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Simple Summary: Osmia excavata Alfken is an excellent pollinator. A variety of factors affect
the rate of O. excavata release from its cocoon. However, rapid improvement of the concentrated
decocooning of O. excavata has not been sufficiently investigated. In this study, we examined the
effect of water immersion on the decocooning rate of O. excavata. Our results showed that water
immersion significantly improved O. excavata decocooning. This will provide technical support to
improve effective application of O. excavata. Illumina Novaseq™ 6000 transcriptome sequencing
showed muscle-related functions play important roles in O. excavata decocooning in response to
water immersion.

Abstract: The timing of decocooning and nesting during the flowering period are crucial for the
reproduction and pollination activities of Osmia excavata. In order to improve the pollination efficiency
of O. excavata, it is crucial to find a way to break the cocoon quickly. Our results showed that the
decocooning rates at 6, 12, 24, 36, 48, and 72 h after 30 min of water immersion (WI) were 28.67%,
37.33%, 37.33%, 41.33%, 44.33%, and 53.00%, respectively. The decocooning rate fold of 6 h was
14.33 compared with the control group. Transcriptome sequencing resulted in 273 differentially
expressed genes (DEGs) being identified between the WI and control groups. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that muscle-related
functions play important roles in O. excavata decocooning in response to WI. Cluster analysis also
showed that DEGs in cardiac muscle contraction and adrenergic signaling in cardiomyocytes were
up-regulated in response to WI-promoted decocooning. In conclusion, the rate of decocooning can be
improved by WI in a short time. During WI-promoted decocooning, muscle-related pathways play
an important role. Therefore, the application of this technology will improve the pollination effect of
O. excavata.

Keywords: Osmia excavata Alfken; water immersion; decocooning; transcriptome sequencing;
differentially expressed genes; KEGG pathways

1. Introduction

The wild solitary bee Osmia excavata Alfken (Hymenoptera: Megachilidae) is an
excellent pollinator that is widely distributed in the northern provinces of China [1]. As
compared to other pollinating insects, the advantages of O. excavata include rapid, specific,
and efficient pollination, tolerance to low temperatures, activity in the early spring, simple
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management, and low cost [2,3]. Osmia excavata has been used for more than 30 years
to ensure the production, quality, and sustainability of various fruits and cruciferous
vegetables in northern China [4–6].

Spinning and cocooning are instincts of many insects, providing a shelter to the
residing pupae against adverse factors. After the metamorphosis of pupa into adult, the
adult must break open the cocoon to emerge, which is called decocooning [7]. O. excavata
builds nests with mud in holes under rocks and tiles and lives in the nests for about
320 days each year. It feeds on pollen (nectar) and exhibits generational breeding, where
the offspring survive by feeding on pollen in the nest chamber [1,8]. O. excavata has one
generation per year (egg, larva, pupa, and adult). The adult overwinters in the cocoon. The
process of overwintering includes two stages, diapause and postdiapause, and the nutrient
status in the body of the bee changes accordingly before and after diapause [9–12]. The time
of releasing diapause is around late February. When the inside and outside temperature
is stable above 12 ◦C, the dormant adult O. excavata wakes up, automatically breaks the
cocoon, and moves out of the nest or visits flowers. In order to ensure the pollination effect
of O. excavata, the cocoon should be refrigerated at 0–4 ◦C, so that its nesting activity can
coincide with the flowering period of fruit trees, and so achieve pollination.

Fruit growers release O. excavata in orchards to improve the fruit setting rate. A study
found that the release density, pollination distance, and selection of flowers on apple trees
affected the pollination effect of the bee [13]. The timing of decocooning and nesting during
the flowering period is crucial for reproduction of O. excavata [14]. The abundance of eggs
produced by female O. excavata is closely related to the amount of collected pollen and
nectar. When external sources of nectar are scarce, the female bees produce fewer pollen
clusters and eggs [15]. The optimal time for pollination of pear trees is from day 1 to day 3 of
the 7-day flowering period, as successful pollination significantly decreases after day 5 [16].
The full flowering stage of apple trees occurs 5–10 days after the inflorescence separation
stage [17]. A sufficient number of pollinating insects is needed during the flowering period
to ensure effective pollination. The timing of bee release varies by fruit tree species: for
peach trees it is generally recommended that bees are released at about 20% bloom and for
apple trees at 3–5% bloom. Under normal circumstances, after the bee cocoons are placed
in the field, 7–10 d is sufficient for all cocoons to be broken [13,18].

A variety of factors affect the rate of O. excavata decocooning [19]. However, rapid
improvement of concentrated O. excavata decocooning has not been sufficiently investigated.
In order to improve O. excavata pollination efficiency, it is important to find a way to
break the cocoon quickly. We found that water immersion (WI) for 30 min significantly
improved O. excavata decocooning. This will provide technical support to improve effective
application of O. excavata. Transcriptome sequencing resulted in 273 differentially expressed
genes (DEGs) being identified between the WI and control groups. A total of 67 DEGs
(24.54%) were up-regulated and 206 DEGs (75.46%) were down-regulated. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed
muscle-related functions play important roles in O. excavata decocooning in response to WI.

2. Materials and Methods
2.1. Experimental Insects and Influence of WI on O. excavata Decocooning

In February 2023, O. excavata cocoons were purchased from Yantai Bifeng Agricultural
Science and Technology Co., Yantai, China. The cocoons were kept at a low temperature
(4 ◦C) in a refrigerator to prevent cocoon breaking before the flowering period of fruit
trees. The experiment was carried out in March, when the bees were dormant. The
O. excavata cocoons (n = 100 each) were exposed to WI for 15, 30, 60, or 120 min, respectively,
to determine the optimal duration of WI to promote decocooning. After treatment, the
cocoons were transferred to individual feeding boxes and the number of broken cocoons
was counted at 6, 12, 24, 36, 48, and 72 h at 25 ◦C. The control group did not receive any
treatment. The number of broken cocoons in the control group was also counted at 6, 12, 24,
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36, 48, and 72 h at 25 ◦C. A total of 100 cocoons were used in each replicate. The experiment
was independently repeated three times for each group.

2.2. Transcriptome Samples

According to the WI test above, the WI for 30 min was determined as the optimal
duration to promote decocooning. Thus, the bees were separated into a WI-promoted
decocooning group (WI group) or control group for the transcriptome experiments. In the
WI group, the decocooned O. excavata were collected every 30 min and collected six times
in total. That is, the decocooned O. excavata in the first 3 h were the experimental group
(WI group). At 3 h, no bees in the control group broke from cocoons. Therefore, we took
the O. excavata in the cocoon as the control group. The bees were collected under sterile
conditions, surface disinfected with 75% alcohol, rinsed with sterilized water, dried, frozen
in liquid nitrogen, and stored at −80 ◦C. Each sample contained three bees.

2.3. RNA Extraction, Library Construction, and Transcriptomic Sequencing

Total RNA was isolated and purified from six samples using TRIzol reagent (Invit-
rogen, Carlsbad, CA, USA). The RNA amount and purity of each sample was quantified
using a NanoDrop ND-1000 (NanoDrop, Wilmington, DE, USA). Six high-quality RNA
samples were used to construct the sequencing library. The poly (A) RNA was purified
using Dynabeads Oligo (dT)25-61005 (Thermo Fisher, Waltham, CA, USA). A cDNA library
was synthesized using RNA as a template. The size was 300 ± 50 bp. The RNA-seq analysis
was performed using an Illumina Novaseq™ 6000 platform.

2.4. Differential Expression Analysis

Firstly, Cutadapt (1.9) [20] (https://cutadapt.readthedocs.io/en/stable/,version:cutadapt-1.9,
accessed on 28 April 2023) was used to remove the unsatisfactory reads. FastQC (http:
//www.bioinformatics.babraham.ac.uk/projects/fastqc/, 0.10.1, accessed on 28 April 2023)
was used to verify the clean data quality. De novo assembly of the transcriptome was
performed with Trinity (2.15) [21]. It was used to cluster the assembled transcripts based
on sequence similarity. The longest sequence among these similar transcripts was selected
and labeled as a unigene. DIAMOND (2.0.15) was used to annotate all assembled unigenes
with the non-redundant (Nr) protein (http://www.ncbi.nlm.nih.gov/, accessed on 28 April
2023), Gene Ontology (GO) (http://www.geneontology.org, accessed on 28 April 2023),
SwissProt (http://www.expasy.ch/sprot/, accessed on 28 April 2023), Kyoto Encyclopedia
of Genes and Genomes (KEGG) (http://www.kegg.jp/kegg/, accessed on 28 April 2023),
and eggNOG (http://eggnogdb.embl.de/, accessed on 28 April 2023) databases and Pfam
(http://pfam.xfam.org/, accessed on 28 April 2023) [22]. Salmon (1.9.0) [23] was used to
quantify unigenes using transcripts per kilobase of exon model per million mapped reads
(TPM) [24]. The differentially expressed unigenes were selected with log2 (fold change) > 1
or log2 (fold change) < −1 and with false discovery rate (FDR) < 0.05 using R package
edgeR (3.40.2) [25].

2.5. Sample Correlation Analysis

To evaluate the trend of inter-group separation and intra-group aggregation of the
samples, principal component analysis (PCA) was performed using the princomp function
in R.

2.6. GO and KEGG Enrichment Analysis

The GO and KEGG enrichment analyses of DEGs were performed in the GO and
KEGG databases, respectively. Firstly, the number of genes with significant differences in a
specific GO term or KEGG pathway (S), total number of significant differential genes in a
GO term or KEGG pathway (TS), the number of genes annotated as a specific GO term or
KEGG pathway (B), and total background gene number (TB) for each GO term or KEGG
pathway were calculated. Then, the hypergeometric distribution was used to find the GO
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term or KEGG pathway that is significantly enriched in DEGs. Corrected p-values < 0.05
are considered significantly enriched.

2.7. Statistical Analysis

In this study, data are presented as mean ± standard error of the mean (SEM) of the
three technical replicates. GraphPad Prism 6.01 Software (GraphPad Software Inc., San
Diego, CA, USA) was used for data analysis. Statistical analyses were determined by the
two-tailed, unpaired Student’s t-test, with p < 0.05 considered significant.

3. Results
3.1. Influence of WI on Decocooning

The decocooning rates in response to WI are described in Figure 1. The decocooning
rates when exposed to WI for 15 min were 26.33%, 31.33%, 31.33%, 39.33%, 41.33%, and
51.33% after 6, 12, 24, 36, 48, and 72 h, respectively. The decocooning rates when exposed
to WI for 30 min were 28.67%, 37.33%, 37.33%, 41.33%, 44.33%, and 53.00% after 6, 12,
24, 36, 48, and 72 h, respectively. The decocooning rates when exposed to WI for 60 min
were 23.67%, 32.00%, 31.00%, 39.00%, 40.33%, and 52.33% after 6, 12, 24, 36, 48, and 72 h,
respectively. The decocooning rates when exposed to WI for 120 min were 13.67%, 24.00%,
25.33%, 37.00%, 42.33%, and 59.00% after 6, 12, 24, 36, 48, and 72 h, respectively. The
decocooning rates of the control group were 2.00%, 3.00%, 3.33%, 16.33%, 21.67%, and
42.67% after 6, 12, 24, 36, 48, and 72 h, respectively. Because there was overlap in the line
chart of decocooning rate in the WI group, we chose WI for 30 min to compare with the
control group. The decocooning rates when exposed to WI for 30 min at 6 (p < 0.001), 12
(p < 0.001), 24 (p < 0.001), 36 (p < 0.01), 48 (p < 0.01), and 72 h (p < 0.05) were significantly
increased from that of the control group.
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Figure 1. Different WI-promoted decocooning rates of O. excavata at 6, 12, 24, 36, 48, and 72 h. 0 min:
control group; 15 min: WI for 15 min; 30 min: WI for 30 min; 60 min: WI for 60 min; 120 min: WI
for 120 min. The difference between the control group and WI for 30 min was analyzed. Data are
expressed as mean ± SEM; n = 3; * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. the control group.

The fold changes to the decocooning rate in response to WI are described in Supple-
mentary Figure S1. The relative fold changes to the decocooning rate of the groups exposed
to WI for 15, 30, 60, and 120 min were increased by 13.17-, 14.33-, 11.83-, and 6.83-fold at
6 h after WI, respectively (Figure S1A); 10.44-, 12.44-, 10.67-, and 8.00-fold at 12 h after WI,
respectively (Figure S1B); 9.40-, 11.20-, 9.80-, and 7.60-fold at 24 h after WI, respectively
(Figure S1C); 2.41-, 2.53-, 2.39-, and 2.27-fold at 36 h after WI, respectively (Figure S1D);
1.91-, 1.07-, 0.91-, and 1.05-fold at 48 h after WI, respectively (Figure S1E); and 1.20-, 1.24-,
1.23-, and 1.38-fold at 72 h after WI, respectively (Figure S1F). Compared to the control
group, WI for 30 min resulted in the best decocooning rate.
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3.2. High-Throughput Sequencing Results

Three control samples and three WI samples were used to construct cDNA libraries
and sequence the transcripts with an Illumina Novaseq™ 6000 platform. The raw reads
ranged from 35,763,154 to 42,151,520, while raw bases were between 5.36 G and 6.32 G
(Supplementary Table S1). The results of high-throughput sequencing identified 35,035,328,
38,226,266, and 40,595,706 valid reads in the control group and 38,569,092, 38,426,182,
and 36,736,678 in the WI group. The Q20% and Q30 scores of all samples were >97.52%
and >92.53%, respectively. The GC content was 41.06%–44.65%. The transcriptome data
indicated that the quality of sequencing data was sufficient for subsequent analysis.

3.3. Principal Component Analysis (PCA)

Principal component analysis (PCA) reflected the difference of samples between
groups and variability of samples in the same group. The results showed that samples
were scattered between the control group and WI group (Supplementary Figure S2). There
were differences between the control group and WI group. In addition, PCl and PC2 were
responsible for 47.25% and 23.12% of the variation, respectively. This verified the stability
and reliability of the experimental data. Interestingly, samples from the WI group were
more homogeneous than those from the control group. This was similar to the study by
Chen et al. [26].

3.4. DEGs in Response to WI

To identify genes that displayed significant expression changes in response to WI-
promoted decocooning, DEGs were analyzed. A hierarchical clustering heat map indicated
that the DEGs in each group were similar, and the differences between groups were large.
The DEG profiles were highly divergent between the WI and control groups (Figure 2). In
total, 273 DEGs were identified (Figure 3 and Supplementary Table S2). More genes were
down-regulated than up-regulated in response to WI. A total of 67 DEGs (24.54%) were
up-regulated and 206 DEGs (75.46%) were down-regulated.
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Figure 2. Hierarchical clustering heat map of DEGs between the WI and control groups. The
horizontal coordinates represent the six samples and the clustering results of six samples. The vertical
coordinates represent the 273 DEGs and the clustering results of all DEGs. The colors indicate the
expression levels. High levels of expression are indicated in red and low expression is indicated
in blue.



Insects 2024, 15, 288 6 of 12

Insects 2024, 15, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 2. Hierarchical clustering heat map of DEGs between the WI and control groups. The hori-
zontal coordinates represent the six samples and the clustering results of six samples. The vertical 
coordinates represent the 273 DEGs and the clustering results of all DEGs. The colors indicate the 
expression levels. High levels of expression are indicated in red and low expression is indicated in 
blue. 

 

Figure 3. Analysis of DEGs between the WI and control groups. (A) The numbers of up-regulated 
(red column) and down-regulated (blue column) DEGs are summarized. (B) The volcano plot in-
cludes all DEGs. Up-regulated DEGs are indicated by red dots and down-regulated DEGs by blue 
dots. Non-DEGs are indicated by gray dots. The log2(fold change) values are shown on the x axis 
and -log10(FDR) values along the y axis. Genes with adjusted p-value ≤ 0.05 were considered differ-
entially expressed. 

3.5. GO Enrichment Analysis Results of DEGs 
To better understand the mechanism of WI-promoted O. excavata decocooning, we 

further studied the pathways with significant differences in gene expression (adjusted p-
value < 0.05) between the WI and control groups. Firstly, we used ggplot2 to display the 
GO enrichment analysis on all DEGs (Supplementary Table S3). There were 242 GO entries 
involved in significant enrichment of biological processes (BP), 45 in cellular components 

Figure 3. Analysis of DEGs between the WI and control groups. (A) The numbers of up-regulated
(red column) and down-regulated (blue column) DEGs are summarized. (B) The volcano plot
includes all DEGs. Up-regulated DEGs are indicated by red dots and down-regulated DEGs by
blue dots. Non-DEGs are indicated by gray dots. The log2(fold change) values are shown on the x
axis and −log10(FDR) values along the y axis. Genes with adjusted p-value ≤ 0.05 were considered
differentially expressed.

3.5. GO Enrichment Analysis Results of DEGs

To better understand the mechanism of WI-promoted O. excavata decocooning, we
further studied the pathways with significant differences in gene expression (adjusted
p-value < 0.05) between the WI and control groups. Firstly, we used ggplot2 to display the
GO enrichment analysis on all DEGs (Supplementary Table S3). There were 242 GO entries
involved in significant enrichment of biological processes (BP), 45 in cellular components
(CC), and 81 in molecular functions (MF) (Supplementary Table S3). The top 10 GO items
enriched by the three processes were respectively selected for display (Figure 4 and Sup-
plementary Table S3). In BP, cardiac muscle contraction (nine, p = 1.0932 × 10−12), cardiac
myofibril assembly (seven, p = 2.8860 × 10−10), cardiac muscle fiber development (six,
p = 8.8860 × 10−10), striated muscle contraction (seven, p = 1.0276 × 10−9), and cardiac
muscle tissue morphogenesis (six, p = 1.6363 × 10−9) were significantly enriched. In CC,
Z disc (fourteen, p = 7.8804 × 10−12), M band (eight, p = 1.8327 × 10−8), muscle myosin
complex (six, p = 4.8355 × 10−8), myofibril (six, p = 6.0290 × 10−7), and I band (five,
p = 6.8789 × 10−6) were significantly enriched. In MF, structural constituent of muscle
(eight, p = 1.8327 × 10−8), muscle alpha-actinin binding (six, p = 8.8445 × 10−8), telethonin
binding (four, p = 1.5166 × 10−7), structural constituent of cuticle (seven, p = 2.1754 × 10−6),
and structural molecule activity conferring elasticity (five, p = 5.6514 × 10−6) were signifi-
cantly enriched. These showed that a large number of muscle-related DEGs were in the
30 GO terms that were most significantly enriched in the enrichment analysis results.
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Figure 4. Bubble diagram of GO enrichment analysis of DEGs. The horizontal axis represents the
enrichment degree (rich factor) and the vertical axis represents the enriched GO term. The pink
section is BP; green is CC; blue is MF. Dot colors indicate different p-values. The smaller the p-value,
the closer the color is to red. Rich factor represents the number of DEGs belonging to a GO term. The
size of the dots (black dot) indicates the number of DEGs on the right.

3.6. KEGG Pathways Associated with the DEGs

To explore the enrichment pathways of DEGs, KEGG enrichment analysis of DEGs
was performed. The DEGs were significantly enriched in 16 KEGG pathways, includ-
ing cardiac muscle contraction (seven, p = 1.5024 × 10−5), adrenergic signaling in car-
diomyocytes (six, p = 0.0001), Hippo signaling pathway—fly (five, p = 0.0004), circa-
dian rhythm—fly (two, p = 0.0041), phototransduction—fly (three, p = 0.0052), neomycin,
kanamycin, and gentamicin biosynthesis (two, p = 0.0081), FoxO signaling pathway
(six, p = 0.0105), starch and sucrose metabolism (four, p = 0.0137), fructose and mannose
metabolism (four, p = 0.0204), ECM–receptor interaction (five, p = 0.0233), MAPK signaling
pathway—fly (four, p = 0.0252), lysine degradation (four, p = 0.0330), nitrogen metabolism
(two, p = 0.0371), lysine biosynthesis (one, p =0.0388), apelin signaling pathway (three,
p = 0.0441), and thyroid hormone signaling pathway (three, p = 0.0469) (Figure 5 and
Supplementary Table S4). Cluster analysis was performed on the DEGs in 16 significantly
enriched KEGG pathways (Figure 6). The hierarchical clustering heat map showed that
DEGs in cardiac muscle contraction, adrenergic signaling in cardiomyocytes, apelin sig-
naling pathway, and thyroid hormone signaling pathway were up-regulated in response
to WI-promoted O. excavata decocooning. However, the DEGs in the Hippo signaling
pathway, FoxO signaling pathway, MAPK signaling pathway, and other pathways were
down-regulated.
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4. Discussion

It is very important for the pollination effect of O. excavata for the time of decocoon-
ing and flowering of plants to coincide [14]. A variety of factors affect the O. excavata
decocooning rate [19]. (1) When the weather is clear and temperature is high, the cocoon
emergence speed is fast, and vice versa it is slow. When the late storage temperature was
high, the decocooning was rapid. (2) The water content of the cocoon shell is related to
the decocooning speed. After storage in winter and spring, the cocoon shell loses water
and becomes harder. The rate of cocoon breaking slows and O. excavata can even die.
(3) Low-temperature storage time affects cocoon emergence of adult bees. If the cocoon is
stored at a low temperature for a long time, the adult bee can adapt to a low temperature
by continuing diapause, but it cannot escape from the cocoon for a long time to supplement
its nutrition and so will die of hunger. So, finding a way for O. excavata to quickly emerge
from cocoons is crucial. In this study, WI for 30 min dramatically promoted O. excavata
decocooning (Figure 1 and Supplementary Figure S1). WI can rapidly increase the rate of
decocooning in a short period of time, so as to better pollinate fruit trees at the peak of
flowering. Therefore, this technique can be applied to improve the pollination efficiency of
O. excavata and increase fruit production.

In this study, PCA data showed heterogeneity in the control group (Supplementary Figure S2).
This may be related to the life history of O. excavata. O. excavata is a solitary pollinator that
breeds one generation per year. There are four developmental stages in the life history of
O. excavata: egg (3–4 days), larva (20–25 days), pupa (25–30 days), and adult [27]. Under
normal circumstances, differences in the developmental period lead to developmental
differences between individuals. Therefore, this may cause the heterogeneity of the control
group samples. Because of this reason, O. excavata undergoes gradual automatic deco-
cooning at the peak of flowering, and the time of decocooning is not concentrated. In
the production practice of applying Osmia pollination, in order to improve the rate of
decocooning, artificial decocooning is used. However, in the WI group, the O. excavata
needed a rapid stress response in order to escape this stress. The physiological status of the
samples in the WI group was more consistent, so the uniformity was better. Although there
was heterogeneity in the control group, the cluster heat map showed that the DEGs were
better clustered in the control group and WI group (Figure 2). In addition, the clustering
difference of individual genes did not affect the overall clustering effect.

To further explore the mechanism of WI promoting O. excavata decocooning, we con-
ducted GO and KEGG enrichment analysis of DEGs. The GO enrichment analysis showed
that, compared with the control group, genes related to muscle-related functions were
enriched, such as cardiac muscle contraction, cardiac myofibril assembly, cardiac muscle
fiber development, striated muscle contraction, and cardiac muscle tissue morphogenesis
(Figure 4 and Supplementary Table S3). The KEGG pathway analysis revealed significant
changes in cardiac muscle contraction and adrenergic signaling in cardiomyocytes (Figure 5
and Supplementary Table S4). The DEGs in cardiac muscle contraction (Mtco2, Myh6,
mt-Co3, and TNNC1) and in adrenergic signaling in cardiomyocytes (Myl2 and TNNT2)
were up-regulated in response to WI-promoted decocooning (Figure 6). These suggest that
muscle-related function pathways play an important role in the regulation of WI promoting
O. excavata decocooning. In addition, heat shock 70 kDa protein 1A (HspA1A) and heat
shock protein beta-7 (Hspb7) were up-regulated in response to WI-promoted decocooning.
Heat shock genes, or stress genes, code for a number of proteins that collectively form a
stress defense system to resist various adverse factors. Heat shock genes are up-regulated
in response common stress factors, such as higher temperatures, hypoxia, heavy metals,
and others [28]. This indicated that WI was a stress for the O. excavate cocoon.

O. excavata forms a cocoon, pupates, emerges as an adult from the cocoon, and then
enters diapause and dormancy. The outer layer of the cocoon is rough and the inner
layer is fine and semi-permeable. The adult bee can exchange gas with the outside world
through this semi-permeable membrane. When the cocoon is soaked in water, the water
infiltrates the cocoon, although it cannot penetrate the membrane, it can hinder the gas
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exchange between the inside and the outside of the cocoon, resulting in hypoxia stress in
the cocoon. So, we speculate that the WI treatment affects the oxygen (O2) and carbon
dioxide (CO2) concentrations in the cocoon, resulting in a decrease in O2 and an increase in
CO2. CO2 is a ubiquitous sensory cue that affects the behavior, physiology, metabolism,
and survival of insects [29,30]. For example, the increase in CO2 concentration in the
nests of honey bees and bumble bees causes their fanning activity [31,32]; CO2 treatment
induces postdiapause in bumble bees [33]; in Drosopbila melanogaster, CO2 cues are thought
to play a role in selecting food sources [34]. The larvae of cowpea bruchids respond to low
oxygen by coordinating reduced energy requirements, strengthening cellular structure and
muscle contraction [35]. Therefore, we hypothesize that the muscle-related pathways are
the executive pathways for decocooning in O. excavata to escape from high CO2 stress. The
CO2-sensing pathway may be the upstream pathway in which WI promotes decocooning.
However, no significant enrichment of hypoxia-related pathways was found in our study.
Further studies are needed to investigate this.

5. Conclusions

Our results showed that WI can rapidly increase the O. excavata decocooning rate in a
short period of time. This will provide technical support to improve effective application of
O. excavata. The GO and KEGG enrichment analysis showed that muscle-related functions
play important roles in O. excavata decocooning in response to WI. However, further studies
are needed to investigate this potential relationship.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/insects15040288/s1, Figure S1: The relative fold changes to the
decocooning rate of the groups exposed to WI for 15, 30, 60, and 120 min at 6 (A), 12 (B), 24 (C),
36 (D), 48 (E), and 72 h (F). Figure S2: Principal component analysis (PCA) of all 6 samples from
WI and control group. Table S1: Quality control of transcriptome sequences. Table S2: Table of
DEGs. Table S3: GO enrichment analysis. Sheet1: biological process; Sheet2: cellular component;
Sheet3: molecular_function. Table S4: KEGG enrichment analysis.
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