
Insects 2012, 3, 1171-1189; doi:10.3390/insects3041171 
 

insects
ISSN 2075-4450 

www.mdpi.com/journal/insects/ 
Article 

Biologically Based Methods for Pest Management in Agriculture 
under Changing Climates: Challenges and Future Directions  

Frank Chidawanyika 1, , Pride Mudavanhu 2 and Casper Nyamukondiwa 3,* 

1 Global Change and Sustainability Research Institute, School of Animal, Plant and Environmental 
Sciences, Faculty of Science, University of the Witwatersrand, Private Bag 3, Wits 2050, 
Johannesburg, South Africa; E-Mail: fchidawanyika@icipe.org  

2 Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch 
University, Private Bag X1, Matieland 7602, South Africa; E-Mail: mudavanhu@sun.ac.za 

3 Department of Earth and Environmental Sciences, Faculty of Science, Botswana International 
University of Science and Technology (BIUST). Private Bag BO 041 Bontleng, Gaborone, 
Botswana 

 Current address: International Centre of Insect Physiology and Ecology (ICIPE), Habitat 
Management Programme, Plant Health Division, P.O. Box 30, Mbita Point Research Station,  
Mbita Point, Kenya 

* Author to whom correspondence should be addressed;  
E-Mail: nyamukondiwac@biust.ac.bw; Tel.: +267-392-6909; Fax: +267-392-6904.  

Received: 13 August 2012; in revised form: 8 October 2012 / Accepted: 12 October 2012 /  
Published: 9 November 2012 
 

Abstract: The current changes in global climatic regimes present a significant societal 
challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and 
population dynamics. With the increasing resistance of many insect pest species to 
chemical insecticides and an increasing organic food market, pest control strategies are 
slowly shifting towards more sustainable, ecologically sound and economically viable 
options. Biologically based pest management strategies present such opportunities through 
predation or parasitism of pests and plant direct or indirect defense mechanisms that can all 
be important components of sustainable integrated pest management programs. Inevitably, 
the efficacy of biological control systems is highly dependent on natural  
enemy-prey interactions, which will likely be modified by changing climates. Therefore, 
knowledge of how insect pests and their natural enemies respond to climate variation is of 
fundamental importance in understanding biological insect pest management under global 
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climate change. Here, we discuss biological control, its challenges under climate change 
scenarios and how increased global temperatures will require adaptive management 
strategies to cope with changing status of insects and their natural enemies.  

Keywords: climate change; integrated pest management; insect population dynamics 
 

1. Introduction 

Anthropogenic climate change has the potential to significantly influence the biology of all 
organisms, but particularly ectotherms [1 3]; hence the evidence for a shift in ectotherm distribution in 
response to climate change [4,5]. While climate change is often associated with global mean annual 
temperature increases [6], likely favoring winter survival of insect pests, it is also coupled with 
increasing frequency and severity of extreme temperatures [7 12] that may modify predictions of 
insect population dynamics [13 15]. Short-term thermal fluctuations can be particularly stressful to 
small insects because their body temperatures are typically in equilibrium with ambient  
temperatures [16 18]. Hence, insects must be able to cope physiologically or compensate behaviorally 
with such changes in ambient temperature, both on spatial and temporal scales [15,19,20]. 
Physiologically, insects can adjust thermal tolerance over the short term, a phenomenon typically 
termed [21,22]. Over the longer term, thermal tolerance may be altered through 
acclimation in the laboratory or acclimatization in the field, and generally is a response to changes in 
environmental mean temperatures with e.g., season [23,24]. Hardening typically yields reversible 
physiological changes while acclimation and acclimatization can produce either reversible or 
irreversible physiological changes depending on the trait or whether developmental or maternal stages 
were exposed to temperature variation [22,24 26]. Martinat (1987) emphasized the importance of 
incorporating short-term undesirable weather transients (e.g., cold spells) in determining insect 
population dynamics [27]. Nevertheless, previous studies suggest considerable complexity when 
attempting to predi -history  
traits [28 30]. 

Biological control is a method of controlling pests that relies on predation, parasitism, herbivory 
and other natural mechanisms and can be an important component of integrated pest  
management (IPM) programs [31]. However, the efficacy of biological control using natural enemies 
depends on a complex but delicate relationship between natural enemies and their insect pest hosts 
whose balance can be offset by a changing climate. Environmental factors (e.g., temperature) directly 
affects the survival, development, reproduction and dispersal of pest insects and thus their potential 
biogeography and biotic potential [32,33]. It is well known that temperature fluctuations are the major 
factors affecting insect biology, activity and distribution of natural enemies in  
agro-ecosystems [34,35]. Moreover, several studies have indicated climate change affects several life 
history parameters e.g., generation time, fecundity, sex ratios and lifespan of parasitoids and their 
natural enemies [36,37]. Similarly, temperature extremes may reduce insect survival, reduce fecundity 

[38]. 
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Several studies have documented the likely effects of a changing climate on insect pest-natural 
[35,39 41]. Similarly, by assessing physiological traits of thermal tolerance and 

water balance, [42] it was shown that global climate change may affect the phenology of  
Paractora dreuxi Seguy (Diptera: Helcomyzidae). This review aims at examining the likely effects of 
climate change on insect biological control and how increased global temperatures will require 
adaptive management strategies to cope with changing status of insects and their natural enemies. We 
discuss how changes in global climate factors such as temperature increase will impact on [1]  
insect-natural enemy-host plant interactions, [2] insect/plant diversity [3] population 
growth/abundance [4] effectiveness of crop protection technologies, with special emphasis to 
biological control using natural enemies. This information has critical implications for sustainable pest 
management and food security, especially for developing countries in Africa, where food security is an 
urgent challenge [43]. 

2. Biologically-Based Pest Control Methods 

Reducing public health and environmental risks associated with chemical pesticide use is of 
growing concern in developed and developing countries [44]. This has motivated the call for the 
adoption of biologically based IPM systems, an essential step towards reducing risks associated with 
the use of highly toxic pesticides [44].  

Biological control can be classified into three basic categories namely conservation, classical and 
augmentation [45,46]. First, conservation biological control (CBC) involves the deliberate human 
practice aimed at promoting the survival and activity of natural enemies at the expense of pest 
populations [47]. For example, ecological strips consisting of selected non-crop plants can be 
deliberately created to provide food sources and overwintering shelters as well as protect local natural 
enemies from pesticide disturbances thereby enhancing CBC as successfully shown in cereals, 
cabbages, and fruit orchards [48,49].  

Plant indirect defense mechanisms which rely on volatiles that call for natural enemies after pest 
damage, herbivore induced plant volatiles (HIPVs), have also been exploited to increase the activity of 
parasitoids in CBC systems [49,50]
form of the CBC approach where the use of HIPVs is combined with measures that increase key 
resources needed by natural enemies such as flowering plants in the commercial crop [50]. More 
recently, another form of CBC which combines stimulo-deterrent diversion tactics and conservation of 
parasitoids, through careful habitat manipulation has been shown to be effective against stem borers on 
sorghum Sorghum bicolor L. (Moench) and maize Zea mays L. [51]. Habitat manipulation has also 
been used to increase nectar availability, which increases the fecundity and longevity of some 
parasitoids [52 54], thereby increasing the efficacy of the program. For example, flowers are planted 
into commercial brassicaceous crops to enhance suppression of the diamondback moth, Plutella 
xylostella (L.) by its natural enemies [55]. 

Second, classical biological control (BC) involves collection of natural enemies from their area of 
origin and releasing them in the new area where their host was introduced accidentally [46,56]. This is 
of particular importance when the introduced pest species has no known alternative parasitoids 
indigenous to the area. However, the efficacy of a classical biological will depend on the newly 
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released parasitoids to successfully establish populations that can compete in the new environment. For 
example in the USA, the alien yellow starthistle Centaurea solstitialis [L] has been successfuly 
controlled by insect natural enemies such as Bangasternus orientalis [Carpiomont],  
Eusternopus villosus (Boheman), Urophora sirunaseva (Hering) and Chaetorellia succinea (Costa) 
that attack the seed head [57]. 

Last, augmentative biological control (ABC) is the periodic release of large numbers of mass-reared 
natural enemies with the aim of supplementing natural enemy populations or flooding (i.e., inundating) 
pest populations with natural enemies [46,58]. It is commercially deployed in various cropping 
systems worldwide and two forms of ABC are distinguished namely the inundative approach and the 
seasonal inoculative method [46,59]. In the inundative release method, the BC agent is collected, 
mass-reared and released periodically in large numbers as for example a biotic insecticide to achieve 
immediate pest control in crops where viable breeding populations of the natural enemy are not 
possible [46]. This approach has been successfully applied in sugarcane for control of the sugarcane 
borer Diatraea saccharalis (F) in Latin America [60]. Other examples include the inundative release of 
common green lacewings Chrysoperla carnea (Stephens) to suppress Erythroneura variabilis 
(Beamer) and E. elegantula (Osborn) in vineyards [61]; and the release of Trichogramma spp for 
control of lepidopteran pests in vegetables, corn, rice, other cereals and cotton in Russia, China, SE 
Asia, Mexico and South America [62]. 

The seasonal inoculative approach differs from inundative method in that it is deployed in  
short-term crops, the production season of which is not longer than one year and where multiple pest 
generations occur [46]. The aim of the method is to obtain both immediate pest control as well as a 
build-up of the biological control agent population over the entire duration of the same production 
season [46]. Examples of the successful deployment of this technique include the release of  
Trissolcus basalis (Wollaston) for the control of Nezara viridula (L) in Brazil [63]; biological control 
of soybean stink bugs by inoculative releases of T. basalis [64]; control of the citrus blackfly, 
Aleurocanthus woglumi (Ashby) by inoculative releases of Eretmocerus serius (Silvestri) and  
Amitus hesperidium (Silvestri) in Cuba, Costa Rica, Mexico and Panama [46]; and the inoculation with 
Metarhizium flavoviride (Gams and Rozyspal) or Verticillium lecanii (Zimmerman) for the control of 
locusts Schistocerca gregaria (Forskal) [65] and grasshoppers [66]. 

3. Challenges in Biologically-Based Pest Management in Relation to Climate Change 

Alterations in physiology and population dynamics, as a result of climate change, will bring new 
arrangements to levels of biological organization and ultimately ecological interactions in various 
species. In most geographic locations, shifts in climates may result in novel environmental conditions 
which are not only likely able to reduce the fitness but also deplete the quality and quantity of 
resources (e.g., food habitat) available for arthropod communities thereby threatening their existence in 
those areas. To counter this, arthropod populations facing unfavorable conditions may respond through 
either physiological or behavioral compensation [20,67], at both individual and population level, to 
better compete in the new environment; or they may migrate to new and favorable locations [68]. 
However, due to differences in the capacity to respond to various abiotic stressors and resource 
availability, fitness levels and dominance of various individual populations, they will be threatened, 
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resulting in new species composition per locality, possibly dominated by the most adaptive ones [30]. 
Moreover, such modifications by living organisms, for better survival in life threatening environmental 
conditions, have already been hypothesized to pose new problems to them [69].  

In turn, the resultant failure to successfully compete in the stressful conditions may lead to different 
species composition in both pests and their natural enemies. For agriculture, such changes are of 
importance as they create new structures in original pest abundance, emergence of formerly secondary 
to primary pests [32], colonization of new areas which were previously unfavorable [40,68] and more 
importantly the modifications of habitats [67,70 72], which may lead to reduction in numbers of 
natural enemies and parasitoids in the agro-ecosystem. Consequently, the changes may result in 
reduction in the efficacy of biological control due to alterations in the predator-prey relationships or 
lack thereof. In this section, an overview of challenges in biological control as a result of  
climate-induced changes in pest or parasitoid biology and general habitat modifications is discussed.  

3.1. Habitat Fragmentation and Natural Enemy Diversity or Abundance 

It is widely known that crop surroundings play a crucial role in the conservation of natural enemies 
and parasitoids [49,73 75]. However, in most agro-ecosystems, much attention is paid to the crop 
(e.g., planting, irrigation fertilization) as compared with the peripheral environment. Such an approach 
has not only ensured perpetual optimal crop growth, but dependable hosts for pests as well. Through 
elaborate efforts that ensure crop growth and survival, insect pest herbivory has been indirectly 
guaranteed. However, this is contrary to the micro environment faced by natural enemies dwelling in 
the periphery where the natural habitats may not be receiving similar attention resulting in their 
numbers being reduced.  

One consequence of changing climates may be habitat fragmentation of living organisms [1,76,77]. 
Thus, losses in suitable habitats will threaten the biodiversity and mere existence of organisms [78] 
including natural enemies or predators and parasitoids important for pest control in  
agro-ecosystems [75]. Consequently, the reduction or extinction of natural enemy populations will 
permit a pest build up, if unchecked, or over-reliance on alternative tactics for pest control which may 
be unsustainable, environmentally unfriendly and deplored by the consumers.  

3.2. Insect Biology and Physiology in Relation to Environmental Change 

Temperature affects a range of biochemical and physiological processes and, along with water 
availability, is probably the major environmental factor affecting insect population dynamics at either 
the individual or population level [20,79,80]. At individual level, it has already been shown that factors 
such as temperature play a key role in determining insect fitness [81], field performance [82,83] and 
survival [84]. However, because of variability in response to thermal stress, for instance, which might 
be introduced by age, gender, ontogeny [85] and the species in question, mismatches in development 
and activity between pests and parasitoids may occur with cascading effects on the efficacy of 
biological control programs. Use of mass-reared parasitoids in augmentative efforts may be a 
challenge as well since the insects being introduced into novel environments, which might be stressful, 
may perform poorly [86]. Hence, in scenarios where pests perform better than their corresponding 
indigenous parasitoids under stress, the efficacy of a biological program will be dramatically reduced. 
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However, some parasitoid species in the wild may benefit from rising winter temperatures. As 
discussed by Hance et al. (2007 and references therein), exposure to cold temperature in juvenile 
parasitoids results in reduced longevity of the adults [39]. Furthermore, cold exposure of adult 
parasitoids in the family Scelionidae reduces their longevity even after returning to optimal or warmer 
temperatures [39,87]. Low temperatures during development are also known to cause deformations 
and low fecundity in parasitoids. Basing on these limitations posed by low temperatures, a rise in 
winter temperatures may become beneficial to biologically-based pest management strategies for these 
specific parasitoid species, through improvements in their fecundity, development and longevity. At a 
population level, rising temperatures result in reduced generation time, rapid population growth and 
sometimes increased geographical ranges depending on resource availability [15,20]. However, such a 
positive correlation in temperature and population increase in pests is not uniform across different 
species even when facing similar conditions. This results in the asynchrony of life cycles of pests and 
parasitoids (or general reduction in populations of parasitoids required to effectively suppress pest 
populations. Such an asynchrony will create a temporal shortage or extinction of food resources for 
parasitoids whilst crop pest phenology is in line with the crop cycle. This consequently exerts pressure 
on the cropping system, especially in the cases of specialist parasitoids [88]. 

Furthermore, some pests may increase their invasion potential in relation to their ability to deal with 
changing climates either through phenotypic plasticity or variation in basal tolerance [89 92].  
A classic example is the invasive maize stemborer Chilo partellus (Swinhoe), which was first 
introduced to Africa accidentally in Malawi but managed to establish itself in several African 
countries, becoming more destructive than the indigenous species in some instances [93]. Whilst the 
first introduction of C. partellus into Africa may have not been due to climate change, it has become 
apparent that its further establishment in several African regions follows a distinct pattern, which may 
be partly influenced by both climate and altitude [94]. Such pest dynamics increase pressure on the 
already-strained predator and parasitoid populations. 

3.3. Chemical Ecology and Tritrophic Interactions in Agroecosystems 

Climate induced changes in plant factors will affect quality and quantity of resources available for 
the insects resulting in variable direct and indirect consequences on the development times,  
size and fitness of both pests and parasitoids [95]. This may thus offset predation and  
parasitism [95], which sometimes reduces the efficacy of biological control programs.  

Perhaps another dimension of plant physiology which is likely to be modified, due to climate 
change, with a resultant impact on biological control is their secondary metabolism with a resultant 
impact on indirect defense mechanisms. It has already been shown that some plant species emit 
specific volatiles in response to elicitors in the saliva or secretions (during oviposition) of particular 
foraging herbivores, which call for natural enemies and parasitoids of the herbivores in question [96]. 
Other plant species, when attacked, have also been shown to emit volatile compounds which  
warn neighboring plants to prime their defense in advance in a phenomenon referred to  

[97]. Such volatiles have since been generally called herbivore induced plant 
volatiles (HIPVs) [97]. The HIPVs have been regarded as having evolutionary significance in that their 
production is only switched on when needed as opposed to constitutive mechanisms, which are always 
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switched on. 
recent studies have shown that plants undergoing abiotic stress respond by production of volatile 
isoprenoid compounds, perhaps, to avoid oxidative damage as a result of accumulation of reactive 
oxygen species in plants undergoing abiotic stress [98]. Isoprene compounds have since been shown to 
have the capacity to repel other specialist parasitoids, such as Diadegma semiclausum  
Hellen [99,100], and to influence herbivore feeding decisions [101]. It is therefore clear that isoprene 
production, as a result of abiotic stress, may influence plant-insect interactions in different  
agro-ecosystems. However, little is known of how the plants will prioritize their defense, in terms of 
volatile emission, when faced with biotic and multiple abiotic stressors associated with climate change.  

For biological control, changes in volatile composition important for defense may result in failure 
for parasitoids to locate their host as some may require specific volatile blends in order to perform the 
desired functions [102]. Moreover, it has been shown that environmental stressors such as temperature 
impact on fitness, olfactory perception [103] and ultimately the ability to of the insects to track their 
hosts [95]. Therefore, if such changes occur in the parasitoids, biological control programs using 
natural enemies will be rendered less effective. 

3.4. Complexity in the Outcome of Climate Change Impacts on Natural Enemy Abundance and 
Population Dynamics 

While it has increasingly become clear that the climate is changing [6], an accurate prediction of the 
consequent effects on species distribution remains a daunting task. In most ecosystems, baseline 
species distribution, before any change in climates, is determined by a host of interactive factors 
between abiotic and biotic factors of the species in question. However, bioclimatic models used to 
predict future species prediction have often omitted or failed to account for all of the important factors 
resulting in them being questionable [104,105]. In these models, behavioral, dispersal mechanisms and 
inter-specific interactions, which can be made by living organisms in changing climates, have often 
been neglected [106,107] or assumptions which bring uncertainties to the models have often been  
used [105]. Such lack of availability of reliable tools for prediction are a challenge to farmers, in 
particular, those who are currently or plan to use biological control as their main insect pest control 
tactic. Availability of reliable tools will not only boost the confidence in users of the model, but also 
avert catastrophes in pest management due to over-reliance on flawed models.  

Apart from bioclimatic models, resource constraints and challenges in experimental design have 
made empirical elucidation of the ecologically relevant behavioral and biological responses to climate 
change difficult. As a result, most inferences on the outcome of climate change are made from 
ecophysiological studies based on a single as opposed to multiple abiotic factors acting on different 
species. This is done despite increasing evidence of the differences in vulnerability or responses 
exhibited by some organisms when facing multiple as opposed to single stressors [108]. Possibly, 
through cross-tolerance [109] or additive effects of different stressors, such differences arise and may 
be species specific. It can therefore sometimes be misleading to rely on the inferences from the  
single-factor approach even though they serve as an important baseline indicator for individual 
physiological limits to stress tolerance. Such challenges bring new complications to farmers who are in 
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principal, supposed to rely on accurate data and predictions in order to carry adequate planning and 
implementation of their crop protection strategies. 

4. Future Directions 

4.1. Environmental Stress Biology, Evolutionary Resilience and Ecologically Relevant Measures for 
Organism Response to Changes in Climates 

Insect population dynamics can be strongly influenced by adaptive behaviors and traits [110]. 
Furthermore, insects/natural enemy extinction events, colonization rates and demographic rates are 

n habitat selection, life history traits, niche breadth and dispersal 
behavior [111]. Recent studies suggest that in most cases, adaptive traits (e.g., thermal tolerance), 
significantly affect demographic dynamics and hence shape species distributions and population 
dynamics under a changing climate [86,112,113]. Similarly, in insects, low genetic variation in thermal 
adaptation can limit population growth and increase extinction risks in organisms living closer to their 
critical thermal limits [109,114]. However, although it is generally accepted that climate is changing, 
mitigating and coping with these effects remains an unresolved challenge [115,116]. In order to 
maintain or even improve biological control using natural enemies in a changing climate, several 
adaptive management strategies need to be implemented to cope with the changing status of insects 
and their natural enemies. 

First and foremost, experimental protocols investigating the likely probable effects of climate 
change on insect-natural enemy interactions needs to be highly accurate. Although it has been 
documented that laboratory determined physiological traits (e.g., thermal tolerance) closely 
approximates their ability to cope with the stress under natural environments and are good indices of 
species fitness facing climate change [1], in most cases, there are ranging debates over the ecological 
relevance of experimental protocols used. For example, in thermal biology, previous studies have 
indicated 
affect the types of insights that can be gained, and ecological relevance, of these thermal  
limits [20,117]. We therefore suggest that experimental protocols predicting climate change effects on 
insect population abundance should incorporate ecologically relevant measures of fitness traits  
(e.g., temperature tolerance) vironment [118]. 

focused on the variation in mean temperatures [1,119]. However, it is expected that the magnitude and 
severity of temperature variances and extremes may also increase under future scenarios [7,12] with 
concomitant reduction in ectotherm fitness [113,120]. From a functional perspective, how changes in 
means and variances of temperature might affect the basal, phenotypic plasticity of temperature 
tolerance as well as life-history traits of ectotherms, remain poorly elucidated but are critical for 
predicting physiological responses in the wild [30,121]. We suggest that detailed analyses of changes 
in both means and variability of temperature for both pests and their natural enemies are a critical 
component of accurate forecasting of insect/natural enemy population-level responses to climate 
change. Furthermore, some other environmental stressors other than temperature may also impact 
synergistically or antagonistically on ectotherm fitness in a changing climate [118]. We therefore 
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suggest that experimental protocols investigating ectotherm fitness in a changing climate should also 

related responses [119]. In addition to interactive effects of physical factors, biotic factors such as 
parasitism or chemical ecology of various organisms in an interactive multitrophic system may be 
affected resulting in distortions in predator-prey relationships. In such a case, the fate of some species` 
populations in multitrophic systems will not be directly determined by the changes in climate on its 
population but by a species that is high or low in their food chain. Hence, wherever possible, 
experimental protocols that inform predictive models for changing climates should incorporate tests of 
other species, which might be of importance in the agro-ecosystems.  

The ability of organisms to mount physiological responses to variation in temperature at different 
time-scales may be an important component of insect/natural enemy persistence and thus efficacy of 
biological control under climate change scenarios [80,110,111]. From a theoretical standpoint, rapid 
evolution of thermal tolerance traits/phenotypes and their plasticity has been predicted [80,90]. Some 
studies indicated that if plasticity has an additive genetic basis, plasticity levels might evolve and likely 
contribute to evolutionary adaptation [90]. Phenotypic plasticity may buffer organisms upon 
introduction to novel and thermally unfavorable environments [92] and thus ensure survival when 
facing climatic stress [91]. However, current experimental protocols and crop protection specialists are 
ignoring the role of evolutionary processes in designing ways to protect and even improve biodiversity 
under global climate change [120 122]. We therefore propose that biological insect pest management 
programs using natural enemies should aim at developing resilient agro-ecosystems that maintain 

[123,124]. Pörtner and Farrell (2008) point out that 
this may be possible through improvement in genetic diversity and processes that encourage 
continuous in situ evolutionary adaptation [125]. In agriculture, use of evolutionary processes to 
manage biotic interactions can be of importance as discussed in [126]. Through the help of artificial 
selections in crops, parasitoids or any other biological agents used to control may even be enhanced to 
gain competitive advantage over the pests intended for control when facing a selection pressure such as 
heat or drought. Such an approach is not new in agriculture as it has already succeeded in crop 
breeding, domestication of animals and pesticide resistance management [122,126]. Hence if given the 
investment priority in research, some pests may be managed even better under changing climates.  

Recent studies have proved that phenotypic plasticity can be used to enhance field performance of 
mass reared insects release for pest management [82,83]. We also argue that by manipulating thermal 
performance of mass-reared predators and parasitoids through acclimation, field performance in 
augmentative programs may at least be temporarily improved and hence improve pest management 
programs [86]. Similarly, [86] studies emphasize that pest management programs should incorporate 
valuable information acquired from studies of the evolutionary biology of thermal  
performance [82,83,127]. Likewise, this approach may be critical for improving efficacy of biological 
control programs in the face of climate change. 

4.2. Monitoring, Ecological Assessments and Ecosystem Management 

Apart from predictive models, regular monitoring and ecological assessments might be an important 
tool to accurately expose the impact of climate change on the distribution and abundance of pest and 



Insects 2012, 3            
 

 

1180

natural enemy populations. Whilst predictive models will be important in forecasting [128,129],  
their predictive power is often limited by assumptions, which may lack ecological  
considerations [104,130,131]. Hence ecological assessments and monitoring will generate huge 
ecological data sets that may be overlooked by physiological studies or predictive models. Such 
ecological factors are likely to give more valuable information of how agents of biological control will 
interact under changing climates.  

However, as the case with predictive models, assessments of various systems will require reliable 
ecological indicators in order to avoid making erroneous conclusions. These ecological indicators will 
serve as tools that portray the structure, function and composition of the ecosystems [132] or trends 
that will be happening over time [133] within and around the crops. Ecological indicators will 
therefore serve as early warning tools for detecting deficits in management strategies inflicted by 
climate change whilst also giving a database of various ecological transitions, which can be correlated 
to climate events. In turn, management strategies can be implemented earlier before extensive damage. 
However, as outlined by [132] use of ecological indicators can be problem if (i) the ecological 
indicators lack scientific integrity (ii) choice of indicators is confounded in management and (iii) the 
assessments are based on a small number of indicators. To counter this, concerted efforts between, 
scientists, farmers and policy makers should exist. Therefore, scientists should develop ecological 
assessment tools that are accurate but simplified to enable usage by a broad range of users. With 
adequate data collection from researchers, government agencies and farmers (at their local level) using 
well designed assessment tools, important conclusions can be drawn on the status of habitats, species 
composition and abundance in various regions. 

Where parasitoid populations will be high but activity is reduced due to fragmented habitats, 
farmers can increase parasitoid attack on pests by use of companion cropping and plant indirect 
defense. Such is the case with the push-pull strategy used in the control of stemborers, which increases 
parasitisation of insect pests, by their parasitoids, through manipulation of the agro-ecosytem to lure 
parasitoids directly into the cropping system [50,51]. Augmentative strategies can also be used to boost 
parasitoid populations whilst using techniques such as acclimation to improve activity in variable 
environments [82,83,86]. Moreover, biological control can also be enhanced through feeding natural 
enemies with honey. This phenomenon has been shown to improve fecundity and longevity of 
hymenopteran parasitoids [52 54]. Hence identification for particular tactics and sometimes in 
combination will be important in tackling pests biologically under changing climates. 

5. Conclusion 

In conclusion, we propose that integrating physiology, population dynamics and climate mapping 
shows great promise for making robust predictions of the potential effects of global climate change on 
biodiversity [134]. Thus, to better elucidate the link between climate change, biodiversity and its 
impacts on biological control using natural enemies, a fruitful area of future studies would be in 
developing mechanistic physiological approaches (and ones that consider ecological factors) to 
understanding climate change effects on insect biology, biodiversity and population dynamics. 
Furthermore, there is significant evidence that species are evolving with climate change [135,136]. 
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Hence future predictions of climate change effects on insect biodiversity should incorporate 
evolutionary potential [123,124,137]. 
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