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Simple Summary: The nun moth (Lymantria monacha L.), a defoliator of conifers and broad-leaved
trees, is expanding its range, and outbreaks are increasingly occurring in the forests of central and
eastern Europe. The only way to control and eradicate mass outbreaks of the pest is aerial spraying
with a biological insecticide, Foray 76B. However, knowledge of variations in non-target insect
assemblages following a treatment is limited. The present study aimed to determine the effect of the
treatment on the diversity of non-target insects in Pinus sylvestris stands in three regions of Lithuania
in the year following a nun moth outbreak. The treatment was found to influence the diversity of
psyllids, ants, and beetles. Treated pine forests near the Baltic Sea exhibited lower insect species
richness and a decreased relative abundance of beetles on the forest floor. The spraying influenced
a reduction in the relative abundance of Carabus arcensis in the forests in the southern part of the
country. The treatment also influenced the movement of ants from the tree canopy to the forest floor
at all studied locations.

Abstract: Outbreaks of Lymantria monacha are of great concern, as their occurrence is predicted to
become more intense and frequent due to a warming climate. A frequent treatment to control mass
outbreaks of the pest is with the bioinsecticide Foray 76B. However, knowledge of how this treatment
affects non-target insect species is limited. We surveyed the assemblages of non-target epigeal and
arboreal insects in Pinus sylvestris forests in the year following bioinsecticide application. A collection
of insects using sweep nets and pitfall traps was carried out in L. monacha-infested pine stands,
(i) treated with Foray 76B and (ii) untreated, in three regions of Lithuania from May to October 2021.
The results revealed that, in Neringa forests, species richness of the epigeal insects was lower in
treated than in untreated sampling plots, with 36 and 41 different insect species, respectively. The
relative abundance of epigeal Coleoptera in treated plots was 3.6%, while in untreated it was 53.2%.
There was a significant decrease in the relative abundance of Carabus arcencis in Kapčiamiestis (by
7.4%) and Marcinkonys (by 16.7%). Treated plots were distinguished by lower relative abundance of
arboreal Hymenoptera at all three study locations.

Keywords: Scots pine; nun moth; pest outbreaks; biological control; Bacillus thurningiensis

1. Introduction

Due to the warming climate, coniferous forests are increasingly vulnerable to vari-
ous biotic and abiotic disturbances [1–4], including outbreaks of forest insects [5–7]. In
consideration of its adaptability to a diverse range of soil and climatic conditions, Scots
pine (Pinus sylvestris L.) is one of the most dominant coniferous tree species in hemiboreal
forests across the northern hemisphere [8,9]. In Lithuania, Scots pine stands cover 34.5% of
the total forest area [10].

Insects play a critical role in plant reproduction, soil fertility, forest health, and food-
web interactions [11,12]. Most forest insect species are embedded in complex food webs [13].
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Although some species of insects themselves provide food for birds, reptiles, bats, am-
phibians, and other animals [14], many of these species are predators that are important,
especially during outbreaks of insect pests [15,16]. Specific insect species, such as beetles
(Coleoptera) and ants (Formicidae), are indicators of forest health [17–19].

The nun moth (Lymantria monacha L.) is an important pest of Scots pine forests in
central and northern Europe [20,21], expanding its distribution northward and causing
frequent outbreaks [22]. Forests in Poland, the Czech Republic, and Germany [20,23], as
well as in Lithuania and Latvia [24,25] experience frequent nun moth outbreaks. Since
Scots pine stands provide habitats for many organisms, the spread of L. monacha can
reduce their abundance or even threaten some species [26]. The nun moth outbreaks in
Lithuania in 2018–2020 affected more than 6000 hectares of P. sylvestris stands [24]. In
such extreme cases, Bacillus thuringiensis subspecies kurstaki Strain ABTS-351 (abbr. Btk,
or Foray 76B), as an aerial treatment, is the most common biological agent used [27].
Although Btk is considered toxic only to lepidopterans (moths and butterflies) [28–31], the
use of bioinsecticides utilizing Bacillus thuringiensis spores and toxins (including Btk) may
impact non-target species [32]. These encompass beneficial insects involved in biological
control [33], pollinators [34], and species coexisting with Btk-targeted insect pests [35].
However, there is a lack of knowledge regarding the indirect effects of treatment with Foray
76B against L. monacha outbreaks on such non-target species. To better understand and
predict the effects of L. monacha outbreak treatments, a comprehensive assessment of their
population dynamics is necessary.

We hypothesized that treatment with Foray 76B to control L. monacha outbreaks in
P. sylvestris stands can lead to significant changes in epigeal and arboreal insect abundance
and species assemblages. The present study aimed to determine the diversity and abun-
dance of epigeal and arboreal insect species in Scots pine forests following L. monacha
outbreaks and treatment with bioinsecticide.

2. Materials and Methods
2.1. Description of Forest Stands

Six 60–120-year-old P. sylvestris forest stands damaged by L. monacha outbreaks (tree
crown defoliation, 30–60%) in Neringa, Kapčiamiestis, and Marcinkonys were selected for
the study (Figure 1). Each of the six forest stands was treated with the biological insecticide
Foray 76B in 2020 under the guidance of the State Forest Service. Meanwhile, the nearest
L. monacha-damaged sampling plots (abbr. plots), which were not treated due to nearby
protection zones, were selected as controls. The distance between the two forest stands
at the same location was 5–30 km, and there was 2–3 km between treated and untreated
plots of the same forest stand. The pine stands of Neringa grow in the dunes by the Baltic
Sea at the transition between terrestrial and marine environments and have mild climatic
conditions [36], whereas Kapčiamiestis and Marcinkonys in the southern part of the country
experience harsher climatic conditions [37]. All the forest stands were characterized by
normal humidity (N), very poor (a) or poor (b) fertility, light soil texture (l), and either
cladoniosum (cl) or vaccinio-myrtilliosum (vm) vegetation type (Table 1).

Table 1. Characteristics of treated and untreated P. sylvestris forest stands. Data obtained by permis-
sion from the State Forest Cadaster as of 2021.

Location Sampling
Plot Code * Latitude (N) Longitude

(E) Age (y) Mean
Height (m)

Mean
Diameter

(cm)

Forest Site
Type **

Forest
Vegetation

Type
***

Neringa

N1T 55◦41′47.6′′ 21◦06′22.1′′ 120 16.5 23.0 Nal cl
N1U 55◦40′38.8′′ 21◦06′24.5′′ 65 16.7 18.0 Nal cl
N2T 55◦19′54.0′′ 21◦02′29.0′′ 60 18.1 19.0 Nal cl
N2U 55◦24′30.2′′ 21◦04′42.1′′ 110 11.5 13.0 Nal cl
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Table 1. Cont.

Location Sampling
Plot Code * Latitude (N) Longitude

(E) Age (y) Mean
Height (m)

Mean
Diameter

(cm)

Forest Site
Type **

Forest
Vegetation

Type
***

Kapčiamiestis

K1T 54◦02′41.0′′ 23◦32′16.6′′ 89 29.3 34.0 Nbl vm
K1U 54◦02′09.8′′ 23◦32′08.6′′ 74 23.6 28.7 Nbl vm
K2T 54◦01′07.3′′ 23◦31′32.2′′ 89 25.1 29.9 Nbl vm
K2U 54◦00′16.8′′ 23◦30′05.6′′ 76 28.2 31.3 Nbl vm

Marcinkonys

M1T 54◦06′23.8′′ 24◦25′58.8′′ 98 28.6 35.4 Nbl vm
M1U 54◦07′33.5′′ 24◦27′17.1′′ 78 25.2 25.6 Nbl vm
M2T 54◦01′51.8′′ 24◦26′06.3′′ 125 25.3 25.7 Nbl vm
M2U 54◦02′09.5′′ 24◦25′26.7′′ 83 26.8 29.6 Nal cl

* Different letters at the end of the sampling plot code indicate the type of plot, i.e., T—treated, U—untreated.
** N: Normal humidity, a: very poor fertility, b: poor fertility, l: light soil texture. *** cl: cladoniosum, vm:
vaccinio-myrtilliosum [38].
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Figure 1. Map of Lithuania showing six P. sylvestris forest stands (1–6) damaged by L. monacha out-
breaks—in Neringa, Kapčiamiestis, and Marcinkonys. Circles represent different forest stands, 
where samples were collected from treated (e.g., N1T) and untreated (e.g., N1U) plots. 

In each of the plots, the trapping of epigeal and arboreal insects was performed using 
two different methods: (I) pitfall traps and (II) entomological sweep nets.  

2.2. Assessment of Epigeal Insects 
Epigeal insects were sampled during the period of maximum arthropod activity in 

May–October 2021 (the following year after L. monacha outbreaks), using a modified Ka-
monen et al. (2015) method [39]. Pitfall traps, made of small plastic cups (6.5 cm diameter, 
10 cm in depth), were dug into the substrate until they were flushed with the surrounding 
surface and filled with approximately 50 mL of 70% isopropyl alcohol. A nail-supported 
roof was installed 5 cm above the trap to reduce flooding and the accumulation of debris. 
In each plot, 5 traps were installed every 10 m, with a total of 30 traps in treated and 30 in 
untreated P. sylvestris plots. Insects were collected once a month, and the traps were filled 
with fresh isopropyl alcohol. The samples from 5 traps per plot were combined (total n = 
12), transported to the laboratory, and dried at room temperature for 20 days. There was 
a total of 5 sample replicates over 5 months (6 forest stands × 2 plots per stand × 5 times). 
Identification of epigeal insects was performed using a Zeiss Stemi 2000-C microscope 
(Oberkochen, Germany) based on morphological characteristics and standard identifica-
tion keys [40–44]. 

  

Figure 1. Map of Lithuania showing six P. sylvestris forest stands (1–6) damaged by L. monacha
outbreaks—in Neringa, Kapčiamiestis, and Marcinkonys. Circles represent different forest stands,
where samples were collected from treated (e.g., N1T) and untreated (e.g., N1U) plots.

In each of the plots, the trapping of epigeal and arboreal insects was performed using
two different methods: (I) pitfall traps and (II) entomological sweep nets.

2.2. Assessment of Epigeal Insects

Epigeal insects were sampled during the period of maximum arthropod activity
in May–October 2021 (the following year after L. monacha outbreaks), using a modified
Kamonen et al. (2015) method [39]. Pitfall traps, made of small plastic cups (6.5 cm diameter,
10 cm in depth), were dug into the substrate until they were flushed with the surrounding
surface and filled with approximately 50 mL of 70% isopropyl alcohol. A nail-supported
roof was installed 5 cm above the trap to reduce flooding and the accumulation of debris.
In each plot, 5 traps were installed every 10 m, with a total of 30 traps in treated and
30 in untreated P. sylvestris plots. Insects were collected once a month, and the traps were
filled with fresh isopropyl alcohol. The samples from 5 traps per plot were combined (total
n = 12), transported to the laboratory, and dried at room temperature for 20 days. There was
a total of 5 sample replicates over 5 months (6 forest stands × 2 plots per stand × 5 times).
Identification of epigeal insects was performed using a Zeiss Stemi 2000-C microscope
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(Oberkochen, Germany) based on morphological characteristics and standard identification
keys [40–44].

2.3. Assessment of Arboreal Insects

Sampling of arboreal insects was carried out during the same period and at the same
plots as for epigeal insects (see above). In each plot, 50 sweeps around approximately
20 P. sylvestris tree branches were made with an entomological net in a 30 m2 crown area.
Sampling was carried out on dry days. Collected arboreal insects were placed into a glass
container with cotton wool, soaked in 99.2% chloroform for 15 min., sieved to remove plant
material, and transferred to plastic boxes (n = 12). There was a total of 6 sample replicates
over 6 monthly accountings (6 forest stands × 2 plots per stand × 6 times). The subsequent
procedure for sample transportation, insect preparation, and identification was the same as
described above for the epigeal insects.

2.4. Statistical Analysis

PC-Ord 6 was used to calculate Shannon’s [45] diversity index. R (Version 4.2.1) with
RStudio (Version 1.1.456) was used to calculate the following: (1) the number of insect
individuals; (2) the relative abundance of insects; (3) the insect species richness; (4) the
nonparametric chi-square test; (5) the nonparametric Mann–Whitney test; (6) the nonmetric
multidimensional scaling (NMDS) with 999 premutations (performed using metaMDS
function from vegan package); (7) the permutational multivariate analysis of variance
(PERMANOVA) (performed using adonis2 function with the Bray–Curtis distance metric
from the vegan package); (8) ANOVA, followed by a Tukey HSD (Honestly Significant
Difference). The statistically significant difference between analyzed groups was considered
when the results of the Tukey HSD and ANOVA were less than 0.05. The reported relative
abundance of analyzed groups represents the percentage (%) of insects that belong to
treated or untreated plots from different locations. Visualization was performed using
vegan, ggplot2, and lattice libraries in R with RStudio and Microsoft Excel 2010.

3. Results
3.1. Diversity of Epigeal Insects

During the study period, a total of 7210 individuals (4380 in treated and 2830 in untreated
plots) of epigeal insects was trapped (Supplementary Table S1). The relative abundance
of the epigeal insects, species richness, Shannon’s index, and NMDS between treated and
untreated plots in Kapčiamiestis and Marcinkonys did not differ significantly (p > 0.05) in
contrast to Neringa (Table 2). The relative abundance of epigeal insects in Neringa was
significantly higher (p < 0.05) in treated (2274 individuals) than in untreated (703 individuals)
plots. However, species richness in Neringa was significantly lower (p < 0.005) in treated than
in untreated plots. Shannon’s diversity was lower in treated (N1T + N2T) than in untreated
(N1U + N2U) plots (p < 0.05). The epigeal insect assemblages showed (the PERMANOVA
confirmed) significant differences (p < 0.05) between treated and untreated plots in both forest
stands (N1T/N1U: R = 0.056, p < 0.05; N2T/N2U: R = 0.9795, p < 0.05) (Figure 2).

Table 2. Total number, relative abundance (%), number of insect species, and Shannon diversity of
trapped epigeal insects in treated and untreated P. sylvestris plots in different forest stands.

Location Sampling
Plot Code *

Total No. of
Insects

Relative
Abundance, %

No. of Insect
Species

Shannon
Diversity

Neringa

N1T 1021 14.2 25 0.43
N2T 1253 17.4 23 0.56

N1T + N2T 2274 31.5 36 0.99
N1U 442 6.1 37 2.66
N2U 261 3.6 17 1.65

N1U + N2U 703 9.8 41 2.43
Total 2977 41.3 51 1.56
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Table 2. Cont.

Location Sampling
Plot Code *

Total No. of
Insects

Relative
Abundance, %

No. of Insect
Species

Shannon
Diversity

Kapčiamiestis

K1T 464 6.4 31 2.35
K2T 582 8.1 37 2.71

K1T + K2T 1046 14.5 45 2.75
K1U 472 6.6 30 2.33
K2U 461 6.4 33 2.48

K1U + K2U 933 12.9 41 2.49
Total 1979 27.4 56 2.71

Marcinkonys

M1T 590 8.2 25 1.54
M2T 470 6.5 29 2.08

M1T + M2T 1060 14.7 40 1.87
M1U 973 13.5 31 1.39
M2U 221 3.1 26 1.90

M1U + M2U 1194 16.6 40 1.65
Total 2254 31.3 51 1.79

* Different letters at the end of the sampling plot code indicate the type of plot, i.e., T—treated, U—untreated.

Insects 2024, 15, 200 5 of 15 
 

 

Kapčiamiestis 

K1T 464 6.4 31 2.35 
K2T 582 8.1 37 2.71 

K1T + K2T 1046 14.5 45 2.75 
K1U 472 6.6 30 2.33 
K2U 461 6.4 33 2.48 

K1U + K2U 933 12.9 41 2.49 
Total 1979 27.4 56 2.71 

Marcinkonys 

M1T 590 8.2 25 1.54 
M2T 470 6.5 29 2.08 

M1T + M2T 1060 14.7 40 1.87 
M1U 973 13.5 31 1.39 
M2U 221 3.1 26 1.90 

M1U + M2U 1194 16.6 40 1.65 
Total 2254 31.3 51 1.79 

* Different letters at the end of the sampling plot code indicate the type of plot, i.e., T—treated, U—
untreated. 

 
Figure 2. Ordination diagram based on NMDS of epigeal insect assemblages detected in association 
with treated and untreated P. sylvestris plots in different forest stands. Each black dot in the dia-
grams represents an individual insect species. 
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insects in treated and untreated plots in Kapčiamiestis and Marcinkonys (Figure 3). Hy-
menopterans had significantly higher (p < 0.05) relative abundance in treated (96.1%) than 
in untreated (45.9%) plots in Neringa (Figure 3a), while beetles had higher relative abun-
dance in untreated (53.2%) than in treated (3.6%) plots. The relative abundance of insects 
from the Formicidae (Hymenoptera) family was 96.0% in treated and 42.8% in untreated 
plots in Neringa (Figure 3b). The relative abundance of the most frequently detected col-
eopterans, such as Carabidae, Curculionidae, and Geotrupidae, was 34.4%, 4.8%, and 
2.8%, respectively in untreated, and 2.2%, 0.6%, and 0.4%, respectively, in treated plots. 
The relative abundance of non-target epigeal lepidopterans (Phalera bucephala (L.): Noto-
dontidae) was less than 2% (Supplementary Table S1), and they were combined with other 
less abundant orders, including Diptera, Hemiptera, Dictyoptera, Neuroptera, and Ar-
chaeognatha as “Others” (Figure 3). 

Figure 2. Ordination diagram based on NMDS of epigeal insect assemblages detected in association
with treated and untreated P. sylvestris plots in different forest stands. Each black dot in the diagrams
represents an individual insect species.

In contrast to Neringa, there were only minor variations in the relative abundance
of insects in treated and untreated plots in Kapčiamiestis and Marcinkonys (Figure 3).
Hymenopterans had significantly higher (p < 0.05) relative abundance in treated (96.1%)
than in untreated (45.9%) plots in Neringa (Figure 3a), while beetles had higher relative
abundance in untreated (53.2%) than in treated (3.6%) plots. The relative abundance of
insects from the Formicidae (Hymenoptera) family was 96.0% in treated and 42.8% in
untreated plots in Neringa (Figure 3b). The relative abundance of the most frequently
detected coleopterans, such as Carabidae, Curculionidae, and Geotrupidae, was 34.4%,
4.8%, and 2.8%, respectively in untreated, and 2.2%, 0.6%, and 0.4%, respectively, in treated
plots. The relative abundance of non-target epigeal lepidopterans (Phalera bucephala (L.):
Notodontidae) was less than 2% (Supplementary Table S1), and they were combined with
other less abundant orders, including Diptera, Hemiptera, Dictyoptera, Neuroptera, and
Archaeognatha as “Others” (Figure 3).
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Formica rufa and Myrmica rubra were the most dominant insect species in Neringa
(Table 3). The relative abundance of F. rufa and M. rubra in treated plots was 46.2% and
49.3%, respectively, while in untreated plots it was 8.5% and 32.1%. In contrast, the
relative abundance of the beetles Pterostichus niger, Calathus micropterus, and Staphylinus
erythropterus in Neringa was significantly higher (p < 0.05) in untreated (11.1%, 9.0%, and
7.0%, respectively) than in treated (0.2%, 0.4%, and 0.1%, respectively) plots. The relative
abundance of Carabus arcensis was higher in untreated than in treated plots in Kapčiamiestis
(22.9% and 15.5%, respectively) and Marcinkonys (38.9% and 22.2%, respectively).

Table 3. Relative abundance (%) of the 15 most abundant epigeal insect species in treated and
untreated P. sylvestris plots in different locations, organized alphabetically by species name.

Species Order/Family

Relative Abundance, %

Neringa Kapčiamiestis Marcinkonys

* N1T +
N2T

N1U +
N2U

Neringa,
Total

K1T +
K2T K1U + K2U Kapčiamiestis,

Total
M1T +
M2T

M1U +
M2U

Marcinkonys,
Total

Calathus
errathus
Sahlbg.

Coleoptera/
Carabidae 0.2 2.4 0.7 6.1 1.6 4.0 0.5 0.1 0.3

Calathus
micropterus

Duftschmid.

Coleoptera/
Carabidae 0.4 9.0 2.5 5.7 6.2 6.0 4.2 0.5 2.3

Carabus
arcensis Hbst.

Coleoptera/
Carabidae 0.2 1.7 0.6 15.5 22.9 19.0 22.2 38.9 31.0

Carabus
violeaceus L.

Coleoptera/
Carabidae 0.2 3.4 0.9 4.8 1.9 3.4 0.8 1.1 0.9

Formica rufa
L.

Hymenoptera/
Formicidae 46.2 8.5 37.3 3.9 15.9 9.6 46.7 40.7 43.5

Formicidae sp. Hymenoptera/
Formicidae 0.6 2.1 0.9 1.5 0.4 1.0 0.0 0.0 0.0

Geotrupes
stercorosus

Scriba.

Coleoptera/
Geotrupidae 0.3 0.3 0.3 14.3 16.2 15.2 1.7 1.6 1.6

Geotrupes
vernalis L.

Coleoptera/
Geotrupidae 0.1 2.6 0.7 0.3 0.9 0.6 0.8 0.4 0.6

Hylobius
abietis L.

Coleoptera/
Curculionidae 0.2 2.7 0.8 2.0 1.2 1.6 5.1 1.2 3.0

Myrmica rubra
L.

Hymenoptera/
Formicidae 49.3 32.1 45.2 10.5 8.6 9.6 5.5 6.3 5.9
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Table 3. Cont.

Species Order/Family

Relative Abundance, %

Neringa Kapčiamiestis Marcinkonys

* N1T +
N2T

N1U +
N2U

Neringa,
Total

K1T +
K2T K1U + K2U Kapčiamiestis,

Total
M1T +
M2T

M1U +
M2U

Marcinkonys,
Total

Pterostichus
aterrimus
Herbst.

Coleoptera/
Carabidae 0.0 0.1 0.0 3.3 0.8 2.1 0.0 0.0 0.0

Pterostichus
niger Schaller.

Coleoptera/
Carabidae 0.2 11.1 2.8 9.6 5.4 7.6 1.7 0.5 1.1

Pterostichus
oblongopuncta-

tum F.

Coleoptera/
Carabidae 0.1 0.7 0.2 4.4 1.8 3.2 1.4 0.3 0.8

Staphylinus
erythropterus

L.

Coleoptera/
Staphylinidae 0.1 7.0 1.7 1.2 0.1 0.7 0.2 0.1 0.1

Strophosomus
capitatum De

Geer.

Coleoptera/
Curculionidae 0.3 1.3 0.5 8.9 7.6 8.3 4.7 2.2 3.4

Total of 15 species 98.2 85.1 95.1 92.1 91.4 91.8 95.5 93.8 94.6

* Different letters at the end of the sampling plot code indicate the type of plot, i.e., T—treated, U—untreated.

Among the epigeal insects, entomophagous composed the highest part in each loca-
tion. The relative abundance of entomophagous insects showed non-significant differences
(p > 0.05) between treated and untreated plots in Kapčiamiestis and Marcinkonys. In
contrast, the relative abundance of entomophagous insects in Neringa was significantly
higher (p < 0.05) in treated (98.5%) than in untreated (87.9%) plots. There was little vari-
ation in the relative abundance of phytophagous, coprophagous, and others, including
dendrophagous, mycophagous, necrophagous, polyphagous, and saprophagous, between
treated and untreated plots within each location.

3.2. Diversity of Arboreal Insects

A total of 380 and 448 arboreal insect individuals were captured in treated and un-
treated plots, respectively (Supplementary Table S2). The relative abundance of arboreal
insects was significantly higher (p < 0.05) in untreated than in treated plots at Neringa and
Marcinkonys (154 vs. 127 insect individuals, and 127 vs. 82 insect individuals, respectively)
(Table 4). Meanwhile, neither the Chi-square test nor Shannon’s diversity showed signifi-
cant differences (p > 0.05) between treated and untreated plots within each location. NMDS
of the arboreal insect assemblages showed (and PERMANOVA confirmed) significant
differences (p < 0.05) between treated and untreated plots in one of the two forest stands
within each location (N1T/N1U: R = 0.352; K2T/K2U: R = 0.424; M1T/M1U: R = 0.300)
(Figure 4).

The relative abundance of hymenopterans was significantly lower (p < 0.05) in treated
than in untreated plots in Neringa (41.7% and 73.4%), Kapčiamiestis (14.0% and 57.5%),
and Marcinkonys (25.6% and 38.6%), respectively (Figure 5a). The decrease of the rela-
tive abundance of hymenopterans was mostly influenced by a reduction in ant numbers
(Figure 5b). Meanwhile, the relative abundance of hemipterans was higher in treated than
in untreated plots in Neringa (40.2% and 13.0%) and Kapčiamiestis (57.3% and 21.6%)
(Figure 5a), caused mostly by Psyllidae (Figure 5b). The relative abundance of coleopterans
was 40.2% in treated and 22.8% in untreated plots in Marcinkonys (Figure 5a). It was
influenced by a higher relative abundance of Curculionidae (23.2% and 8.7%, respectively)
(Figure 5b). The orders with relative abundance ≤ 2%, including the non-target geometrid
and tortricid Lepidoptera (Supplementary Table S2) and other orders (Diptera, Dictyoptera,
Neuroptera, Odonata, Orthoptera, and Psocoptera) are collectively shown as “Others”
(Figure 5).
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Table 4. Total number, relative abundance (%), number of insect species, and Shannon diversity of
arboreal insects in treated and untreated P. sylvestris plots in different forest stands.

Location Sampling
Plot Code *

Total No. of
Insects

Relative
Abundance,

%

No. of Insect
Species

Shannon
Diversity

Neringa

N1T 93 11.2 16 1.96
N2T 34 4.1 13 2.26

N1T + N2T 127 15.3 24 2.45
N1U 71 8.6 15 2.12
N2U 83 10.0 14 1.89

N1U + N2U 154 18.6 22 2.25
Total 281 33.9 33 2.54

Kapčiamiestis

K1T 57 6.9 17 2.56
K2T 114 13.8 25 1.96

K1T + K2T 171 20.7 33 2.49
K1U 52 6.3 19 2.60
K2U 115 13.9 21 2.06

K1U + K2U 167 20.2 29 2.47
Total 338 40.8 41 2.75

Marcinkonys

M1T 39 4.7 15 2.26

M2T 43 5.2 14 2.04
M1T + M2T 82 9.9 24 2.53

M1U 77 9.3 18 2.47
M2U 50 6.0 20 2.67

M1U + M2U 127 15.3 28 2.75
Total 209 25.3 39 2.87

* Different letters at the end of the sampling plot code indicate the type of plot, i.e., T—treated, U—untreated.
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The relative abundance of Lasius sp. and F. rufa was lower in treated plots in Neringa
(7.1% and 19.7%, respectively) and Kapčiamiestis (4.7% and 0.6%, respectively) than in
untreated ones (Table 5). No individuals of F. rufa were found in Marcinkonys’ treated
plots, while the relative abundance of F. rufa in untreated plots was 11.0%. Unlike F. rufa,
the relative abundance of Strophosomus capitatum in Marcinkonys was higher in treated than
in untreated plots. The relative abundance of Ichneumonidae sp. showed non-significant
(p > 0.05) differences between treated and untreated plots (p > 0.05).

Table 5. The relative abundance (%) of the 15 most abundant arboreal insect species in treated and
untreated P. sylvestris plots in different locations, organized alphabetically by species name.

Species Order/Family

Relative Abundance, %

Neringa Kapčiamiestis Marcinkonys

* N1T +
N2T

N1U +
N2U

Neringa,
Total K1T + K2T K1U + K2U Kapčiamiestis,

Total
M1T +
M2T

M1U +
M2U

Marcinkonys,
total

Adalia bipunctata
L.

Coleoptera/
Coccinellidae 1.6 5.8 3.9 2.9 0.6 1.8 3.7 0.0 1.4

Aleyrodidae sp. Hemiptera/
Aleyrodidae 0.0 0.6 0.4 1.2 1.8 1.5 3.7 0.0 1.4

Barbitistes
constrictus Br.

Orthoptera/
Phaneropteridae 0.8 0.0 0.4 4.1 0.6 2.4 0.0 0.0 0.0

Brachonyx
pineti Payk.

Coleoptera/
Curculionidae 0.0 0.6 0.4 4.1 0.6 2.4 0.0 0.0 0.0

Cinara sp. Hemiptera/
Aphididae 3.1 3.9 3.6 8.2 9.0 8.6 20.7 15.7 17.7

Formica rufa L. Hymenoptera/
Formicidae 19.7 28.6 24.6 0.6 11.4 5.9 0.0 11.0 6.7

Ichneuomonidae
sp.

Hymenoptera/
Ichneuomonidae 11.8 13.0 12.5 6.4 6.0 6.2 13.4 15.7 14.8

Lasius sp. Hymenoptera/
Formicidae 7.1 18.2 13.2 4.7 34.7 19.5 4.9 5.5 5.3

Miridae sp. Hemiptera/
Miridae 5.5 0.0 2.5 3.5 1.2 2.4 0.0 2.4 1.4

Myrmica rubra L. Hymenoptera/
Formicidae 3.1 13.6 8.9 1.8 5.4 3.6 4.9 6.3 5.7

Psyllidae sp. Hemiptera/
Psyllidae 26.0 1.9 12.8 40.4 4.8 22.8 2.4 9.4 6.7

Scymnus
suturalis Thunb.

Coleoptera/
Coccinellidae 3.9 0.0 1.8 0.6 1.2 0.9 2.4 7.1 5.3
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Table 5. Cont.

Species Order/Family

Relative Abundance, %

Neringa Kapčiamiestis Marcinkonys

* N1T +
N2T

N1U +
N2U

Neringa,
Total K1T + K2T K1U + K2U Kapčiamiestis,

Total
M1T +
M2T

M1U +
M2U

Marcinkonys,
total

Stenodema
laevigata L.

Hemiptera/
Miridae 2.4 1.3 1.8 1.2 3.0 2.1 1.2 0.8 1.0

Strophosomus
capitatum De

Geer.

Coleoptera/
Curculionidae 3.1 1.3 2.1 5.3 6.0 5.6 23.2 5.5 12.4

Tachinidae sp. Diptera/
Tachnidae 0.0 0.0 0.0 1.2 3.0 2.1 0.0 0.8 0.5

Total of 15 species 98.2 85.1 95.1 92.1 91.4 91.8 95.5 93.8 94.6

* Different letters at the end of the sampling plot code indicate the type of plot, i.e., T—treated, U—untreated.

Among arboreal insects, entomophagous and phytophagous ones were the most
common at each location. The relative abundance of entomophagous insects was 52.8% in
treated and 81.8% in untreated plots in Neringa, 23.4% in treated and 65.3% in untreated
plots in Kapčiamiestis, and 39.0% in treated and 52.8% in untreated plots in Marcinkonys.

4. Discussion

Previous studies on the potential control of L. monacha outbreaks have focused mainly
on the use of pheromone traps [46], natural predators [47], entomopathogenic fungi [48] and
viruses [49], or the bioinsecticide Foray 76B (B. thuringiensis subspecies kurstaki (Btk)) [50].
However, studies on the indirect effects of the Btk treatment on non-target insect popula-
tions were lacking. Our results highlight changes in non-target epigeal and arboreal insect
diversity in P. sylvestris stands after treatment with Foray 76B.

Among all collected non-target insects in the year following mass L. monacha outbreaks,
the most dominant were Coleoptera, Hymenoptera, and Hemiptera, while non-target
Lepidoptera constituted a small part. Shifts in the diversity of these orders could be directly
(for Lepidoptera) and indirectly (for Coleoptera, Hymenoptera, and Hemiptera) affected
by Btk and may act as indicators of forest stress [51–53]. For instance, Coleoptera, which
are considered the most species-rich order among insects [54], can either help to control
populations of other insects [51] or can contribute to nutrient cycling and decomposition
processes [55]. The findings of our study revealed that the changes in the diversity of
Coleoptera mostly depended on the population of ground beetles (Carabidae), which spend
their entire life cycle on the forest floor or underground [56]. Hymenopterans, including
bees, wasps, and ants, can also contribute to insect pest control through their functions
in predation [57], decomposition [58], support of the food web [59], and parasitism [60].
Our study showed that the diversity of epigeal and arboreal Hymenoptera was similar,
highlighting their potential role in facilitating trophic connections between different forest
strata [61]. This can be influenced by their life cycle and active vertical movement [62]. Shifts
in the diversity of true bugs (Hemiptera) can also indicate changes in forest ecosystems [63].
In the year following mass L. monacha outbreaks, hemipterans exhibited higher diversity in
the P. sylvestris canopy compared to the forest floor, confirming their ecological functions as
sapsuckers [64]. Lepidoptera are influential in forest ecosystems, and, as prey, they provide
nutrients for entomophagous insects, birds, and bats [65]. Other studies showed that the
recovery after Btk treatment of non-target Lepidoptera varies among different species [66].
For instance, the populations of non-target Lepidoptera in Douglas-fir forests after Btk
treatment may partially recover in the following year and require at least two years to
fully recover [67]. However, based on the low abundance of Lepidoptera in our study, it is
difficult to compare these results with other similar studies.

The results of our study showed an indirect association between the applied sprays
with Foray 76B and the species richness of non-target insects in Neringa. The species
richness of the epigeal insects was lower in bioinsecticide-treated P. sylvestris plots, where
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the 1st and 2nd instar larvae of the pest are usually killed within 2–5 days after the
treatment [68]. However, the species richness of arboreal insects did not differ between
treated and untreated P. sylvestris plots. Nevertheless, the relative abundance of different
orders of non-target insects in tree canopies was clearly distinguished between treated
and untreated plots in all locations. A higher relative abundance of arboreal psyllids
(sapsuckers) was observed in the bioinsecticide-treated plots. It is known that sapsuckers
are indirectly driven by environmental factors that affect the defenses and nutritional
quality of trees [69]. Despite being influenced by drought, the general association of
sapsuckers with defoliators is more complex [69,70]. Food source competition between
sapsuckers and defoliators may lead to the fact that the timing and frequency of their
outbreaks differ [71]. Increased relative abundance of sapsuckers in Foray 76B-treated plots
could indicate that trees are still under physiological stress after the disruption of their
natural enemies—L. monacha larvae [72].

The abundance of Formicidae ants could be related to the populations of defoliator [73]
and psyllids [74]. We determined a lower population of arboreal red wood ants (Formica
rufa) in Foray 76B-treated than in untreated P. sylvestris stands. This may indicate the role of
F. rufa in controlling still active defoliator outbreaks in untreated stands. Even though the
food-searching behavior of F. rufa is primarily related to the abundance of the psyllids, and
approximately 85% of the dry mass of the F. rufa diet consists of honeydew from them [75–77],
a higher relative abundance of psyllids did not induce an increased population of F. rufa
ants in the canopies of treated stands. However, the increased psyllid population might
have a stimulating effect on the increased prevalence of the epigeal F. rufa ants, which are
characterized by their adaptation and ability to navigate through different ecological strata,
including the forest canopy, understory, and forest floor, as much as needed [78–82]. Given
that F. rufa has long been valued for its role in controlling insect pest outbreaks in temperate
and boreal forests [83], it is possible that an increase in their arboreal population during the
outbreaks of L. monacha could naturally contribute to pest management.

The results of our study also indicated significant changes in the diversity of epigeal
Coleoptera in the following year after applied treatment with bioinsecticide Foray 76B.
The most dominant species of ground beetle was Carabus arcensis, which is common in P.
sylvestris forests in eastern Europe [84]. We found a decreased relative abundance of C.
arcensis in treated P. sylvestris plots, which might be influenced by less direct sunlight on
the forest floor through the canopy after defoliation of the trees was stopped [85], or the
increased relative abundance of epigeal F. rufa ants [83]. Several field studies have reported
that the association between the relative abundance of certain species of Carabidae and F.
rufa is based on their interference competition [86,87]. C. arsensis can be a bioindicator of
certain biotic and abiotic stress in forests [88]. However, due to climate change and habitat
destruction, the species abundance is declining in Europe [89,90]. Our study revealed that
treatment with Foray 76B may indirectly contribute to C. arcensis decline. Nevertheless, the
proliferation of L. monacha outbreaks in recent years [25] could have a serious impact on C.
arcensis populations in Europe.

Sudden fluctuations in the relative abundance of forest insects due to their feeding
habits may result in significant damage to overall forest health [91,92]. In our study, the
relative abundance of arboreal entomophagous and phytophagous insects distinguished
between Foray 76B-treated and untreated P. sylvestris stands. A lower ratio of the arbo-
real entomophagous in treated plots in the following year after the outbreaks could be
influenced by the reduced level of the defoliator [92]. However, an increased relative abun-
dance of arboreal phytophagous insects in treated plots may be related to several factors:
(1) better nutritional quality of tree needles and (2) P. sylvestris trees still experiencing stress
caused by the outbreaks of L. monacha.

Overall, the results of the conducted studies show that treatment with Foray 76B to
control the mass outbreaks of L. monacha may indirectly influence the diversity and species
composition of non-target insect assemblages, resulting in a possible impact on the health
and resilience of the forest stands. The study provides valuable knowledge regarding the
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interactions between non-target insects and how they are affected by biotic disturbance.
Further research to assess whether changes in the diversity and composition of non-target
insect assemblages are a long-term phenomenon, or whether resilience may occur over
time, is needed. Although the short-term effect of Foray 76B on non-target organisms
might be negligible, the impact of frequent repeated applications of biological agents on
most ecosystems is not well known [32,34,93]. It is probable that any regular disruption of
insect assemblages, due to chemical or microbial insecticides or natural factors, could have
long-term deleterious effects on ecosystem structure [94]. Therefore, complex research,
including other ecosystem factors such as soil chemistry and microbial diversity after the
applied treatment, is demanding.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/insects15030200/s1, Supplementary Table S1: Relative abundance (%) of
epigeal insects in Pinus sylvestris in Lithuania. Supplementary Table S2: Relative abundance (%) of
arboreal insects in Pinus sylvestris in Lithuania.
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