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Abstract: The issue of typological versus population thinking in biology is briefly introduced and
defined. It is then emphasized how population thinking is most relevant and useful in vector biology.
Three points are made: (1) Vectors, as they exist in nature, are genetically very heterogeneous. (2) Four
examples of how this is relevant in vector biology research are presented: Understanding variation
in vector competence, GWAS, identifying the origin of new introductions of invasive species, and
resistance to inbreeding. (3) The existence of high levels of vector genetic heterogeneity can lead to
failure of some approaches to vector control, e.g., use of insecticides and release of sterile males (SIT).
On the other hand, vector genetic heterogeneity can be harnessed in a vector control program based
on selection for refractoriness.

Keywords: typology; population thinking; vector biology; vector control; Aedes aegypti;
Anopheles gambiae

1. Typological and Populational Thinking

There are two fundamental ways to view the biological world: As sets of nearly identical essential
types (typology) or as populations of heterogeneous individuals (populational thinking). Typologists
see the world as consisting of homogeneous populations in discrete groups with an idealized essence
embodied by “normal” (wild type) individuals. The population view considers the living world to be
composed of heterogeneous populations of unique individuals that can be assigned often only loosely
to discrete groups or types. These nearly diametrically opposed views determine how research is
designed and carried out and how data are interpreted and valued. While these views can be traced
back to ancient Greece (e.g., Plato’s idealized types), we need only start around 1900 to appreciate how
these views impact biology in general and vector biology in particular.

In 1900, Mendel’s principles of inheritance were rediscovered followed by the development of
the field of genetics primarily by Thomas Hunt Morgan. An essential principal of genetics in this
early stage was the recognition of a wild type and mutants. The wild type was the normal genotype
that defined the species and predominated in all populations. Mutants were rare anomalies useful in
genetic studies, but otherwise having little to do with the essence of the species. Morgan understood
his genetic studies were important to understanding evolutionary processes and, in fact, wrote three
books on the subject [1–3]. Morgan’s view of evolution was that it was driven by mutation. Most of
the time, populations are composed of individuals all homozygous for wild type alleles. Rarely, a new
favorable mutation occurs that quickly goes to fixation and a new set of homogeneous wild type is
established. Morgan gave little role to natural selection except to weed out the unfit (discussed further
in [4]). This mutation driven view of evolution persists [5].

Morgan’s books had little impact on the field of evolutionary biology primarily because they
did not resonate with biologists who worked with natural populations (field biologists, taxonomists,
ecologists, etc.). Such workers observed ample variation among individuals and populations in nature
for a variety of evolutionarily important traits like morphology and behavior. Variation reigned rather
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than idealized types. For some time these workers doubted that the genetics as developed by Morgan
and his school had much to do with what happens in real populations in nature. A rapprochement or
sorts arose with the demonstration by R. A. Fisher, J. B. S. Haldane, and S. Wright in the 1920s and
1930s that, theoretically, Mendelian rules of inheritance were compatible with naturally occurring
variation and Darwinian evolution. Dobzhansky [6] demonstrated how these mathematical theories
are consistent with observations in natural populations. In contrast to Morgan’s mutation driven view
of the evolutionary process, in this view, most evolutionary change is based on pre-existing genetic
variation. Enough genetic variation is floating in natural populations for almost all traits to make
adaptive evolutionary changes in the absence of any new mutations. Success by plant and animal
breeders in selecting a plethora of diverse traits in many plants and animals confirmed this view.
Population thinking began to replace typological thinking at least among those interested in natural
history, ecology, and evolution, that is, workers interested in populations and species as they exist in
nature, in contrast to laboratory cultures sitting on a shelf or in an incubator.

While population thinking was sweeping the world of ecology and evolution in the mid-20th
Century, molecular biology was exploding as a discipline and most practitioners implicitly or explicitly
embraced typology. T. H. Morgan was the intellectual father of many early molecular biologists.
Biological problems could be reduced to a basic essence for which a physical/chemical explanation
must hold across all of life. A popular quip at that time was “ . . . anything found to be true for E. coli
must also be true of Elephants” [7]. As R. C. Lewontin [8] pointed out, the two approaches to biology
had fundamentally different goals and priorities. The molecular biologist sought constancy, general
principles that held across the living world. Natural historians and population biologists consider
variation to be the defining essence of biology, the basis of evolutionary change, and thus of all life.

2. Genetic Heterogeneity in Vectors

The problems inherent in vector-borne diseases can be fruitfully considered a problem in ecology
and evolution, or more generally, population biology. Vector-borne diseases are most often a three
species interaction problem: The vector (usually an arthropod), the pathogen (usually a microbe),
and the vertebrate host (humans in cases of most interest to us). The population dynamics and
interactions of three species need to be considered simultaneously. And, equally importantly, each
level is heterogeneous, i.e., consisting of a heterogeneous grouping of individuals. Here I will focus on
the vector side with the explicit caveat that this is only one-third of the overall problem; heterogeneity of
pathogens and humans (or other vertebrate hosts) are equally crucial in reaching a full understanding
of these diseases.

As just one prominent example of the importance of understanding the genetic heterogeneity
of vectors we can consider the well-known and extremely important case of Anopheles gambiae, the
primary vector of malaria in Africa where most deaths due to this disease occur. Mario Coluzzi and
his collaborators studied chromosomal (inversion) polymorphism in this complex of species and
uncovered a plethora of heterogeneity not distinguishable on the morphological level. Figure 1 is a
quick historical overview of knowledge of this vector. What was considered a single species is now
eight formally described species. In addition, various chromosomal forms were described [9], “form”
being genetically distinct entities, but ambiguous with regard to taxonomic status. Furthermore, when
two of the named species are examined in the detail provided by genome sequencing, individual
populations are often found to be genetically distinguishable and unique [10]. And this is for
inter-population variation. By far the most genetic variation exists within populations with nucleotide
heterozygosity in these populations being in excess of 1% [10], i.e., an individual is heterozygous at
>1% of all nucleotide sites which means that no two individuals are genetically identical.
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Figure 1. Schematic history of the taxonomy and genetic diversity of Anopheles gambiae. The light blue 
box in upper left indicates it was considered a single species up to the 1960s. Italicized names are 
formally described species; non-italicized designations are informal “forms”. The bottom colored 
block is a STRUCTURE plot [10] based on whole genome sequencing. Summarized from work 
reported in [11–15]. 

A similar story holds for another well-studied vector, Aedes aegypti. This species is composed of 
two named sub-species that differ in morphology and behavior with a darker zoophilic form (Ae. 
aegypti formosus) occupying the ancestral sub-Saharan Africa region and a light anthropophilic form 
(Ae. aegypti aegypti) that has colonized the tropical and subtropical world outside Africa [16,17]. Even 
with the relatively crude method of electrophoresis of proteins, this species was found to be 
genetically differentiated into discrete populations throughout its distribution, Figure 2 [18,19]. More 
recent DNA-based technologies have only led to confirmation and further resolution of the discrete 
genetic patterns exhibited by this vector (Figure 3). While not every population is genetically distinct 
using these genetic tools, clearly the genetic diversity across populations is remarkable. 

 
Figure 2. Step-wise linear discriminant analysis based on allozyme variation in populations of Aedes 
aegypti. Letters indicate population samples, numbers the center of lettered groups. A: East Africa 
formosus subspecies, B: East Africa aegypti subspecies, C: West Africa formosus, D: Caribbean, E: 
United States, F: South America, G: Asia. From Reference [19]. 
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Figure 1. Schematic history of the taxonomy and genetic diversity of Anopheles gambiae. The light blue
box in upper left indicates it was considered a single species up to the 1960s. Italicized names are
formally described species; non-italicized designations are informal “forms”. The bottom colored block
is a STRUCTURE plot [10] based on whole genome sequencing. Summarized from work reported
in [11–15].

A similar story holds for another well-studied vector, Aedes aegypti. This species is composed
of two named sub-species that differ in morphology and behavior with a darker zoophilic form
(Ae. aegypti formosus) occupying the ancestral sub-Saharan Africa region and a light anthropophilic
form (Ae. aegypti aegypti) that has colonized the tropical and subtropical world outside Africa [16,17].
Even with the relatively crude method of electrophoresis of proteins, this species was found to be
genetically differentiated into discrete populations throughout its distribution, Figure 2 [18,19]. More
recent DNA-based technologies have only led to confirmation and further resolution of the discrete
genetic patterns exhibited by this vector (Figure 3). While not every population is genetically distinct
using these genetic tools, clearly the genetic diversity across populations is remarkable.
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Figure 2. Step-wise linear discriminant analysis based on allozyme variation in populations of Aedes
aegypti. Letters indicate population samples, numbers the center of lettered groups. A: East Africa
formosus subspecies, B: East Africa aegypti subspecies, C: West Africa formosus, D: Caribbean, E:
United States, F: South America, G: Asia. From Reference [19].
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Figure 3. Genetic structure of population samples of Aedes aegypti from the Americas based on 
microsatellites. Bayesian STRUCTURE plots [10] are shown for different groups of populations. K is 
the number of subpopulations assumed. From [20]. 
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It is not only genetic variation detectable by molecular technologies that is ubiquitous in vectors.
Chromosomal inversion polymorphisms are well known especially in anopheline mosquitoes with
favorable polytene chromosomes. As noted earlier, M. Coluzzi’s work on An. gambiae is a monumental
demonstration of the importance of inversion polymorphism in vectors (see references in [21]). In an
early work, Craig et al. [22] showed that strains of Ae. aegypti from different localities varied in sex-ratio
from about 22% to 52% females. Inbreeding revealed about 40 different morphologically identifiable
mutations and that each of 30 strains examined carried on average one recessive morphologically
identifiable mutation. McClelland [23] documents extensive morphological variation in the patterns
of scales on Ae. aegypti both within and between the named subspecies. Jupp et al. [24] documented
considerable variation among S. African samples of Ae. aegypti for the scaling patterns used to
distinguish the subspecies, so much so that offspring of single wild-caught females displayed variation
ranging from “pure” Ae. aegypti formosus to “pure” Ae. aegypti aegypti. This seriously questions the
validity of the typological subspecies designations.

3. Importance of Variation Vector Biology

I will present four contexts in which heterogeneity of vector populations are important in vector
biology. The first is how the heterogeneity of vectors is reflected in the relative importance of different
subgroups and genotypes in transmitting diseases. The second, linkage disequilibrium, might seem a
basic property of the genetic structure of populations, but it has an important use in understanding the
genetic basis of many traits of particular interest to vector biology. The third context is determining
the origin of new introductions of invasive species that continue to spread today. Finally, I discuss
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the difficulty in inbreeding vectors in attempts to reduce genetic variation, implying that much of the
standing genetic variation in vectors contributes to their fitness and adaptive flexibility.

Vector competence: Vector competence, the relative efficiency with which a vector can acquire a
pathogen and transmit it, is a fundamental factor in understanding any vector borne disease. This
trait displays considerable variation among species, populations, and individuals. A few illustrative
examples are presented here; Tabachnick [25] should be a consulted for a more detailed authoritative
review of this issue.

On the species level, we can again use the example of An. gambiae complex. Some members of the
complex (An. gambiae s.s., An. arabiensis, and An. coluzzii) are extremely efficient carriers of human
malaria parasites, whereas others (An. quadriannulatus, An. bwambae) are poor carriers, while still
others (An. merus and An. melas) are intermediate. Thus knowledge of which of these morphologically
identical species prevails in a location allows assessment of the threat they pose. It is not always clear
if the relative importance of these sibling species is actually due to the relative physiological ability
to support development of the parasite (competence) or other behavioral (e.g., host preference) or
ecological factors (not living closely associated with human habitats). Regardless, the various subunits
of An. gambiae s.l. pose very different public health threats.

On the intraspecific level, there is also evidence of considerable variation in ability to transmit
pathogens among individual genotypes. Aedes aegypti is the best studied in this regard primarily
because it is easy to rear in the laboratory and the primary vector of several viral diseases of
contemporary concern. Table 1 shows results for three viruses. Different mosquito populations
were studied in the same laboratory using identical methods, so pairs of populations in each study are
comparable. Souza-Neto et al. [26] review many more such studies for several other strains of viruses
and Ae. aegypti populations. In some cases, individual genetic factors have sufficiently strong effects
on competence they have been identified and mapped [27–29]. Lambrechts et al. [30] demonstrated
local adaptation between Ae. aegypti populations and dengue virus isolates from their localities.

Table 1. Examples of vector competence studies on Aedes aegypti for three of the major viruses this
species transmits, Zika, dengue, and yellow fever. The geographic origin of mosquitoes tested is in first
column with the virus in the second. Infection rate (third column) is the percent of females that blood
fed on infective blood that became infected.

Geographic Origin Mosquito Virus Infection Rate Reference

Salvador, Brazil Zika DAK AR 100% [31]
Rio Grande, Texas “ 40%

Singapore Dengue Guinea C 90% [32]
Bangkok “ 10%

Guatemala Yellow Fever Asibi 2% [33]
Kwa Dzivo Kenya “ 57%

Note that in this table are presented studies using the same strain of virus and assayed in.

While not so easily studied in the laboratory, An. gambiae s.s. has been shown to have similar
variation in ability to be infected with Plasmodium falciparum. Figure 4 shows the results of infecting
nine different families of An. gambiae derived from the same population from Kenya for three different
isolates of the malaria parasite (also from Kenya) [30]. Obviously, there is considerable variation even
within a mosquito population for susceptibility to infection and different Plasmodium isolates also
vary considerably, confirming that heterogeneity of the pathogen is important in this regard.
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GWAS: A relatively new methodology in genetic analyses has arisen as the result of advances in
acquiring genome-level data (reviewed in [35]). It is now possible to identify genes responsible for
different phenotypes, i.e., bridge the genotype-phenotype chasm, even in non-model organisms that
are not easily reared in the laboratory. This method is called GWAS genome wide association studies.
If one has a dense enough set of polymorphic markers (usually single nucleotide polymorphisms, SNPs)
distributed along a genome in samples that differ in a phenotype, it is possible to make statistical
associations of the SNPs to the phenotypes. SNPs exhibiting such associations are unlikely to be
directly causally related to the phenotype of interest, but rather they are non-randomly linked to
the causative genetic factors. Thus the degree of non-random association between physically linked
positions in a genome (called linkage disequilibrium, LD) is important in determining the success
of this methodology. Too little LD means extremely high density of markers and very large sample
sizes are needed to detect significant associations, too much LD means any association will mark
such a large region of the genome as to be of little guidance as to number or identity of candidate
causative genes.

Initial studies of An. gambiae and its sibling An. arabiensis reported very low LD in these species,
generally not greater than extending over 200 bps [36,37]. Such observations would discourage trying
to perform GWAS with these important vectors. However, the recent complete genome sequences
of 765 individuals of these species across Africa revealed the existence of significant LD is some
populations (Figure 5). Like so many other traits, LD is not a set parameter in a species. Importantly,
this means GWAS may well be feasible if one chooses the right population to study. In fact GWAS
has been successful in this group of mosquitoes for at least two traits, insecticide resistance [38] and
desiccation resistance [39].

A similar situation occurs for Ae. aegypti. The level of LD found in populations is expected to be
affected by the number of individuals that found a population (affecting effective population size)
and the age of the population. Given the history of Ae. aegypti [17,40] it is expected that the ancestral
populations that still exist in Africa should have less LD than populations outside Africa. Africa
populations are relatively old and, at least historically, their habitat (tropical forest) was continuous
implying large populations. Outside Africa, populations are likely to have been started with relatively
few individuals, exist in discontinuous habitats, and are relatively young, not more than 500 years old,
many much younger. One measure of LD is the distance at which the maximum observed correlation
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between loci drops to one-half. In a population from Mexico this occurs at 198 Kb while in an African
population (Gabon) this occurs at 13 Kb [29].Insects 2018, 9, x FOR PEER REVIEW  7 of 14 
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Figure 5. Linkage disequilibrium across populations of An. coluzzii and An. gambiae s.s. Four
indistinguishable lines with lowest LD are from West Africa. Maroon line is A. coluzzii from Angola,
dark green line is An. gambiae s.s. from Gabon, and the grey is An. gambiae s.s. from Kenya. From
Reference [11].

A basic feature of genomes closely related to LD is recombination rate. When comparing two
well-studied vectors, An. coluzzii and Ae. aegypti, we see a considerable difference in recombination
rate per physical distance. Recombination in An. coluzzii is about 1.3 cM/Mb [41] while for Ae. aegypti
it is 0.33 cM/Mb [29], a four-fold difference.

Thus, like so many other traits, there is no single level of LD for a species, it varies among
populations dependent primarily on age and size of populations. At least between species, rates of
recombination also varies considerably directly affecting levels of LD.

Origins of New Introductions: Many vectors are invasive species [42], species that have ongoing
shifts in their distributions. These are often species closely associated with human habitats which
enhances their spread by human activities as well as increasing their medical importance by being in
close proximity to humans. Aedes aegypti is a classical well-studied invasive vector. In the last ~600 years
it has spread from its native Africa around the tropical and subtropical world and continues to expand
its distribution [43]. Due to the population-specific genetic heterogeneity of this species (Figure 3), it is
possible to trace the origin of new introductions or what are thought to be new introductions.

Table 2 summarizes the power of using microsatellites or a battery of ~16,000 SNPs from a SNP
chip [44]. Three studies where these methods have been applied are for recent introductions into The
Netherlands [45], Washington, DC [46], and Las Vegas [47].

Table 2. Probabilities of correctly assigning an individual Aedes aegypti to its population of origin using
either microsatellite variation or ~16,000 SNPs from a chip. From [48].

Genetic Data Type Probability of Assignment to
Correct Continent

Probability of Assignment to
Correct Population

Microsatellites 99.9% 80.9%
SNPs from chip 100% 99.7% *

* An exception is Florida and Costa Rica which are not distinguishable.

Perhaps the most revealing and potentially disturbing example of genetic analyses of presumed
new introductions is California. Aedes aegypti was first reported in California in 2013. Initial work on
samples from northern California indicated a likely origin as the southeast of the US, possibly New
Orleans [49]. Subsequent collecting in California revealed the species to be quite widespread including
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in southern California. It became clear that the northern populations closely related to the southeast
US are genetically distinct from southern California populations that are closely related to southwest
US populations (Arizona and New Mexico) and northern Mexico [50]. The disturbing result from these
genetic analyses is that estimates of the age of the populations in California date to ~300 generations
ago (Figure 6). If we assume about ten generations per year, possibly fewer given the relatively cool
temperatures in northern California, this implies the populations have been there at least 30 years,
much before their “discovery” in 2013. California has an extensive and active mosquito surveillance
program, yet did not detect this species.
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Similar to California where previously undetected populations are reported as new introductions
is the case of the Black Sea. Beginning in the early 2000s, Ae. aegypti was reported as new introductions
after an apparent absence of about 50 years (e.g., [52]). Genetic analyses of these “new” introductions
showed them to be older than all other Asian populations dating to about 200 years [48].

Inbreeding: For many studies of genetics of vectors, e.g., genome sequencing and assembly,
reducing genetic variation is desirable. The usual way this is done is to inbreed, produce lines from
matings of close relatives. In many vectors this has proven problematic.

One clear example is the easily-reared Ae. aegypti which is quite amenable to most genetic work.
However, when lines with reduced genetic variation are attempted to be derived through inbreeding,
they are only partially successful. One recent example is Powell and Evans [53]. Heterozygosity of the
founding populations is expected to be reduced to (0.75)n after n generations of full-sibling inbreeding,
13% after seven generations. The observed reduction after seven generations of full-sib matings was
only to 72% of the starting heterozygosity. Similar results have been observed in other Aedes [54] and
Anopheles [55,56].

This implies the genetic variation in natural populations of vectors imparts high fitness through
such mechanisms as heterosis or overdominance; the expected frequencies of homozygotes are not
obtained due to low fitness. This means the genetic variation so ubiquitous in vector populations is
adaptive and almost certainly accounts for their ability to occupy diverse niches (e.g., reference [57])
and to respond quickly to evolutionary challenges (see next section). Reduction in fitness due to loss
of genetic variation is almost inevitable with laboratory rearing and colonization of vectors. This
can affect fitness traits in males with implications for genetic modification programs using releases
of males [55].
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4. Importance of Vector Variation in Control Programs

Controlling diseases through control of vector populations can be quantitative or qualitative.
Quantitative control means reducing the number of vectors, qualitative control means genetically
changing vectors to be less dangerous to humans. The standing genetic variation in vector populations
plays a big role in determining the effectiveness of both approaches.

Quantitative control: Quantitative control methods may reduce either the absolute numbers of
vectors or frequency of vectors biting human hosts. Destruction of habitat, usually larval habitats,
is well known and often effective. Screens and bed nets are effective especially for nighttime biters
like many of the most important anopheline vectors of malaria. While genetic variation in vector
populations may affect such control programs, for example, due to the propensity of different genotypes
to take blood meals indoors or outdoors [58], it is much more obvious how genetic variation affects
control programs based on insecticides and release of sterile vectors.

Wherever insecticides have been used, resistance almost invariably arises. Resistance is most
often due to genetic changes in populations by increasing already present genetic variants that allow
individuals to survive the chemicals being applied. This is exactly the expectation of the populational
view of diversity: So much variation exists in natural populations that almost any trait can be selected.

Less well appreciated is the role genetic variation in populations plays in sterile insect release
(SIT) programs. This method has had limited application to vectors and more experience comes from
agricultural applications. One issue directly related to heterogeneity of vectors is evolution of mating
discrimination against the release strain. Because females that mate with released sterile males leave
no offspring, there is strong selection favoring females that do not mate with the released males. Over
time, the release strain males lose their effectiveness to suppress the population. This was documented
in the Mediterranean fruitfly SIT control program [59]. While not documented in the longest such
program, that for the screwworm, this may be due to the frequent changing of the release strain, some
17 times over the about 60 years [60].

The most extensive SIT program for a vector of human diseases has been for Aedes aegypti
employing a release strain with males carrying a dominant lethal gene, a method dubbed RIDL
(Release of Insects with a Dominant Lethal) [61,62]. The most intensive releases have been done in
Brazil, in particular in a city in Bahia, Jacobina. This release program began to lose its effectiveness
after about 18 months of releases, Figure 7 [63]. Blue bars have been added in this figure indicating
when released males had significantly reduced effectiveness in producing F1 eggs followed (lower
graph), temporally, by the red bars when the adult female population significantly increased (upper
graph). While not explicitly tested, this pattern is consistent with mating discrimination against the
released males as a likely explanation for this breakdown of the effectiveness of control of numbers.

Qualitative control: The idea of genetically altering vectors to render them less harmful to humans
has a long history dating to at least 50 years. This requires two major steps. (a) Identifying a genetic
variant (some DNA change) that results in a vector phenotype that is less capable of transmitting
a pathogen. This may take the form of causing a physiological change that reduces or eliminates
the growth of the pathogen in the vector, or other trait such as reducing or eliminating a preference
for taking blood meals from humans. (b) The second step is to somehow replace the target vector
population with the variant. Many studies have identified genetic changes that satisfy the first step,
the major stumbling block has been the second step. To date no such program has been successful.

Despite this lack of progress, new optimism and hope arose with the discovery of the
CRISPR/Cas9 system that seemed to hold great promise (reviewed in Reference [64]). In this system,
DNA regions heterozygous for the CRISPR/Cas9 endonuclease convert the alternative allele into itself.
This produces a distinct advantage to the spread of the gene through a population. Linking this system
to a desirable allele (e.g., one conferring resistance to transmitting a pathogen) to the endonuclease
would “drive” the resistant gene construct through a population. In theory, this should work very
efficiently [65,66].
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RIDL release strain (grey lines).

Unfortunately, there is increasing evidence that the genetic variation inherent in natural
populations of vectors is likely to frustrate any such CRISPR/Cas9 type replacement programs.
Both theory [67] and experimental data in laboratory populations of insects, Drosophila [68] and
Tribolium beetles [69], indicate that resistance to the drive mechanism is very likely to arise quickly in
any such program. This is due to a combination of naturally existing variation in the target site for the
endonuclease as well as the fact that the endonuclease itself is mutation-inducing with error prone
repair where it cuts, leading to destruction of the target site.

While not a modification of a vector’s genome, there is a successful modification of a vector’s
microbiome that renders the carriers less efficient vectors of human diseases. This is based on the
endosymbiotic bacteria, Wolbachia. This bacterium is ubiquitous in insects [70] but does not exist
naturally in Ae. aegypti [71]. However, when artificially infected with Wolbachia in the laboratory,
Ae. aegypti become less efficient in transmitting dengue virus and other pathogens [72]. Release of
Ae. aegypti with Wolbachia has led to establishment in the field [73]. While the infection remains
stable where locally established, so far it has only spread at a very slow rate [74], much less than in
other insects like Drosophila [75]. In another locality (Rio de Janeiro, Brazil) release of the same strain
derived from Australian mosquitoes did not establish, possibly due to it being particularly susceptible
to the insecticide being used locally. Outcrossing to native Rio Ae. aegypti produced a strain that could
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establish in that city (L. Moreira, personal communication). This is strong evidence that any attempts
to genetically modify populations should be based on the genotypes prevalent in the target population.

Finally, there is one proposed method of genetic control of vectors that takes advantage of
the genetic diversity inherent in populations. This is to select from the natural population to be
controlled for a strain or strains of mosquitoes refractory to transmission of a pathogen [76]. By
releasing such strains repeatedly, the target population could be reduced significantly in competence.
Because no new genetic material is introduced, just increasing frequencies of already existing refractory
alleles, this method has been called “genetic shifting”. Recent modeling has indicated that size and
number of releases needed to significantly lower the ability of the target population to transmit are
realistically achievable [77]. Because the release strain is identical to genotypes already present, mating
discrimination is less likely to evolve and if it does, new strains for release could be re-selected from
the target population. The replacement of the release strain is much less laborious than reconstructing
transgenic modified strains.

5. Concluding Remarks

The forgoing is necessarily biased by the author’s familiarity with the field and has been confined
to mosquito examples for the most part. Nevertheless, the major point should be clear: It is safe to
conclude that arthropod vectors in general harbor large amounts of genetic variation that affect both
how research is carried out and what control programs are most likely to be effective. While it may
seem that I have set up a “straw man” and that the points explicated here are obvious, much vector
biology research still proceeds with typological concepts at the forefront. I have purposely not cited
such work to avoid irritating colleagues. Suffice it to end with one anecdote. Mario Coluzzi spent his
life promoting populational thinking in vector biology. Near the end of his life (in 2012), in referring to
a very prominent vector biologist, he asked me “Do you think he finally gets it?”.
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