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Abstract: Amphibian predator–insect prey relationships are common in terrestrial habitats, 
but amphibian larvae are preyed upon by a variety of aquatic hemipterans in aquatic habitats. 
This paper suggests that the survival of the nymphs of the endangered aquatic hemipteran 
Kirkaldyia (=Lethocerus) deyrolli (Belostomatidae: Heteroptera) is directly and indirectly 
affected by the abundance of their amphibian larval prey (tadpoles). Young nymphs of  
K. deyrolli mainly feed on tadpoles, regardless of differences in prey availability. Nymphs 
provided with tadpoles grow faster than nymphs provided with invertebrate prey. Therefore, 
tadpole consumption seems to be required to allow the nymphs to complete their larval 
development. In addition, the survival of K. deyrolli nymphs was greater during the period 
of highest tadpole density (June) than during a period of low tadpole density (July). Higher 
tadpole density moderates predation pressure from the water scorpion Laccotrephes 
japonensis (Nepidae: Heteroptera) on K. deyrolli nymphs; i.e., it has a density-mediated 
indirect effect. These results suggest that an abundance of tadpoles in June provides food for 
K. deyrolli nymphs (a direct bottom-up effect) and moderates the predation pressure from  
L. japonensis (an indirect bottom-up effect). An abundance of amphibian prey is indispensable 
for the conservation of this endangered giant water bug species. 

Keywords: aquatic insects; density-dependent indirect effect; intraguild predation; life 
history; rice fields, temporary water 
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1. Introduction 

1.1. Trophic Interactions of Aquatic Insects and Amphibians  

The trophic interactions of insects and amphibians have received a significant amount of attention  
by researchers. Amphibian adults eat a variety of terrestrial arthropods. Insects with a range of gape  
sizes [1,2] that co-exist in the same habitats as amphibians are exposed to high predation pressure  
from amphibians [3]. Generally, although amphibians (mainly those of the post-metamorphic stage)  
are sometimes preyed on by insects ([4], reviewed in Toledo [5]), amphibian predator–insect prey 
relationships are common in terrestrial habitats. In contrast, these predator–prey relationships are 
reversed for larval amphibians in aquatic habitats; i.e., amphibian larvae are preyed upon by a variety of 
aquatic insects such as Coleoptera [6], Heteroptera [7], and Odonata [8]. Amphibian larvae are keystone 
organisms for aquatic communities because they are important prey resources for aquatic insects. Insect 
predator-anuran larvae prey relationships in aquatic environments are appropriate model systems for 
examining predator–prey relationships. 

Amphibian larvae show anti-predatory behavior (low activity) and morphological changes (larger 
heads) in response to predators in order to increase their chances of survival [9-16]. In a study of anurans, 
Vonesh et al. reported that reductions in larval density and size due to egg-stage predators facilitate 
larval survival in the presence of aquatic predators (predator-induced hatching plasticity) [17-19].  
Thus, insect predator-anuran larvae prey relationships have been studied from the viewpoint of 
behavior and phenotypic plasticity in anuran larvae. However, very few studies have investigated the 
density-mediated indirect effects of insect predator–anuran larvae prey relationships. Here, I  
focused on insect predator–anuran larvae prey relationships from the viewpoint of density-mediated 
indirect effects. 

1.2. Are There any Aquatic Heteropteran Predators of Amphibian Larvae? 

Generally, dragonfly nymphs are mainly used as insect predators of amphibians in model 
predator–prey systems [9-12]. In addition, aquatic hemipterans play a significant role as the major 
component of the aquatic fauna of aquatic environments that are devoid of fish [20,21] and are often at 
the top of the food chain in such aquatic communities, preying upon a variety of aquatic animals [22,23]. 
As with Odonata predators, some researchers studied phenotypic changes in amphibians induced by 
aquatic hemipterans predators [24-26]. Certain environments also reduce predation by aquatic 
hemipteran predators. Kopp et al. [28] showed aquatic vegetation reduces predation rates on tadpoles 
by aquatic hemipteran predators. Swart and Taylor [27] revealed that tadpoles switched their 
preference away from black backgrounds in response to chemical signals from a predator (aquatic 
hemipterans) because the predator killed significantly more tadpoles on dark backgrounds than on light 
backgrounds. Therefore, aquatic hemipteran predators are regarded as important predators for 
anuran larvae. 
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However, most aquatic hemipterans do not often eat tadpoles in Japan. Ohba and Nakasuji [7] 
investigated the feeding habits of aquatic bugs (Nepoidea, including Belostomatidae and Nepidae)  
by performing direct observations in wetland areas (see Figure 1) and obtaining data from the  
published literature [29-31]. As a result, it was found that sympatric species (Appasus japonicus,  
Kirkaldyia deyrolli, and Laccotrephes japonensis) displayed differences in their dietary components 
(Figure 2). Although tadpoles are preyed upon by a variety of aquatic insects, not all aquatic insect 
species eat tadpoles. Only K. deyrolli nymphs and L. japonensis adults greatly depend on tadpoles 
whereas A. japonicus does not eat tadpoles. Therefore, K. deyrolli nymphs and L. japonensis adults seem 
to be members of the same guild; i.e., they compete with each other, in Japanese wetlands [32]. 

In this paper, I first introduce that K. deyrolli nymphs feed on tadpoles. Second, I introduce that  
K. deyrolli nymph survival is indirectly affected by tadpoles; i.e., by a density-mediated indirect effect. 
Finally, I discuss aquatic heteropteran predator–amphibian larval prey relationships in relation to 
temporal dynamic interactions. 

Figure 1. Predation on a tadpole by an aquatic insect. As one example of the recorded 
dietary items, prey into which a predator’s proboscis had been inserted is shown in this 
photo. 
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Figure 2. Differences in dietary components among predacious aquatic Heteroptera 
inhabiting Japanese wetlands (modified from Ohba and Nakasuji [7]). The numbers in the 
center of each circular graph indicate the sample size. B, Belostomatidae; N, Nepidae;  
1, Okada and Nakasuji [29]; 2, Ban et al. [31]; 3 Ban [30], * sympatric species. The arrow 
indicates the relationship between intraguild predators preying upon tadpoles.  
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2. Tadpole-Feeding by K. deyrolli Nymphs 

The quantity and quality of prey animals strongly affect a predator’s life history and abundance. 
Among predacious insects, predatory species that depend upon a particular prey animal, which are 
known as specialists, breed when their prey animal is abundant [33-36]. Specialist development 
coincides with the appearance of specific prey animals, especially during the nymphal period [37]. In 
rice fields, K. deyrolli nymphs prey upon tadpoles more than on other kinds of prey (Figure 2). The 
subfamily Lethocerinae, which has the largest body size among Belostomatidae, is known to be a 
vertebrate specialist [38-40]. Why K. deyrolli nymphs mostly feed on tadpoles is not well understood 
from the viewpoint of nymphal growth and seasonal occurrence.  

In general, the appearance of younger nymphs of predacious insects when prey animals are abundant 
is expected to moderate cannibalism due to food shortages [41-44]. Accordingly, Ohba et al. [45] 
studied the ontogenetic diet shift of K. deyrolli by quantifying instar abundance and analyzing captured 
prey and prey relative abundance in rice fields in three localities. The first to third-instar K. deyrolli 
nymphs mainly fed on tadpoles, regardless of differences in prey availability among the three localities 
(Figure 3). A rearing experiment demonstrated that K. deyrolli nymphs provided with tadpoles displayed 
greater growth rates at all nymphal stages, except for the final stage, than nymphs fed on dragonfly 
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nymphs. The emergence of young K. deyrolli nymphs seemed to coincide with the period when tadpoles 
became abundant in the rice fields (Figure 4). In addition, the appearance of younger K. deyrolli nymphs 
when tadpoles are abundant is expected to moderate cannibalism due to food shortages, as has been 
demonstrated for other predatory insects such as ladybirds [41-44]. Actually, the frequency of cannibalism 
in K. deyrolli nymphs is lower than that seen in A. japonicus nymphs in the field (Figure 2) [7]. 

Figure 3. Prey groups included in the diets of K. deyrolli nymphs at three localities 
(modified from Ohba et al. [45]). The numbers indicate sample sizes. 
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Figure 4. Seasonal changes in the frequencies of K. deyrolli and four prey categories at the 
three study sites. For the adult K. deyrolli graphs, the solid lines indicate overwintered 
insects, and the broken lines denote newly emerged adults. In the prey animals in the water 
column graphs, the solid, broken, and dotted lines indicate tadpoles, fish, and Odonata 
nymphs, respectively (modified from Ohba et al. [45]). 
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3. Density-Mediated Indirect Effects of Tadpole Prey 

Many specialists breed when certain prey are abundant in order to increase the chance of there being 
a sufficient amount of food to increase the growth and survival of their young, showing that a high prey 
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density directly supports the predator population, e.g., a bottom-up effect. However, there is little 
information on the indirect role of higher prey density on the mediation of predation pressure on the 
predator from other predators within the same guild; i.e., density-mediated indirect effects, in aquatic 
environments including insect predator–anuran larva prey relationships. As mentioned above,  
K. deyrolli nymphs are considered to feed on tadpoles [45]. In addition, L. japonensis prey upon  
K. deyrolli nymphs [32,46] and tadpoles in rice fields [7]. Therefore, L. japonensis adults are intraguild 
predators of K. deyrolli nymphs. Consequently, it is predicted that the survivorship of K. deyrolli 
nymphs is affected by their common prey, tadpoles, via a bottom-up effect on survivorship as well  
as by their predator, L. japonensis adults, via a top-down effect. Thus, it is considered that 
density-mediated indirect relationships exist among the three animal species.  

Ohba and Nakasuji [47] demonstrated that the survival of K. deyrolli nymphs, which are tadpole 
specialists, is affected by tadpoles (a direct bottom-up effect). We investigated the survival rates of the 
first instar nymphs of K. deyrolli in June (high tadpole density period) and July (low tadpole density 
period) using the Kiritani-Nakasuji-Manly method [48,49]. As circumstantial evidence, the survival 
rate of the first instar nymphs of K. deyrolli in a rice paddy field was higher in June (75.1%) than in July 
(54.2%) [47]. The differences in prey density between June and July probably affected the survival 
rates of the K. deyrolli nymphs, suggesting that bottom-up effects display seasonal variation.  

To examine whether a higher tadpole density moderates the predation pressure from L. japonensis 
adults on K. deyrolli nymphs, a field experiment was conducted in a rice field. As a result, it was  
found that a higher tadpole density moderated the predation pressure from L. japonensis adults on  
K. deyrolli nymphs (a density-mediated indirect effect; Figures 5 and 6) [50,51]. Prey abundance is an 
important factor for determining the frequency of intraguild predation [52-54], especially in terrestrial 
aphidophagous predator–aphid prey relationships. Thus, in rice fields the incidence of intraguild 
predation by L. japonensis adults might increase when the tadpole density decreases. 

Figure 5. Effects of tadpole density and the presence or absence of L. japonensis adults  
(a K. deyrolli nymph predator) on K. deyrolli nymph survival rates. The regression lines 
were calculated using a logistic regression model. (modified from Ohba and Nakasuji [47]).  
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Figure 6. Schematic representation of the indirect effects of tadpole density on the 
survivorship of K. deyrolli nymphs in the presence or absence of their predator L. japonensis 
adults (modified from Ohba and Nakasuji [47]). 
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4. Conservation of an Endangered Giant Water Bug 

The Japanese populations of K. deyrolli have decreased sharply during the last four decades, and this 
species is now included in the Red Data List of species in 45 of 47 Japanese prefectures [55,56]. 
Contributing factors such as decreases in suitable aquatic habitats, water pollution, and urbanization 
have been investigated and verified in previous studies [57-59]. In addition to these factors, it is 
important for the conservation of K. deyrolli to reveal the best food for them to eat. Regarding bottom-up 
effects, Hirai and Hidaka [60] and Hirai [61] emphasized that the frog population is very important  
for the conservation of the K. deyrolli population because frogs are major constituents of the diet of  
K. deyrolli adults. 

Previous studies have only focused on direct bottom-up effects of amphibian prey. However, the 
present study demonstrated an indirect bottom-up effect of amphibian prey. The emergence of young  
K. deyrolli nymphs appeared to coincide with the period when tadpoles became abundant in the rice 
fields, which allowed the young K. deyrolli nymphs to achieve greater growth (Figure 4 [45]). This 
indicates that a high prey density directly supports K. deyrolli nymphs. In addition to such direct effects, 
a high tadpole density was also demonstrated to have a beneficial indirect effect on the survival of  
K. deyrolli nymphs (Figure 6 [47]). Therefore, an abundance of amphibian prey is indispensable for the 
conservation of this endangered giant water bug species. 

5. Conclusions 

This paper introduced that young K. deyrolli nymphs mainly feed on tadpoles in rice fields and that 
nymphs provided with tadpoles grow faster than nymphs provided with invertebrate prey. A higher 
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tadpole density moderates the predation pressure from the water scorpion L. japonensis on K. deyrolli 
nymphs; i.e., it has a density-mediated indirect effect. These results suggest that an abundance of 
tadpoles provides sufficient food for K. deyrolli nymph growth (a direct bottom-up effect) and 
moderates the predation pressure exerted on them by L. japonensis (an indirect bottom-up effect).  
An abundance of amphibian prey is indispensable for the conservation of this endangered giant water 
bug species. 
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