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Abstract: Horn flies, Haematobia irritans, a major cattle pest in the USA, cause substantial economic
losses and current control methods rely heavily on insecticides. Three horn fly populations were
evaluated for insecticide susceptibility to permethrin, β-cyfluthrin, and diazinon. Susceptibility was
variable by population, with the greatest resistance exhibited by a 66-fold resistance ratio (RR) to
permethrin and >14-fold RR to diazinon. Mechanisms of resistance were determined using molecular
techniques and enzymatic assays. The knockdown resistance (kdr) genotype (L150F) associated with
pyrethroid resistance, and a G262A mutation in acetylcholinesterase, previously associated with
organophosphate resistance, were found in all field populations evaluated. Insensitivity of diazoxon
at the acetylcholinesterase (AChE) target site was significantly different in horn flies from one of
the field sites. For metabolic detoxifying enzymes, cytochrome P450 nor general esterases showed a
significant difference between field strains and a laboratory susceptible strain. Pyrethroid resistance
was likely due to the presence of the L150F mutation in the population. In vitro studies targeting the
AChE enzyme did not support the notion that the G262A mutation was the sole cause of resistance
to organophosphates, and, therefore, the exact resistance mechanism to diazinon was not able to
be confirmed.
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1. Introduction

Horn flies, Haematobia irritans, are one of the most damaging pests of cattle in the United States.
Each year they inflict over 876 million U.S. dollars in losses to U.S. cattle producers [1]. To curb these
losses, horn flies are typically controlled by the use of synthetic insecticides applied to animal hosts [2],
most commonly through the use of insecticide-impregnated ear tags. Resistance developed after the
initial widespread use of ear tags in the early 1980s and has continued to the present [3].

Resistance in horn fly populations was first reported to the pyrethroid fenvalerate [4], and
resistance was mitigated through the use of S,S,S-tributyl phosphorotrithioate (DEF) and piperonyl
butoxide (PBO) [4], suggesting the resistance was due to an up-regulation of detoxification enzymes.
Subsequent reports documented evolution of cross-resistance to other pyrethroids and DDT, and later,
the identification of point mutations in voltage gated sodium channels (VgSC) [5–7]. Initially, metabolic
synergists were added to formulations to overcome metabolic resistance mechanisms, but this method
of resistance mitigation is ineffective in populations where target site mutations, such as knockdown
resistance (kdr), are at high frequencies [8].
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In horn flies, kdr and super-kdr are known to occur via the L150F and M54T mutations,
respectively [6]. The super-kdr mutation is a second point mutation found in conjunction with kdr
and is isolated to the VgSC. Super-kdr yields multiplicative resistance levels when compared to kdr
and is therefore of critical importance to pest control programs. In the horn fly VgSC, kdr and the
multiplicative super-kdr mutations confer reduced sensitivity to pyrethroids and are homologous to
similar mutations described in Musca domestica L. (Wiedemann) [9]. Horn fly populations are often very
difficult to reduce to below economic thresholds when kdr reaches high levels [2]. Currently, unknown
mechanisms have been suspected of keeping kdr present in populations without selective pressures; in
Chilean horn fly populations, where insecticide treatments had been discontinued for five years, kdr
remained prevalent [10].

In addition to pyrethroid insecticides, horn flies have developed widespread resistance to
organophosphate (OP) insecticides. However, after initial selection with diazinon ear-tags in
Louisiana [11], there was cross-resistance to other, unused OPs (ethion, fenthion, pirimiphos-methyl),
further complicating the development of successful control programs. Similar to pyrethroid
insecticides, OP resistance is known to result from metabolic and target site mutations that reduce the
bioavailability or potency at the target site, respectively. There are a number of mutations that have been
shown to decrease OP sensitivity, but the G262A mutation in the horn fly acetylcholinesterase (AChE)
enzyme is thought to be the primary mutation that confers reduced OP toxicity [12]. This mutation
was evaluated by a multiplex PCR method that allowed for simultaneous identification of point
mutations in both, the VgSC and AChE enzyme, which correspond to pyrethroid and OP target sites,
respectively [13]. Several horn fly populations were evaluated and data suggested individual horn
flies possessed both the G262A and the L150F mutations that likely yield OP and pyrethroid resistance,
respectively [13].

The objectives of this study were to collect horn flies from the field and to quantify (1) insecticide
susceptibility in treated jar assays against live flies, (2) confirm toxicity bioassay results with genetic
prevalence of the G262A and the L150F point mutations in the AChE enzyme and VgSC, respectively,
and (3) determine in vitro activity of general esterases and cytochrome P450s, which are known to
metabolize pyrethroids and OP insecticides.

2. Materials and Methods

2.1. Insects

An insecticide susceptible horn fly colony (Kerrville), was obtained from New Mexico State
University and originated from wild fly collections in 1961 at the USDA, ARS, in Kerrville, Texas [6].
Field collections of horn flies were accomplished by sweeping flies from the backs and bellies of mature
cows and bulls at three sites: two University of Florida beef research sites, the Beef Teaching Unit
(BTU) in Gainesville, FL; the Range Cattle Research and Education Center (Ona) near Ona, FL, and
one privately owned herd located near Labelle, FL (Labelle). Each collection of flies was split between
insecticide susceptibility assays and genetic/enzymatic assays. Horn flies for genetic/enzymatic assays
were frozen, and subsequently dissected into the three major body regions (head, thorax, abdomen).
The heads were utilized in AChE inhibition assays, the thoraces were utilized in genotyping, and the
abdomens were retained for general esterase (CBE) activity or cytochrome P450 (cP450) assays.

2.2. Insecticide Susceptibility Assay

Field collected or laboratory colony horn flies were exposed to insecticide residues on
glass, as has been previously described [14,15]. Briefly, technical grade insecticides; permethrin
(47.6% cis:50.4% trans), β-cyfluthrin (99.5%), and diazinon (99.5%), were obtained from ChemService
Inc. (West Chester, PA, USA). Serial dilutions of each insecticide in acetone (1 mL applied volume)
were used to coat the insides of 60 mL glass jars [16], and jars were dried at room temperature for
24 h before use. Between nine and ten dilutions of each insecticide were used for each collection site.
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Immediately after collection in the field, adult male and female horn flies were knocked down with
CO2 from a compressed gas cylinder and placed in groups of 15 in each jar. Because control mortality
exceeded 20% at further time points, mortality at 4 hours was evaluated. Mortality was scored as an
inability to walk, fly, or move. The assays were performed in the field, either under shade at ambient
air temperatures or in the cab of an air-conditioned truck. The control treatment consisted of glass
jars that had been treated as previously described with acetone only. Mixed sex, 2–5-day-old Kerrville
flies were used as a susceptible reference strain to generate a concentration-response curve for all
insecticides. Insecticide concentrations used to evaluate the Labelle flies were as follows; permethrin
at 0.0902, 0.184, 0.368, 0.737, and 2.955 µg/cm2, β-cyfluthrin at 0.0147, 0.00737, 0.00147, 0.000147, and
0.0000147 µg/cm2, and diazinon at 0.0147, 0.0737, 0.147, 0.221, and 0.295 µg/cm2. Subsequently, a
broader concentration range was used for horn flies from BTU and Ona as follows; permethrin,
β-cyfluthrin, and diazinon were evaluated separately, each at 0.029, 0.295, 2.95, and 29.5 µg/cm2.

2.3. AChE Inhibition Assay

IC50 values (concentration needed to inhibit 50% of control enzyme activity) were determined
using slight modifications of the Ellman protocol [17] outlined in Swale D.R. et al. [18]. Briefly, five
frozen horn fly heads from each strain were pooled and homogenized in an electric motor driven
tissue homogenizer in 0.1 M Na2HPO4 buffer (pH 7.8, Fisher Scientific, Pittsburg, PA, USA), 0.3%
Triton X-100 (Fisher Scientific, Hampton, NH, USA), and Bovine Serum Albumin (BSA, 1 mg/mL,
Fisher Scientific, Pittsburg, PA, USA). The homogenate enzyme solution (10 µL) was added to
each well of a 96-well microassay plate, along with 20 µL of dissolved diazoxon and 150 µL of
ice-cold phosphate buffer. The assay plate was incubated at 25 ◦C for 10 min. Ellman assay reagents
Acetylthiocholine (0.4 mM final concentration) and 5,5′-dithiobis-(2-nitrobenzoic acid) (0.3 mM final
concentration) were prepared fresh for each experiment, and 20 µL was added to the enzyme to initiate
the reaction. Changes in absorbance were recorded by a DYNEX Triad spectrophotometer (DYNEX
Technologies, Chantilly, VA, USA) at 405 nm. Seven inhibitor concentrations were used in triplicate to
construct concentration–response curves using GraphPad Prism 4 (GraphPad Software, San Diego,
CA, USA) that enabled interpolation of IC50 values. The final IC50 value resulted from the average
of 3–5 IC50 determinations from each field site. Inhibitors were prepared using DMSO (dimethyl
sulfoxide) and contained a final concentration of 0.1% DMSO (v/v) for each inhibitor concentration.
Enzyme concentrations used were within the linear range of measured catalytic activity, thereby
eliminating the need for protein quantification. IC50 values for each species were calculated by
non-linear regression using PrismTM (GraphPad Software, La Jolla, CA, USA).

2.4. Genotyping

At least 15 flies from each collection site were analyzed by PCR. Modifying the protocol outlined
in Foil L.D. et al. [14], DNA was extracted from the thoracic regions of horn flies. Thoraces were
pulverized using pre-chilled disposable pestles into 100 µL of sample buffer (100 mM Tris, pH 8.3,
500 mM KCl) within 1.5 mL pre-chilled microcentrifuge tubes kept on ice. Grinding of the fly thoraces
continued until fully broken apart. Tubes containing ground thoraces were boiled at 100 ◦C for 3 min
in a water bath. Tubes were centrifuged for 5 min at 15,000× g. One microliter of the supernatant
was used in the PCR assay with a 1:1 (v:v) mixture of AmpliTaq DNA Polymerase (5 U/µL stock) and
TaqStart Antibody (1.1 µg/µL stock), with the primer sets for resistant and wild type genotyping,
and the PCR reagent concentrations as outlined in Jamroz R.C. et al. [19]. PCR amplification was
completed in a Bio-Rad DNA Engine Peltier Thermal Cycler (Foster City, CA, USA) programmed
for 96 ◦C for 2 min followed by 40 cycles of denaturation at 94 ◦C for 60 s, annealing at 62 ◦C for
1 min, and extension at 72 ◦C for 1 min, with a final extension at 72 ◦C for 7 min. Products were
run on 3.0% agarose gel and visualized with ethidium bromide dye on a BioDoc-it Imaging System
(Upland, CA, USA). If no amplification products were visualized after two attempts to amplify DNA,
the samples were excluded from analysis, which occurred in 14% of samples. The PCR assay was
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conducted using a master mix of reagents was newly mixed for the samples run on a given day and was
evaluated for contamination by loading a well of master mix in the thermal cycler with each run, and
visualizing on a gel, as was done with the fly samples. Each reaction had the ability to generate three
amplification products; a 154 bp GAPDH, glyceraldehyde-3-phosphate dehydrogenase, amplification
product, a 285 bp L150F amplification product, and a 116 bp G262A amplification product. GAPDH is
a constitutively expressed housekeeping gene that was used as a positive control in each reaction.
The diagnostic L150F and G262A amplification product indicated either a susceptible or resistant gene
was present in each fly [14].

2.5. cP450 and CBE Assays

Frozen horn fly abdomens were placed individually in a glass tissue homogenizer with 0.5 mL
of 0.1 M sodium phosphate buffer (pH 8, Fisher Scientific, Pittsburg, PA, USA). The horn flies were
homogenized with a motor-driven glass tissue homogenizer and centrifuged for 20 min at 12,000 rcf at
4 ◦C. The supernatant was utilized in both CBE and cP450 assays as the enzyme source.

The assay to determine cytochrome P450 (cP450) activity utilized the 1-step Slow TMB
Substrate Solution Kit (Fisher Scientific, Fair Lawn, NJ, USA) following manufacturer’s instructions.
Sample buffer (100 µL), 20 µL of enzyme source, and 80 µL of Slow TMB Substrate Solution Kit were
added to each well of a 96-well microplate incubated for 1 h and absorbance read on the DYNEX Triad
spectrophotometer at 620 nM. One enzyme homogenate was considered one replicate with at least
three replicates performed from each horn fly collection site.

The abdomen homogenate from above was utilized as the enzyme source to measure general
esterase activity [20]. In a 96-well microplate, 150 µL of sample buffer and 30 µL of substrate were
added to each well. Substrate was generated fresh for each assay by mixing 1 mg of Fast Blue RR salt
in 5 mL of sample buffer with 200 µL of 100 mM α-naphthyl acetate (α-NapA) dissolved in DMSO.
A 20 µL aliquot of the abdominal enzyme source, described above, was added in triplicate to the
plate. The plate was read immediately on the DYNEX Triad spectrophotometer at 595 nM. One enzyme
homogenate was considered one replicate and at least three replicates were performed from each horn
fly collection site.

Protein levels were quantified for each enzyme source by utilizing the method described by
Bradford M.M. [21]. Ten milligrams of Coomassie Brilliant Blue G (Sigma Aldrich, Saint Louis,
MO, USA) dye was dissolved in 5 mL of ethanol, then suspended in a solution containing 8 mL
of 10% HCl and 37 mL of deionized tap water. BSA (Sigma Aldrich, Saint Louis, MO, USA) stock
was used as a standard by dissolving 1 mg into 0.15 M NaCl solution, and diluted serially into
0.15 M NaCl, generating 8 concentrations. The absorbance of BSA was read on the DYNEX Triad
spectrophotometer (Chantilly, VA, USA) at 595 nm and used to construct a standard curve from
absorbance values and known protein concentrations. The standard curve of BSA protein was
compared to each fly sample, which allowed for the conversion of sample activity to a per fly abdomen
unit of carboxylesterase activity.

2.6. Statistics

Bioassay data from each horn fly strain were pooled and analyzed by probit analysis [22]
using PoloPlus (LeOra Software, Petaluma, CA, USA) [23] for each insecticide to generate Lethal
Concentration (LC) values and resistance ratio (RR) calculations. Abbott's transformation [24] for
control mortality correction was applied within PoloPlus. Resistance ratios were generated by dividing
the LC50 values obtained for horn flies from each collection site by the LC50 value obtained for the
susceptible Kerrville strain.

Ellman assay absorbance net change was calculated for each strain, and analyzed by nonlinear
regression to the following formula: Y = Bottom + (Top – Bottom) / (1 + 10 ˆ((LogEC50 – x)*Hillslope));
where the variable Bottom is the Y value at the bottom of the sigmoid (minimum value of 0), Top
is the Y value at the top (maximum value of 100), x = the logarithm of the concentration and Y =
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the response (GraphPad Software, San Diego, CA, USA) [19]. Concentration-response curves were
generated with GraphPad Prism and were utilized to determine IC50 values (concentration to inhibit
50% of enzyme activity), 95% confidence limits, Hill slopes, and R2 values. One enzyme source
(5 fly heads per homogenate) and one dilution of anticholinesterase compound were considered one
replicate. Each IC50 value was measured in triplicate using 7 concentrations. An average of at least nine
IC50 values was generated from samples collected on separate days to obtain the reported IC50 value.

Average carboxylesterase activity and cP450 absorbance values per fly were compared by
averaging replicates and an ANOVA was used to test differences between susceptible Kerrville flies and
field collected flies in GraphPad Prism. The BSA standard curve generated a linear response (R2 = 0.99)
that was used to back-calculate the amount of protein in each sample. The protein quantification was
used to determine enzyme activity per unit and was converted to per milligram of abdominal protein.

3. Results

The susceptible Kerrville strain generated an LC50 value of 0.023 µg/cm2 for permethrin.
Permethrin resistance ratios from field collections ranged from 3-fold with the Ona horn flies to
over 60-fold greater with the Labelle horn flies (Table 1). In our evaluation of β-cyfluthrin, the
susceptible strain had an LC50 value of 0.0067 µg/cm2. The field strains were variable in susceptibility
to β-cyfluthrin, with the Ona population > 6.7-fold more susceptible and the BTU flies 1.4-fold
less susceptible (resistant) when compared to the Kerrville strain. The highest evaluated dose of
β-cyfluthrin (0.14 µg/cm2) resulted in 64% mortality for the Labelle horn flies but did not generate
sufficient mortality across concentrations in order to provide an LC50 value. The Labelle horn fly
strain was shown to be highly resistant to diazinon (>14.7-fold), but an exact value could not be
calculated due to lack of homogeneity in field populations. Low numbers of collected flies prevented
determination of resistance ratios to diazinon for the Ona population. Overall, sex of the evaluated
wild-caught horn flies was not recorded and may have unintentionally impacted the results of the
insecticide susceptibility assay.

Genetic analysis using PCR showed the presence of the susceptible wild type kdr allele (L at
position 150) in each horn fly tested from the susceptible Kerrville colony (Figure 1A). The Labelle
horn flies contained 45% resistant L150F genotypes and 31% heterozygote genotypes. Ona horn flies
showed 83% heterozygosity for the L150F genotype and the BTU horn flies were 53% wild type but
had 33% homozygous L150F genotypes. The G262A mutation was found in each field strain evaluated
but was absent in the laboratory strain. The greatest incidence of the G262A mutation was found in the
Labelle horn flies with 13% heterozygous and 8% resistant horn flies identified. A smaller proportion
of Ona and BTU flies was found with the G262A mutation.
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Figure 1. Percentage of horn fly resistant genotypes determined through a multiplex PCR. (A) illustrates
genotyping for L150F, while (B) shows genotyping for G262A mutations. Laboratory strain = Kerrville
(susceptible); field strains = LaBelle, Ona and BTU. RR = homozygous resistant, SR = heterozygotes, SS
= homozygous susceptible. Number below fly strain name is the number of flies genotyped.
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In vitro potency assays were used to determine the affinity of diazinon to wildtype and field
collected horn fly AchE (Figure 2). The IC50 value of diazoxon for the Kerrville (susceptible) population
was found to be 8.2 nM (95% CI: 6–10 nM; Hillslope: −1.0; r2: 0.99). The IC50 values of diazoxon for the
Labelle and BTU populations were found to be not statistically significant when compared to Kerrville
with IC50 values of 9.2 nM (95% CI: 5–15 nM; Hillslope: −1.1; r2: 0.99) and 6.1 nM (95% CI: 5–7 nM;
Hillslope: −1.1; r2: 0.99), respectively. However, the Ona population was found to be significantly less
sensitive (p < 0.01) to diazoxon inhibition when compared to Kerrville, Labelle, and BTU populations,
having an IC50 value of 20.5 nM (95% CI: 18–23 nM; Hillslope: –2.2; r2: 0.99).

Unfortunately, due to difficulty in collecting adequate numbers of horn flies, the Ona population
was not evaluated in the jar assay. Thus, we have no definitive evidence for resistance to diazinon
through AChE insensitivity, as we only have molecular genotyping that is not coupled with live insect
bioassay data. Additionally, no statistical differences were found in the cP450 assay conducted in
these strains (F = 0.93, df = 3,16, p = 0.44). Overall, general esterase assay did not differ across strains
(F = 2.69, df = 3,16, p = 0.08) (Table 2).
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Table 1. Toxicity of permethrin, β-cyfluthrin and diazinon on glass to horn fly adults collected from Florida beef cattle ranches.

Site Permethrin β-cyfluthrin Diazinon

LC50 value A 95% CI Slope RR B LC50 value 95% CI Slope RR LC50 value 95% CI Slope RR
Kerrville 0.023 0.016–0.032 2.47 0.0067 0.0044–0.0096 1.55 0.02 0.14–0.029 2.45
Labelle 1.53 * 1.01–2.6 1.29 66.6 ND C ND ND ND >0.295 D ND 0.158 >14.7

BTU 0.13 * 0.055–0.19 1.36 5.7 0.01 0.0013–0.13 0.79 1.4 0.06 * 0.046–0.27 1.33 3
Ona 0.068 0.013–0.36 0.85 3.0 <0.001 ND ND <0.15 ND E ND ND ND

A LC50 is in µg/cm2, B resistance ratios were calculated as LC50 of the field strain/LC50 Kerrville strain, C the highest tested concentration of 0.14 µg/cm2 generated 64% mortality, D the
highest tested concentration of 15 µg/cm2 generated 20% mortality, E Not determined due to difficulty in collecting enough flies to evaluate in the assay. ND = not determined. Asterisk (*)
indicates statistical significance when 95% CI do not overlap with the susceptible strain. The total number of flies tested for Kerrville was n = 900, other fly strains n~300 for each insecticide
listed. Due to difficulty in collecting wild flies not all sites could be evaluated for each insecticide. Numbers after < or > indicate that the tested values did not generate a LC50 value
because the doses did not bracket the LC50, did not conform to heterogeneity, or other statistical requirements for probit analysis; the difficulty in collecting and limited numbers of
field-collected horn flies prevented further replicates. Approximately 40–50 field collected horn flies were evaluated in each concentration of insecticide.
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Table 2. Enzymatic activity ± SEM per milligram of horn fly abdomen protein.

Collection Site Cytochrome P450 General Esterase

Kerrville 29.1 ± 8.9 13.5 ± 5.4
Labelle 50.5 ± 8.22 40.6 ± 10.3

Ona 23.3 ± 10.1 23.0 ± 4.5
BTU 32.1 ± 18.4 32.3 ± 6.8

ANOVA
F-Value 0.93 2.69
p-Value 0.44 0.08

Enzymatic activity was defined as absorbance divided by calculated protein in each sample.
Average carboxylesterase activity and cP450 absorbance values per fly were compared by averaging replicates
and an ANOVA was used to test differences between means of each strain. The BSA standard curve generated
a linear response (R2 = 0.99) that was used to back-calculate the amount of protein in each sample. The protein
quantification was used to determine enzyme activity per unit and was converted to per milligram of abdomen
activity. Enzyme activity was scaled to a per milligram basis. Five replicates were averaged for each collection site.
ANOVA was performed on the results and no significant differences were found, df = 3,16.

4. Discussion

The Kerrville strain was previously evaluated for sensitivity to diazinon residues on glass,
generating an LC50 value of 2.0 µg/cm2 in a 2-h exposure [25], which is 100-fold greater than our
results. This difference was likely due to the shorter assay duration, as diazinon must be bioactivated
to diazoxon in the insect prior to becoming neurotoxic [26]. We did not evaluate for recovery, which
may have occurred if our assay was extended longer than four hours. Laboratory experiments in house
fly have previously shown insecticide resistant mutations have fitness costs, and colonies maintained
for several generations will change the proportion of resistant alleles, based upon the fitness costs of
each mutation [27]. However, this finding stands in contrast to previous field studies on horn flies,
where after several years of no insecticide applications, kdr remained present in the population [10].

Due to the difficulty in collecting adequate numbers, not all field strains could be evaluated with
all insecticides. The RRs for all insecticides at the LC50 values were lowest for the University of Florida
properties, BTU and Ona.

Product (insecticide-impregnated ear tag) failure was reported by the private herd owner at
the LaBelle site, and is supported in our evaluation using the glass jar assay and high resistance
ratios found for permethrin and diazinon. The owner did not have detailed records on insecticide
application practices. The RR was 66-fold for permethrin but could not be determined for the evaluated
concentrations of β-cyfluthrin. Comparatively, the RR for permethrin has been reported as high as
54 in Georgia, USA horn fly populations [28]. β-cyfluthrin has no previously published LC50 values
with horn flies. Additionally, at the Labelle field site, we were unable to generate LC50 values for
diazinon due to lack of mortality at the concentrations tested; our estimated RR is greater than 14.7.
Previous resistance to diazinon has been reported with RR of up to 55-fold in an 18 h exposure on
cloth [29], 7.7 in a 4-h exposure on filter paper [11], and 1.2 in a 2-h exposure on filter paper [30].

Mechanisms of horn fly resistance have been previously reported as target site-mediated via
L150F and G262A mutations, and detoxification related via cP450 and general esterases [8]. The present
study documented that the LaBelle collection had resistant L150F alleles in 75% of the population,
while the suspected AChE insensitivity mutation was only found in 20% of the population. The high
values for the resistance-coding L150F alleles indicates this mode of resistance likely is responsible for
conferring resistance to pyrethroids. Organophosphate resistance was not explained by the presence
of the G262A mutation or diazoxon inhibition potency in ACHE assays. Both Ona and LaBelle
populations were determined to have G262A mutations, but only the Ona flies showed differences
in IC50 values. However, because the AChE inhibition assays required a pooled sample, the assay
may not have been sensitive enough to quantify differences between samples. Susceptible field
populations of horn flies were observed to have similar rates of G262A mutation as the resistant
collections (Figure 1B), suggesting additional factors may be involved. Previously, the G262A mutation
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has been reported at low levels (7.5–23.8% of resistant genotype) for at least 5 years without direct
application of organophosphates to cattle [31]. The authors evaluated resistance mechanisms in a
multiplex PCR for presence of G262A, kdr and rdl. The study did not evaluate tolerance or resistance
to insecticides in an exposure assay but does suggest little or no fitness costs for the G262A mutation.
Our finding of G262A in populations without resistance in exposure assays was unexpected and
warrants further investigation. Previous studies suggest that secondary mutations are responsible for
conferring resistance to organophosphates in the presence of the G262A mutation, as is the case in
other insects [31].

Other mechanisms that may have conferred resistance include GSTs and penetration resistance [32],
both of which were not evaluated. GSTs have been documented as a cause of resistance, specifically to
OPs, in several diverse insect orders, including Hemiptera [33], Orthoptera [34], and Lepidoptera [35].
Evaluation of GSTs could not be completed due to the difficulty in collecting horn flies.

During the course of this research, several problems were encountered with adequate fly collection
numbers. For example, Ona flies were not collected in sufficient numbers to evaluate contact resistance
to diazinon, yet potency of diazoxon to AChE of Ona flies was significantly reduced. Future researchers
should strongly consider the utilization of a discriminating dose for field populations in contact assays,
rather than attempting to determine LC50 values. Had such procedures been undertaken, the collected
numbers of flies would have been sufficient for analysis. Population level fitness costs have been
evaluated previously in horn flies [36], and consideration should be given to future projects that
evaluate population level evolution to resistance. Furthermore, we evaluated for only one known
mutation and others may have existed in the evaluated populations, if fewer flies were used for jar
assays in future studies, additional samples could be retained for mutation screening.

Horn fly control is important to reduce cattle production inputs and maintain profitability for
cattle producers. The present study documented a Florida population of horn flies with very high
levels of resistance to two insecticide classes from the very limited group available for cattle producers.
Resistance to insecticides has been documented numerous times in the literature for horn flies [8]
and our research continues to show the need for new chemistries and insecticide-alternatives for
this production system. Negative cross-resistance has been suggested as a management practice
for organophosphate and pyrethroid insecticides [25,35,37]; however, our results document a horn
fly population capable of resistance to both diazinon and permethrin (LaBelle). Lack of negative
cross-resistance has previously been reported for horn fly populations with RR to diazinon, permethrin,
and λ-cyhalothrin in Louisiana [11]. Future efforts to control horn flies should focus on insecticide
resistance mitigation practices and development of novel classes of insecticides.
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