cancer type, respectively.

Table 1. The analyzed set of TCGA samples.

Cancer

# Tumor
Samples

# Normal
Samples

# Tumor
Samples

# Normal
Samples Cancer Type

450K Array RNA-seq

BLCA 418 21 Bladder urothelial carcinomas

BRCA 792 97 781 84 Breast invasive carcinomas

COAD 312 28 Colon adenocarcinomas

GBM 140 2 Glioblastoma multiformes

HNSC 528 50 520 20 Head and neck squamous cell carcinomas

KIRC 324 160 318 24 Kidney renal papillary cell carcinomas

LUAD 473 32 454 21 Lung adenocarcinomas

LUSC 370 42 370 8 Lung squamous cell carcinomas

PAAD 184 10 Pancreatic adenocarcinomas

READ 98 7 Rectum adenocarcinomas

UCEC 438 46 172 24 Uterine corpus endometrial carcinomas

Total 4077 505 2615 181
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Figure 2. The workflow for identifying cancer-specific CpGs. The detection of BRCA-specific CpGs 

is shown as an example. First, differential CpGs for each cancer type are identified by comparing 

tumor samples and normal samples. To obtain cancer-specific CpGs for BRCA, the identified 

differential CpGs (BRCA) are then mapped to the differential CpGs from other cancer types to 

identify CpGs unique to BRCA. 

Figure 1. Relative distribution of the 2761 centrosome-related CpGs. All 2761 CpGs located on
160 centrosome genes are grouped by their relative locations to the genic region. Promoter is defined
as 10 kb upstream to transcription start site (TSS). Downstream TES was defined as from transcription
end site (TES) to 10 kb downstream of the genes. This distribution follows the general distribution of
probes from the 450K array.

Table 2. Summary of the detected and cancer-specific differential CpGs.

# Differential CpGs
(FDR < 0.05) # Hosting Genes a # Cancer-Specific

CpGs # Hosting Genes b Cancer-Specific Genes

BRCA 701 123 89 54 CETN2, MAP7D3

HNSC 531 121 86 62 -

KIRC 1283 133 186 88
PRKAR2B, CEP290, NOG,

CDK5RAP2, HAUS6, PRKACB,
PRKAR2A, NPHP4

LUAD 228 87 9 5 -

LUSC 1366 136 320 110
RTTN, DCTN5, CEP120,

IRAK1BP1, SSNA1, CEP135,
ACTR1A, PCM1

UCEC 489 112 45 37 ODF2, DCTN3, PIBF1

a Corresponding gene for the differential CpGs. b Corresponding gene for the cancer-specific CpGs. FDR: false
discovery rate.
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Figure 2. The workflow for identifying cancer-specific CpGs. The detection of BRCA-specific CpGs is
shown as an example. First, differential CpGs for each cancer type are identified by comparing tumor
samples and normal samples. To obtain cancer-specific CpGs for BRCA, the identified differential
CpGs (BRCA) are then mapped to the differential CpGs from other cancer types to identify CpGs
unique to BRCA.

2.2. Cancer-Specific Epigenetic Model

The Support Vector Machine (SVM) [24] was used to build the cancer-specific model for
each cancer type. For each model, the number of features (cancer-specific CpGs) was seven
(BRCA), five (HNSC), 15 (KIRC), five (LUAD), seven (LUSD), and six (UCEC), respectively.
Each cancer-specific model demonstrated a superior performance for its respective cancer
type, in contrast to a relatively poor performance for other cancer types. Figure 3 shows



Epigenomes 2022, 6, 14 4 of 11

the respective AUC for BRCA (0.972; Figure 3A), HNSC (0.925; Figure 3B), LUAD (0.903;
Figure 3C), LUSC (0.993; Figure 3D), and UCEC (0.992; Figure 3E) based on the cancer-
specific models. While five models achieved an AUC greater than 0.9, the KIRC model only
achieved an AUC of 0.523 and was therefore excluded from further analysis.
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Figure 3. Comparison of model performance across all cancer types. The performance of the five
cancer-specific models built using the cancer-specific CpGs for: (A) BRCA; (B) HNSC; (C) LUAD;
(D) LUSC; and (E) UCEC. Each model was also tested for samples from other cancer types, and
demonstrated a superior performance for its respective cancer type but a poor performance for other
cancer types. Each color line represents a cancer type.

2.3. Tissue Specificity Underlying Cancer Type Specificity

To determine whether tissue specificity caused cancer-specific CpGs, a principal
component analysis (PCA) was carried out for the CpGs in normal samples. When plotting
the 1st principal component against the 2nd component, a tissue-specific pattern was
observed (Figure 4), indicating a clear separation of LUAD, LUSC, and the combined
samples of BRCA, UCEC, and HNSC.
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Figure 4. The PCA analysis shows a tissue-specific pattern in normal samples. For normal samples,
the 1st and 2nd principal components derived from the methylation levels of cancer-specific CpGs
are plotted. Each dot represents a normal sample, and each color represents a tissue type. The plot
shows a clear separation between normal samples from LUAD, LUSC, and the combination of BRCA,
UCEC, and HNSC. PCA: principal component analysis.

2.4. Association Analysis between CpG and Gene Expression

The Pearson’s correlation between the methylation level of each CpG site and its
local host gene was calculated for each type of cancer in all samples, then separately
for tumor and normal samples (Figure S1). In all samples, the mean correlations were
−0.02 (BCRA), 0.11 (HNSC), −0.01 (KIRC), −0.06 (LUAD), 0 (LUSC), and −0.04 (UCEC),
respectively. In tumor samples, the mean correlations were −0.02 (BCRA), 0.12 (HNSC),
−0.01 (KIRC), −0.37 (LUAD), 0 (LUSC), and −0.03 (UCEC), respectively. In contrast, in
normal samples, the mean correlations were 0.01 (BCRA), −0.12 (HNSC), −0.05 (KIRC),
0.02 (LUAD), 0.09 (LUSC), and −0.04 (UCEC), respectively. Regardless of the CpG location,
such as the promoter and gene body, there were no statistically significant differences
between the mean correlations of tumor and normal samples. However, in normal samples,
when comparing promoters and gene bodies, the mean correlations of CpGs in promoters
were significantly lower than those in the gene bodies of BCRA, HNSC, KIRC, and UCEC
(student’s t-test, p-value < 0.05; Figure S2A). There was no significant difference in tumor
samples (Figure S2B).

2.5. Co-Localization of Differential CpGs with Cis-Regulatory Elements

The distribution of the relative positions of differential CpG sites and their correspond-
ing genes are shown in Figure S3 for each cancer type. The distribution of differential CpGs
generally follows the distribution of all 2761 tested CpGs. The black line represented the
distribution of all CpGs in the test, whereas grey bars showed the differential CpGs with
FDR < 0.05. Most of the differential CpGs were located in promoter regions surrounding
transcription start sites (TSS). To explore the possible mechanisms underlying differential
cytosine modifications, we characterized the co-localization of differential CpGs with the
ENCODE regulatory elements. The null distribution of overlapping counts was generated
by randomly sampling (e.g., the number of differential CpGs from 2761 CpGs for each
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cancer type) 10,000 times and counting overlaps with regulatory elements. The log2 fold-
change was calculated as the observed overlapping counts divided by the mean of the null
distribution. The most significant enrichment was found in H3K9me1 for BRCA, HNSC,
LUAD, and UCEC (hypergeometric test p-value < 0.05; Figure 5).
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Figure 5. Enrichment of differential CpGs with cis-regulatory elements. Each rectangle represents the
log2 fold-change of observed overlapping between differential CpGs (e.g., BRCA) and a cis-regulatory
element (e.g., H3K9me3), relative to the null distribution. For each cancer type and regulatory
element, the null distribution of overlapping counts was generated by using all 2761 CpGs as the
background and randomly sampling the number of differential CpGs. This procedure was repeated
10,000 times, and the number of overlaps was used to determine the null distribution. The fold-change
was calculated as the number of true overlapping counts divided by the mean of the null distribution.
Darker green represents a higher enrichment fold (p-value < 0.05).

3. Discussion

Elucidating epigenetic regulatory factors associated with centrosome genes could
enhance an understanding of human cancers. Previous studies were focused on the over-
or under-expression of centrosomal genes involved in controlling the centriole structure,
such as CPAP/SAS-4, whose upregulation affected the centriole structure in several model
systems [25,26]. However, with its critical role in gene regulation and biological functions,
DNA methylation has not been comprehensively investigated for centrosome genes in the
context of diverse cancer types. This current study thus leveraged the TCGA 450K array
data on a variety of human cancers to investigate the contribution of DNA methylation
in centrosome-related genes to cancers, with the goal to develop CpG methylation-based
models that can separate different cancer types.

Our findings suggested that tissue-specific CpG methylation underlies cancer type
specificity, consistent with previous findings that methylation is important for tissue-
specific gene regulation [27]. Although some of the CpGs showed significant associations
with gene expressions, we did not observe any significant differences in the mean cor-
relations between tumor and normal samples. The distribution of the differential CpGs



Epigenomes 2022, 6, 14 7 of 11

were similar to the distribution of all 2761 tested CpGs. Since the cytosine modification
at the promoter region is known to suppress gene expression [27], the CpGs located at
the gene body may have offset the mean correlation to the positive direction. Moreover,
our findings suggested that in tumor samples, the correlation pattern between promoter
methylation and gene expression was rewired compared to the normal tissues, indicating
that the rewiring of epigenetic regulatory relationships likely contributes to cancer biology.

Notably, cancer-specific models were built for each cancer type using the cancer-
specific CpGs related to centrosomes. In general, the centrosome gene-based models
showed a significant outperformance for their target cancer type, thus providing further
evidence that the centrosome-related CpGs hold the promise of not only being a sensitive
cancer biomarker, but also a biomarker that can distinguish different cancer types, which is
a great challenge for the existing multi-cancer detection approaches. In addition, a clear
enrichment with H3K9me1 in BRCA, HNSC, LUAD, and UCEC was observed. H3K9me1
has been reported to be co-localized with more active promoters surrounding the TSS [28]
and is associated with transcriptional activation. These findings suggested that the cytosine
modifications in centrosome-related genes may interact with active cis-regulatory elements.

Regarding public health implications, according to the National Cancer Institute: In
2016, an estimated 1.7 million new cases of cancer will be diagnosed in the United States,
and 0.6 million people will die from the disease. Unlike genetic variation, which is static
through the life course, environmental factors and human behaviors may induce changes
in DNA methylation. Therefore, epigenetic changes may serve as mediating factors in the
pathway through which environmental factors lead to disease development [29]. More
importantly, these changes can also be taken as targets for modification through preventive
and therapeutic interventions. Thus, the findings from this study hold the potential to
identify a novel class of epigenetic biomarkers for early cancer detection.

We acknowledge that there are several limitations in the current study. First, TCGA
only have limited normal samples compared to tumor samples, which leads to an unbal-
anced sample size and could affect the statistical power and Type I error rate. The FDR
procedure was used to address this issue. Second, the 450K array utilizes the bisulfite
conversion method to detect the cytosine modification. However, this approach cannot
distinguish 5-methylcytosine (5mC) from 5-Hydroxymethylcytosine (5hmC), which could
have different biological implications. Future studies using TAB-array or 5hmC-specific
approaches could help address this issue [30,31]. Finally, the 450K array has limited cover-
age in centrosomes due to large arrays of tandemly repeated DNA sequences present in
chromosomes. With the recent development of the complete genomic and epigenetic maps
of human centromeres [32], future studies utilizing a long-read sequencing approach could
further expand our understanding of centrosomes in cancers.

4. Materials and Methods
4.1. TCGA Cancer Types

In total, ~4000 tumor samples and ~500 normal controls that covered 11 major cancer
types from TCGA were analyzed in the current study (Table 1), including 418 bladder
urothelial carcinomas (BLCA) with 21 normal tissues, 792 breast invasive carcinomas
(BRCA) with 97 normal tissues, 312 colon adenocarcinomas (COAD) with 38 normal tissues,
140 glioblastoma multiforme (GBM) with 2 normal tissues, 528 head and neck squamous
cell carcinomas (HNSC) with 50 normal tissues, 324 kidney renal papillary cell carcinomas
(KIRC) with 160 normal tissues, 473 lung adenocarcinomas (LUAD) with 32 normal tissues,
370 lung squamous cell carcinomas (LUSC) with 42 normal tissues, 184 primary pancreatic
adenocarcinomas (PAAD) with 9 matched normal solid tissues, 98 rectum adenocarcinomas
(READ) with 7 normal tissues, and 438 uterine corpus endometrial carcinomas (UCEC)
with 46 normal tissues.
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4.2. TCGA 450K Array Data

Publicly available TCGA DNA methylation was downloaded and aggregated at the
GDC Legacy Archive (https://portal.gdc.cancer.gov/; accessed on 11 November 2021).
The centrosome-related gene list was based on Jakobsen et al. [5], with a total of 160
centrosome-related genes (Table S1). CpG loci within +/− 10 kb from these 160 genes of
interest were included for examination. A total of 3212 CpG sites were included using
this approach. We further removed those CpG probes that: (i) ambiguously mapped to
the human genome [33]; (ii) contained common SNPs (single nucleotide polymorphisms)
if the SNPs located within 20 bps from interrogated CpG sites had MAF (minor allele
frequency) >0.01 (based on dbSNP v135) [34]; (iii) had missing data across over 50% of
the samples. The final dataset was comprised of 2761 highly reliable, autosomal CpG
sites. The M-value, defined as the log2 ratio of the intensities of methylated probes versus
unmethylated probes [35], was summarized for each CpG site in each individual. Since
TCGA only have limited normal samples for each cancer type, in the following analysis,
cancer types with less than 30 normal samples were excluded. The final analysis set of the
current study comprised 6 cancer types, i.e., BRCA, HNSC, KIRC, LUAD, LUSC, and UCEC.

4.3. TCGA RNA-seq Data

The publicly available RNA-seq data was obtained from GDC using the TCGAbiolinks
R package [36]. Only the primary solid tumor and solid tissue normal data was downloaded.
Searching for those samples with both RNA-seq and DNA methylation data resulted in
781 tumors and 84 normal controls for BRCA, 520 tumors and 20 normal controls for HNSC,
318 tumors and 24 normal controls for KIRC, 454 tumors and 21 normal controls for LUAD,
370 tumors and 8 normal controls for LUSC, and 172 tumors and 24 normal controls for
UCEC samples (Table 1). Due to missing data, 139 out of 160 centrosome-related genes
were retained for further analysis.

4.4. Identify Cancer-Specific CpGs

To detect differentially modified CpGs between tumor and normal in each cancer
type, the limma R package [37] was used to fit a linear model to the DNA methylation data
for each CpG probe. False Discovery Rates (FDRs) were estimated using the Benjamini–
Hochberg (BH) method [38]. A result with FDR <0.05 was considered significant. To get the
cancer-specific differential CpGs, differential CpGs obtained from the previous step were
compared across all cancer types, and the ones unique to a specific cancer type were defined
as cancer-specific CpGs. In order to find whether cancer-specific cytosine modifications
were caused by tissue-specific cytosine modifications, a principal component analysis was
carried out for cancer-specific CpGs in normal samples. Figure 2 shows the workflow for
identifying cancer-specific CpGs using breast cancer as an example.

4.5. Development of a Cancer-Specific Epigenetic Model

The support vector machine (SVM) is a binary classification algorithm [24]. The main
idea of SVM is to find a linear decision surface (hyperplane) that can separate patients’
classes and has the largest distance, i.e., largest gap or margin between border-line patients
(i.e., support vectors). Specifically, the SVM was used to build a cancer-specific model to
distinguish different cancer types. The R package e1071 was used in the model training [39].
Both linear and Gaussian kernels are used for the model training. The linear SVM classifier
can be formulated as follows, by solving an optimization problem over αi:

f (x) =
N

∑
i

αiyi

(
xT

i x
)
+ b

https://portal.gdc.cancer.gov/
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The SVM classifier with the Gaussian kernel is formulated as follows:

f (x) =
N

∑
i

αiyi exp(−|| x− xi||2/2σ2) + b

In order to avoid an over-fitting problem for model training in this section, 80% of
randomly selected samples were used for training purposes. Cancer-specific CpGs with
log2 fold change >1 and p-value < 0.0005 were used as features. If these criteria were not
met, the top 5 CpGs with the smallest p-values were used. A five-fold cross validation was
used during the training process to get the best performance. After the model was trained,
the remaining 20% of the samples were used to test the model performance, and the area
under the receiver operating characteristic (ROC) curve (AUC) was calculated. The model
for each cancer was also tested in other cancer data, in order to prove cancer specificity.

4.6. Linking DNA Methylation and Gene Expression

To detect the association between the methylation levels of cancer-specific CpGs
and gene expression phenotypes, correlations between the methylation levels and corre-
sponding 139 gene expressions in tumor samples were evaluated. A linear model was
fitted for each CpG with its corresponding gene for each cancer type separately: i.e.,
G ∼ β1M + β2gender + e; where M is the methylation level of CpG and G is the expres-
sion level of the corresponding gene. An FDR of less than 0.05 estimated using the BH
procedure was considered significant.

4.7. Co-localization of Differential CpGs with Cis-Regulatory Elements

We obtained uniformly processed narrow peaks for transcription factor binding sites
and broad peaks for histone markers from the ENCODE (Encyclopedia of DNA Elements)
Project [40]. Peaks for each of the canonical transcription factors and histone modification
markers were examined individually. We mapped all analyzed CpG sites to positional
bins including 2 kb bins along the upstream 10 kb from the transcriptional start site
(TSS), 10 percentile-bin along the coding region, 2 kb bins along the downstream 10 kb
from the transcriptional end site (TES). To estimate the null distributions for ENCODE
co-localization, we used all 2761 CpGs as background, randomly sampled the number of
differential CpGs 10,000 times, mapped to the peaks of regulatory elements in the same
manner as differential CpGs, and counted the number of CpG sites co-localized with the
peaks for the given marker. The number of true co-localizations were then compared with
the null distribution, and the log2 fold-change was calculated as:

log2( f old− change) =
number o f true overlaps
mean (null distribution)

5. Conclusions

In conclusion, by utilizing the TCGA data, this work explored the distinct role of cyto-
sine modifications for centrosome-related genes and revealed the cancer-specific cytosine
modification patterns. Furthermore, this cancer-specific pattern of epigenetic modification
demonstrated its potential as a novel cancer biomarker that may aid in diagnosis and
targeted screenings for at-risk individuals.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/epigenomes6020014/s1, Figure S1. Correlation of CpG methylation
and gene expression; Figure S2. Correlation of CpG methylation and gene expressions by genomic
feature; Figure S3. Relative distribution of differential CpGs; Table S1. The analyzed centrosome-
related genes.
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