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Figure S1: WGBS output directory and a bedGraph formatted dataset.  

BedGraph files have a typical MethylDackel (https://github.com/dpryan79/MethylDackel) output format, and the user has to provide 
files in this format. Input files can be filtered by a coverage parameter (sum of fifth and sixth columns).  

 

 

Figure S2: Methylome input and the final file after bedtools unionbedg process. 
Each file represents the methylome of a sample and these single bedgraph files need to be united to generate the main methylation 
file. “Bedtools unionbedg [1] function with –filler NA -i” parameter to fill missing methylation with “NA” (not available) is used for 
that uniting purpose and the resulting file represents the methylation input file. The user should have this format of bedGraph files 
to be able to run the pipeline. 
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Figure S3:  DMPs or DMRs output directory and a bed formatted dataset.  

Bed files can be filtered by a “filter_FDR” parameter based on the fourth column. This is a typical output of metilene DMR caller [2] 
which is a default methylation caller used in the implementation of the EpiDiverse DMR pipeline, and columns are neglected after 
the fourth one, so it is enough for a user to have a file with chr, start, stop, and q-value information in order.  
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Figure S4: Required inputs to run EpiDiverse EWAS pipeline with different models.  

Methylation file is generated by the pipeline using single bedGraph files per sample. SNP genotype matrix is also generated by the 
pipeline either from multi-sample vcf.gz file or single .vcf files. The only user-provided files are the tab-separated samples.tsv file if 
other files are generated by EpiDiverse pipelines which carry environment and covariate information. The user can provide only a 
single environment data regardless of integer or float values. Covariate data should come after the environment data and they can 
be single or multiple. Values used for covariates are nominal and only for grouping samples depending on the user’s needs.   

 
 

 

Figure S5: The output of the Emodel. 

This file has “ID|beta|stats|pvalue|FDR” columns where cpg is for significant chr/scaffold names, beta is a beta coefficient in a 
linear model, stats is the t-statistics for the C in interest, pvalue is the probabilistic score of a C and FDR is corrected p-values, in 
other words, q-values. 
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Figure S6: The output of the Gmodel. 

It is a list of C-SNP pairs, where the SNP is the appropriate couple to explain CG in interest. The only different column from the 
Emodel output is the additional “snp” column next to the ID column. The output of the GxE model is the same.  

 

 

Figure S7: QQ plots. 

Q-Q plots are generated with all models and give a theoretical vs observed distribution of all p-values. The x-axis is an indicator of 
normal distribution and ranges between [-4,4]. A total number of p-values can be seen in the header.  
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Figure S8: Histograms plots. 

Histograms are generated with every model and drawn with all p-values to get an insight into their distribution. The x-axis is 
based on -log10 transformation and the y-axis show frequency. 
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Figure S9: Manhattan plots. 

Example of Manhattan plot output for CpG context and Emodel from the EWAS pipeline, representing all positions below p-value 
1e-8. The dashed red line is a suggestive threshold (10-6 by default) and the blue line shows the epigenome-wide significance thresh-
old (suggestive threshold / 100) to narrow down highly significant biomarkers above the lines. 

 
Figure S10: Sequence dot plots. 
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They are generated with the G model using Plotly with relative positions of SNPs and methylated positions in significant methQTLs. 
Cis and trans SNP-Cytosine pairs are marked as red and blue respectively. Scaffold/chr names are written on axes. 

 

 

Figure S11: Top significant k-plots.  

Top k-plots are generated with the phenotypic trait for major allele homozygote (AA), heterozygote (AB), and minor allele homozy-
gote (BB) for all SNPs across all samples are generated with the GxE model. Significant Cytosine name is indicated at the left, not 
necessarily three alleles have to be produced with each C, the red line shows the slope of the linear relationship between individuals, 
dots (samples) and environmental factor (climatic data) is shown on the x-axis, methylation beta values are seen on the y-axis. Ref: 
Pan et al., 2016. 
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Figure S12: Non- parametric Wilcoxon test to compare climatic datasets for locations of trees.  

Boxplots and test results for precipitation (prcp) (upper left), maximum temperature (tmax) (upper right), and minimum temperature 
(lower) datasets. All differences were found significant for the prcp data. Differences between ortet and all other locations were found 
significant for tmax and tmin data. 

 

 

 
Figure S13: Coalescence analysis with SNP and averaged methylation data for the CG context. 

Averaged methylation calls (left) and SNP (right) tree comparison output with compare2trees software [3] for the CG context. This 
comparison yields a 72% topological score indicating a relatively high fraction of clades/branches present in both trees (cf. Methods 
for details). The thick branches represent deviating topologies. 
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Figure S14: Coalescence analysis with SNP and not averaged methylation data for the CG context. 

Not averaged methylation calls (left) and SNP (right) tree comparison output with compare2trees software [3] for the CG context. 
This comparison has a 78.7% over topological score indicating a relatively high fraction of clades/branches present in both trees (cf. 
Methods for details). The thick branches represent deviating topologies. 

 

 

 
Figure S15: Coalescence analysis with SNP and averaged methylation data for the CHG context. 

Averaged methylation calls (left) and SNP (right) tree comparison output with compare2trees software [3] for the CG context. This 
comparison has a 38.2% over topological score indicating a relatively low fraction of clades/branches present in both trees (cf. Meth-
ods for details). The thick branches represent deviating topologies. 
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Figure S16: Coalescence analysis with SNP and not averaged methylation data for the CHG context. 

Not averaged methylation calls (left) and SNP (right) tree comparison output with compare2trees software [3] for the CG context. 
This comparison has a 58.5% over topological score which indicating a medium fraction of clades/branches present in both trees (cf. 
Methods for details). The thick branches represent deviating topologies. 

 

 

 
Figure S17: Coalescence analysis with SNP and averaged methylation data for the CHH context. 

Averaged methylation calls (left) and SNP (right) tree comparison output with compare2trees software [3] for the CG context. This 
comparison has a 42.3% over topological score indicating a relatively low fraction of clades/branches present in both trees (cf. Meth-
ods for details). The thick branches represent deviating topologies. 
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Figure S18: Coalescence analysis with SNP and not averaged methylation data for the CHH context. 

Not averaged methylation calls (left) and SNP (right) tree comparison output with compare2trees software [3] for the CG context. 
This comparison has a 35.3% over topological score indicating a relatively low fraction of clades/branches present in both trees (cf. 
Methods for details). The thick branches represent deviating topologies. 

 

 

 

Figure S19: fastq raw files HC with k32 done by kWIP software [4]. 

Clear clustering is seen between clones and original tree pairs can be pointed and names in red were added later to clarify observa-
tion. 
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DMP/DMR Analysis using different callers 
Metilene was not able to call FDR corrected DMPs due to the implemented statistics (the rank test does not have enough power to 
yield significant q-values). The high total number of tests required to process all DMPs leads to no significant results after FDR 
filtering which is a relatively common problem of adjusting p-values for big datasets [5]. Yet, as shown above, almost all q-value 
filtered defiant DMPs and the majority of q-value filtered methylkit DMPs are shared with the p-value filtered metilene DMPs. This 
shows that DMP calling is relatively robust, but that using metilene’s p-value filtered DMPs will include many (potentially false 
positive) positions not detected when applying FDR correction. To test whether this abundance of positions would bias the detection 
of significant positions, we compared the EWAS output for GC context of the ramet vs. ortet comparison (based on the metilene p < 
0.05 DMPs) with the defiant results. We found that the overlap is significantly (Fisher’s exact test, p < 0.05) more than expected by 
chance for G as well as the GxE model for the prcp environmental variable (Figure S20c).  

 

(a)    

(b)   

(c)  
Figure S20: Intersection of significant Cs with p and q-values on gene-level for methylkit, metilene, and defiant DMR callers.  

(a) Genes with 0.05 p-value cut-off between metilene, methylkit, and defiant for CG (left), CHG (middle), and CHH (right) for ramets 
vs ortets comparison. 32%, 44% & 20% of metilene genes, 0.55, 0.90 & 0.98 of defiant DMPs and 67%, 67% & 64% of methylkit genes 
are shared with other two. Metilene genes have the highest excluded amount. Diagrams (separated by contexts like CG, CHG, and 
CHH from left to right) in (b) shows the 0.05 q-value cut-off genes with DMR callers again with ramets vs ortets comparison, unfor-
tunately, no gene(s) were found related to the CG context DMP(s) and 14% of metilene genes are shared with the methylkit ones. All, 
7% and 68% of DMPs are shared by either one of two other genes for defiant, metilene, and methylkit respectively for CHG context 
and numbers are like again all, 0.1% and 25 for defiant, metilene, and methylkit. Diagrams in (c) show the intersection between 
pipeline output and the DMR callers between ramets and ortets.  13% and 7% of methylkit genes are shared between Gmodel and 
GxE models (left). CHG (middle) and CHH (right) genes exclusively shared by a single diagram of two diagrams.  
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Figure S21: Intersection of outputs with different filter_NA values for MPs input using all covariates. 

There is a single intersection with 0.2 and 0.8 filter_NA values and the rest has unique outputs. 
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Figure S22: Intersection of outputs with different filter_NA values for DMPs input using all covariates. 

There is a single intersection with 0.2 and 0.8 filter_NA values and the rest has unique outputs. 
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Figure S23: Intersection of outputs with different filter_NA values for DMRs input using all covariates. 

There is a single intersection with 0.2, 0.8, and 0.9 filter_NA values, and the rest has unique outputs. 
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Figure S24: Intersection of outputs with different filter_NA values for MPs input using only location-methylation-based 

covariates. 

The 0.4, 0.6, 0.8, and 0.8 filter_NA values have a shared gene, besides this, there are a lot of shared genes between outputs. 
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Figure S25: Intersection of outputs with different filter_NA values for DMPs input using only location-methylation-based co-
variates. 

0.3 and 0.5 NA filtering outputs have the maximum number of common genes as six and 0.7 and 0.3 intersections follow it with two 

genes for DMPs input (upper right). A single gene is common between 0.7 & 0.4, 0.4 & 0.3 and 0.5 & 0.8. 
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Figure S26: Intersection of outputs with different filter_NA values for MPs input using only location-SNP-based covariates. 

There are a lot of shared genes between outputs. 20 elements are shared between all groups but 0 filter_NA. 
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Figure 27: Intersection of outputs with different filter_NA values for DMPs input using only location-SNP-based covariates. 

0 and 0.8 NA & 0.9 and 0.3 filtering outputs share a one and three gene(s) in common. 
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Figure S28: Intersection of outputs with different filter_NA values for DMRs input using only location-SNP-based covariates. 

Nothing is shared between outputs. 
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Figure S29: Intersection of outputs with different filter_NA values for MPs input using only SNP-methylation-based covariates. 

Nothing is shared between outputs. 
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Figure 30: Intersection of outputs with different filter_NA values for MPs input using only location-based covariates. 

This input has the maximum number of shared elements. 
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Figure 31: Intersection of outputs with different filter_NA values for DMPs input using only location-based covariates. 

This input showed a single gene in common between 0.1 & 0.4 and 0.4 & 0.7 filters.  
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Figure S32: Intersection of outputs with different filter_NA values for DMRs input using only location-based covariates. 

This input showed an intersection between 0.1 & 0.4 and 0.2 & 0.5 filter_NA’s with two genes, 0.4 & 0.7 filter_NA with a single 
gene in common.  
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Removal of genetic variants that might be interpreted as significant epigenetic marks 
Consider a SNP that will change a CG to a GG –methylation of the position will not be possible anymore and it might appear as a 
significant position in EWAS. If it’s a homozygous SNP, then there will be a C in the reference genome and all Gs in the alignments 
(or Cs on Crick strand) so it will just be interpreted as a normal SNP by a haplotype-based variant detector. If it’s a heterozygous 
SNP, then on the crick strand everything is read as normal FreeBayes [6], but the Cs on the Watson strand will likely be converted to 
Ts by the bisulfite treatment and these will be ignored. The Gs on Watson will be interpreted normally so as the result it will look 
like a heterozygous CG to GG SNP. 
 
Such sites that might lead to a loss or gain of a methylation site based on genetic divergence can be investigated by intersecting the 
Emodel results with either Gmodel and/or GxE. If there are SNPs that will lead to a context change, intersecting the model outputs 
solves this issue. In the case of a homozygous SNP, there will be a C in the reference and Gs in the alignments (or Cs on the Crick 
strand), so the position will be interpreted as a normal SNP by a variant calling software, FreeBayes. In the case of a heterozygous 
SNP, the crick strand is read as normal by FreeBayes, but the Cs on the Watson strand will likely be converted to Ts by the bisulfite 
treatment, and these will be ignored. The Gs on Watson will be interpreted normally. This case will be interpreted as a heterozygous 
C > G SNP by the bisulfite aware variant callers such as the EpiDiverse SNP pipeline and solved. We were looking into this in detail 
in an example by checking CG sites shared by all models. 

 

 

    
Figure S33: Intersection of shared SNPs and significant common markers between G and GxE models. 

Only a single position is shared between Emodel MP & DMP inputs and G & GxE models DMPs input. The number of SNPs corre-

lated with that shared positions is 1, 16, for G and GxE models respectively.  
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Figure S34: Intersection of significant BP GO terms between location-based Emodel output and a previous study [7] with Up-
setR package [8]. 

Common BP GO terms are connected via vertical lines. No output could be derived with SNP and methylation-based clustering, 
therefore only results of location-based clustering are shown. Bars are ordered from smallest to largest by sample size. The maximum 
and the minimum number of unique elements belong to the tmin_CHH_MP and tmax_CG_DMP inputs, with 150 and one elements 
respectively. 47%, 45%, and 0% of BP GO terms are shared with Heer et al., 2016 study for CG the (blue), CHG (red), and CHH (green) 
contexts. Tmin, prcp, and tmax sets are colored as turquoise, maroon, and orange. 
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Figure S35: Intersection of significant MF GO terms between location-based Emodel output and a previous study [7] with Up-
setR package [8]. 

Three terms are shared by three groups, 27 terms are shared by two groups and 174 terms are uniquely shared by single inputs. The 
highest number of elements belongs to CHH tmin MP input with 73 terms and the lowest is with two terms for the CG tmax DMP 
input. 15% of terms are shared by inputs and 85% is unique to single inputs.   
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Figure S36: Intersection of significant CC GO terms between location-based Emodel output and a previous study [7] with Up-
setR package [8]. 

Six terms are shared by seven groups, one term is shared by three groups, three terms are shared by two groups and 61 terms are 
uniquely shared by single inputs. The highest number of elements belongs to CHH prcp MP input with 17 terms and the lowest is 
with three terms for the CHH tmin DMP input. 15% of terms are shared by inputs and 85% is unique to single inputs.   
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Figure 37: Highlighted GO terms based on Emodel.  

Terms comprising “water”, “shoot”, “root”, and “defense” are highlighted for all inputs and contexts. Tmin_CHH_MP yields the 
largest number of terms, while tmin_CHH_DMPs, tmax_CG_DMPs, and prcp CHG_DMRs_averaged do not lead to any terms. MPs, 
CHH, and tmin yield the highest numbers of terms per input, context, and climatic data, respectively. Cells are colored from green = 
high to red = low. 
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Figure S38: Intersection of significant BP GO terms between all models, CG context, and precipitation data for location-based 
clustering, and a previous study [7] with the UpsetR package [8]. 
The highest amount of sharing can be seen in G and GxE models DMP and DMR input types (98 terms). A term shared by seven 
groups as a maximum is “phenylpropanoid metabolic process”. 34, 52, 160, 149, 149, 111, 225, and 397 terms are shared by eight, 
seven, six, five, four, three, two, and single unique inputs. In total 69% of elements are shared and only 31% are unique to single 
inputs. The highest number of unique elements is derived from Gmodel DMP input with 137 terms and the lowest is with one term 
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for the Emodel MP input. 45% of Heer et al BP terms match with the other inputs and some unmatched terms show semantic simi-
larity. 

 

 
Figure S39: Intersection of significant MF GO terms between all models, only CG context and precipitation data for location-
based clustering, and a previous study [7] with UpsetR package [8]. 
The highest sharing is seen in G and GxE models DMP and DMR (but reg for Gmodel) input types as 65. 13 terms are shared between 
seven outputs as highest intersection amount. 16, 14, 43, 44, 69, 92, and 611 terms are shared by seven, six, five, four, three, two, and 
single unique inputs. In total 31% of elements are shared and 69% are unique to the single inputs (reverse ratios with the BP output). 
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The highest number of unique elements belongs to the Gmodel DMR reg. input with 462 terms and the lowest is with one term for 
the Emodel MP input. 

 
Figure S40: Intersection of significant CC GO terms between all models, only CG context and precipitation data for location-
based clustering, and a previous study [7] with UpsetR package [8]. 
The highest sharing is seen between all models but the Emodel MP input type with 22 terms. The single term is shared by all outputs 
but Gmodel MP is “transferase complex” (on the far-right bar). 13 terms are shared between seven outputs as the highest intersection 
amount. 5, 26, 22, 26, 13, 22, 32, and 45 terms are shared by eight, seven, six, five, four, three, two, and single unique inputs. In total 
76% of elements are shared and 23% are unique to the single inputs (reverse ratios with the BP output). The highest number of unique 
elements belongs to the Gmodel DMP input with 15 terms and the lowest is with two terms for the Gmodel MP and the GxE model 
DMR reg. input. 
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Figure S41: Gugger et al., 2016 [9] methylation and climatic data processing and analysis by the EpiDiverse EWAS pipeline. 

EWAS pipeline run was performed only with an Emodel and the intersection of Gugger analysis and the pipeline were outlined. An 

example Manhattan graph for the CHH context tmin data with the pipeline is shown below the statistic tables. 
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(a)   (b)   

(c)  
Figure S42: Location of P. abies trees (a), additional clone information (b), and grouping of trees (c).  

The screenshot from Google maps with blue, purple, yellow, green, and brown colors are respectively for Harsefeld, Neuhaus, Göp-
pingen locations with ortet and ramet growing areas (all are in Germany), ref:  https://www.google.com/maps. (b) Elevation infor-
mation for clone 4259732 is not known and marked as “?”. Part (c) shows the grouping of trees. Ortet stands for the original tree, 
ramets are the clones of those ortets, and numbers (65,67, 68, and 72) are tree IDs, ramet2 trees are also clones but independent from 
ortets, G and H stands for Goeppingen and Harsefeld respectively. “Mitte (middle)”, “oben (up)” and “unten (below)” are the trees 
that belong to the Neuhaus area and middle, upper, and lower parts of the trees).  
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The ratio of PCR Duplicates for P. abies dataset 

The ratio of PCR duplicates by dividing them with the total number of reads were collected for the 28 P. abies samples (Figure S39), 
the average ratio was 54% and ranges between 36% to 82%. The line fit plot was showing a linear relationship with .65 R2. Therefore, 
the WGBS pipeline run was conducted with –noDedup parameter, i.e., not removing PCR duplicates. Stochastically, the more frag-
ments of a genome are analyzed, the more identical fragments are expected. That means if the genome is sequenced with high depth, 
more duplicates will be seen than sequencing with low depths. Hence, an approximately linear relationship between depth and 
duplicates is expected. During PCR, a bias might exist that leads to some of the fragments being more often amplified than others. 
However, such data will probably not be Poisson distributed. If such a sample is sequenced, a steeper curve than a linear relationship 
is expected because of the skewed distribution of the sample. In other words, it is assumed that PCR introduces a bias [10], and hence 
shifts the distribution of observed fragments.  
 

 

(a)  (b)   

(c)  

Figure S43: PCR duplicate analysis. 

PCR duplicate ratio (a), line fit plot with a duplicate number of duplicates vs total reads (b), and statistical summary output (c).  
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Blastx analysis with the Q. lobata dataset 
 
13 Cs uniquely found by the pipeline with CG context and tmax data showed that three of them are genic with the closest gene hit, 
one shows no-hit, one was not found in a genic area with 57.0 Kb contig, and the rest found to be connected to related studies in the 
literature with (21-22570) bps (base pairs) distance to the closest genes. For example, receptor-like kinases show a great enlargement 
in the flowering plant lineage within Viridiplantae which may probably explains the gain of new roles that are essential for plants in 
constantly changing environment [11]. Ubiquitin carboxyl-terminal hydrolases are required for periodic maintenance of the circadian 
clock at high temperatures in Arabidopsis [12]. NAD biosynthesis is found to be essential in plant development and stress responses 
[13]. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Ar-
abidopsis [14] and Two MYB transcription factors as MYB63 and MYBR104 were stimulated in the wild type in response to heat in 
maize [15]. All eukaryotic circadian clocks take advantage of F-box proteins to form substrate adaptor components of a larger E3 
ubiquitin ligase complex and the timing of the clock is decided by environmental factors for example light and temperature changes 
as well as a self-sustaining mechanism [16]. A study by Yamada et al., 2019 showed that TRANSPORT INHIBITOR RESPONSE 
(TIR2) is regulated by temperature and is necessary for temperature-dependent hypocotyl elongation [17]. The INO80 is the most 
recently well-known chromatin remodeler subfamily and it is represented by two complexes in cerevisiae INO80 and Swi2/snf2-
related 1 (SWR1) [18]. H2A.Z deposition around the flowering locus (FLC) transcription start site (TSS) by SWR1 is required for FRI-
mediated FLC activation and it was seen by Kumar and Wigge et al., 2010 that the temperature increases from 17 to 27 ◦C caused the 
eviction of the H2A.Z [19]. Ty1-copia elements are the insertion of the retrotransposon Hopscotch to the regulatory region of the gene 
teosinte branched1 (tb1) of the maize [20] and similar enhancing mechanisms are observed in other TE family members in maize 
which is for upregulating gene expression in response to abiotic stresses [21]. Wickland et al., 2015 proposed that their knowledge 
about FT/TFL1 gene family will let to modify florigen and anti-florigen action in the future and therefore promotes plant adaptation 
with climatic changes [22]. The auxin signaling pathway depends on the auxin gradient within cells and tissues, The TRYPTOPHAN 
AMINOTRANSFERASE OF ARABIDOPSIS (TAA)/YUCCA (YUC) pathway is the most well-known pathway to study auxin mech-
anisms and expression of YUC gene members are known to contribute to plant development besides environmental responses [23].  
 
According to the pipeline results, genes found to be related to spatial variables seem found in root/shoot development systems in the 
literature. The closest genes with five Cs found to be related to longitude, latitude, elevation for the CG and CHG contexts showed 
suggestive results too none are genic but distance with [118,1357] bps to the closest gene. For example, the GDSL esterase/lipase 
protein (GELP) family is found to be important in plant growth and defense [24]. Naramoto et al., 2009 showed that phosphoinosi-
tide-dependent regulation of Van3 ARF-GAP localization and activity is important for vascular tissue persistence in plants [25]. The 
vesicle transport system appears to be crucial for plant development and environmental responses [26]. The closest gene to a single 
C (genic) associates with longitude for CG context encodes atypical and second-largest polymerase subunits in Arabidopsis are nu-
clear proteins with Pol IV and Pol V enzymes and play roles in RNA silencing and response biotic and abiotic stresses [27]. The other 
two closest genes to two Cs for latitude and elevation for the CG context with [2089,17001] bps distance showed that zinc finger BED 
domain-containing protein RICESLEEPER 3-like was found to be in stress-responsive mechanisms evolved by S. chilense to survive 
under high temperature, drought, and salt stress environment in Northern Chile of Atacama Desert [28]. Four Cs showed an associ-
ation only with the elevation data for the CG context with [105,1290] bps distance to the closes gene and the literature showed that 
roots keep specific growth angles in many plants to the direction of gravity known as gravitropic setpoint angles (GSAs) for enough 
water and nutrient intake. Furutani et al., 2020 showed that some genes involved in GSA control by regulating auxin flow in Ara-
bidopsis and RCC1- like domain (RLD) proteins are crucial regulators for polar auxin transport [29]. 
 
Tmin connected genes in the literature gave insights about environmental stress studies with various plant species. A single C found 
uniquely by the pipeline with CG context and tmin data was seen in a genic region and a relation to pentatricopeptide repeat (PPR) 
proteins. PPR proteins are one of the largest protein families in land plants and their function is found as effective on organelles 
biogenesis, photosynthesis, respiration, plant development, and environmental responses [30]. 16 Cs found only by the pipeline with 
CHH context and tmin data revealed meaningful insights too. Two of those 16 Cs are genic, one has no hits, one is not in a genic 
region with 17.0 Kb contig, and the rest have a distance between [116, 19,435] bps to the closest gene. The study by Baek et al., 2011 
showed that overexpression of a gene encoding mitochondrial AAA protein in Arabidopsis, ATPase-in-Seed-Development (ASD), 
leads to morphological and anatomical seed maturation defects and it is induced by abiotic stresses like low temperature and high 
salinity [31]. Experiments by Kathiria et al., 2013 showed that high temperature is associated with N protein activity and therefore 
would result in less efficient response to tobacco mosaic virus (TMV) [32]. A KH domain-containing putative RNA-binding protein 
is found to be essential for heat-responsive gene regulation and thermotolerance in Arabidopsis [33]. Cysteine-rich receptor-like 
kinases (CRKs) were found to be related to cold, salt, drought, UV, wounding, heat, osmotic, and oxidative stress in Arabidopsis 
[34]. Data by Xia et al., 2017 suggested that microRNA5144 (osa-miR5144-3p) in rice responds to biotic stresses like salt, mercury, 
dark, and high temperature to modulate the protein disulfide isomerase (PDI) (OsPDIL1) [35]. Several studies showed that protein 
ubiquitination plays a very important role in plant developmental stages and abiotic stress responses such as drought and high 
salinity via diverse E3 ligases by mediating phytohormone and other pathways [36]. Plant peptides are key molecules of stress re-
sponses such as drought and high salinity and stress-related signaling peptides in plants found to be connected to proteolytic pro-
cessing of protein precursors [37]. 
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A single C uniquely found by the pipeline with the CG context and the CWD data seems to be connected to an uncharacterized 
protein for Q.lobata with a 1290 bps distance.  

 

Table S1: Q. lobata blastx analysis 

Genomic context of Cs with significant association to climate, and spatial variables including the number of Cs within the frag-
ment, closest gene via blastx, distance to the closest gene (upstream). and putative protein product, sorted by matching status of Cs 
between Gugger et al., 2016 [9] study, and the EWAS pipeline. The fragment label shows the genomic contig and the position of the 
most significant C (contig: position) and the lowest p-values are listed for fragments with multiple significant C’s. Distances are in 
nucleotides and measured from the closest end of the amino acid alignment.  
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Table S2: Missing data estimation of EpiDiverse EWAS pipeline (a) and GEM R package (b) [38]. Missing data statistics for P. 
abies dataset with CG (c), CHG (d), and CHH (e) contexts. 

GEM’s missing data estimation was misleading due to missing values, it was expected (a) that only FDR of the same position 
should differ colored as red and the rest should be the same as shown in green, but this was not the case (b) for GEM package. 
Some statistics like beta coefficient, t-statistic, and p-value were also calculated as different for the same position they only depend 
on the number of samples, not the total number of tests. “0” filter_NA and filter_SD parameters lead to 7%, 7% and 5% of total data 
for CG (c), CHG (d) and CHH (e) contexts. Different NA filtering from 0 to 0.90 intervals with 0.10 increments was used with single 
covariates, pairwise combinations, and all to test the effect of the filter_NA parameter. Please see the “Filtering missing data after 
uniting mapped reads” chapter in the main document for more details.   

(a)   

(b)  

(c)   

(d)  
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(e)   
 

 

 

Table S3: EWAS output and GO statistics. 

The uppermost table shows statistics for all models, precipitation data, CG context with location-based clustering. The following 
three tables are only for the Emodel, context, and separated with environment data as precipitation, tmax, and tmin respectively. 
Each table is also separated into contexts for CG, CHG, and CHH. No input means either no significant output is produced by the 
pipeline or no gene conjugate was found to perform GO analysis. No output means the GOSTAT pipeline did not yield any signifi-
cant CG. Different color is for discriminating different tables, inputs, and models and have no other meaning.  
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Table S4: Statistics of additional P. abies samples. 
Total number of reads after trimming, number of bases, and average coverage for 20 P. abies samples.  
 

name # of reads (after trimming) # of bases average_coverage 

1863703_01_G 36,704,179 4920072696 20.4608 

1863703_01mitte 39,158,493 5158271910 15.4527 

1863703_01oben 52,045,993 6853371594 19.2579 

1863703_01unten 36,132,791 4916389948 14.7774 

1863703_02 48,798,096 6638285280 18.5874 

1863703_02_H 15,180,549 2047061774 7.53737 

1863703_03 37,121,421 5047374726 15.426 

1863703_03_H 36,153,526 4755359364 15.7525 

1863703_01_H 17,809,172 2402344197 8.32586 

4259732_02_G 37,664,957 5044588256 20.0201 

4259732_04 38,859,058 5267817786 15.478 

4259732_04_H 47,124,752 6200261578 19.583 

4960703_03_G 27,974,432 3678537518 11.8483 

4960703_05_H 29,460,718 3873438994 13.8074 

4960703_06_H 41,188,872 5412522166 17.5583 

4960703_10mitte 47,248,888 6437003646 18.1052 

4960703_10oben 39,950,533 5424276914 16.1239 

4960703_10unten 36,340,407 4951833930 14.2717 

4960703_11 85,163,807 11499000000 25.8284 

4960703_12 70,050,616 9457219816 22.1892 
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