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Simple Summary: The duration of pupa development on a cadaver holds the potential for estimating
the time of colonization (TOC), which is often correlated with the postmortem interval (PMI) of
decomposed bodies. Establishing an objective, precise, and efficient method for inferring pupa age
has become paramount in forensic entomology. In this study, we observed temporal variations in
the reflection spectrum of Chrysomya megacephala (Diptera: Calliphoridae) pupa, detectable through
hyperspectral imaging (HSI). Additionally, we proposed that the eXtreme Gradient Boosting Regres-
sion (XGBR) model represents an optimal approach for estimating pupa development time based on
HSI data.

Abstract: Estimating the age of pupa during the development time of the blow fly Chrysomya
megacephala (Diptera: Calliphoridae) is of forensic significance as it assists in determining the time
of colonization (TOC), which could help to determine the postmortem interval (PMI). However,
establishing an objective, accurate, and efficient method for pupa age inference is still a leading matter
of concern among forensic entomologists. In this study, we utilized hyperspectral imaging (HSI)
technology to analyze the reflectance changes of pupa development under different temperatures
(15 ◦C, 20 ◦C, 25 ◦C, and 30 ◦C). The spectrograms showed a downtrend under all temperatures. We
used PCA to reduce the dimensionality of the spectral data, and then machine learning models (RF,
SVR-RBF, SVR-POLY, XGBR, and Lasso) were built. RF, SVR with RBF kernel, and XGBR could show
promise in accurate developmental time estimation using accumulated degree days. Among these, the
XGBR model consistently exhibited the most minor errors, ranging between 3.9156 and 7.3951 (MAE).
This study has identified the value of further refinement of HSI in forensic applications involving
entomological specimens, and identified the considerable potential of HSI in forensic practice.

Keywords: Chrysomya megacephala; pupa; hyperspectral imaging; machine learning

1. Introduction

Accurately deducing the developmental time of necrophagous insects is a critical
prerequisite for predicting time of colonization (TOC), which could help estimate post-
mortem interval (PMI) [1–3]. For cadavers with a PMI of less than 24 h, observations of
early postmortem phenomena, analysis of body chemical composition, and the application
of forensic entomology methods can all determine the PMI [4–6]. However, when the
time since death surpasses 72 h, the reliability of traditional indicators is compromised
due to stabilized postmortem and chemical changes in the body. In such instances, insect
evidence emerges as the sole dependable indicator [7]. Common methods for inferring in-
sect developmental time include measuring larval body length, identifying developmental
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stages (larvae, pupa, adult), and calculating cumulative developmental degree days [8–13].
Nevertheless, these indicators are primarily suited for larval developmental time inference.
The transition of necrophagous fly larvae into the pupa stage poses challenges in observing
morphological temporal changes, making it difficult to determine their developmental
time [14,15]. Therefore, there is a need to explore more suitable methods for inferring the
pupa stage.

The pupa stage, a pivotal period in the metamorphosis of holometabolous insects,
bridges the gap between the larval and adult stages. It also represents the most com-
mon form of certain fly species at crime scenes, constituting nearly 50% of the non-adult
stage found [16]. Forensic entomologists currently employ various methods to infer pupa
age, including gene expression analysis [17] and morphological examination of external
and internal developmental changes using conventional light microscopy [18], scanning
electron microscopy [19], micro-computed tomography [20], gas chromatography-mass
spectrometry (GC-MS) [21], and optical coherence tomography [22]. However, these meth-
ods present challenges, such as the need for expensive analytical equipment, insufficient
baseline reference data, and, notably, many of these methods involve destructive analysis
of fly pupa during examination, compromising the integrity of pupa collected at the crime
scene as evidentiary material and hindering reevaluation in judicial practice. Establishing
an objective, accurate, and efficient method for pupa age inference has become a leading
concern among forensic entomologists.

Hyperspectral imaging (HSI) is a sophisticated technology that captures and analyzes
fine spectra details at each point in a spatial area [23]. It can detect unique spectral
features of individual objects at different spatial positions which are otherwise visually
indistinguishable [24]. The technical characteristics of HSI include high spectral resolution,
continuous, narrow-band image data, and the construction of a three-dimensional (3D)
hyperspectral cube containing two-dimensional spatial information (x rows and y columns)
and one-dimensional spectral information (wavelength). This cube reflects the spectral
data generated by the physical structure and biochemical composition differences in the
sample, revealing structural and physiological information [24]. HSI is characterized by
its correspondence between spatial and spectral information, non-invasiveness, and high
throughput, and it is widely used in agriculture production monitoring, food safety, medical
examinations, and other fields [25,26]. HSI is a non-destructive and non-invasive method
that detects and times stress responses in adult beetles [27]. Calliphora dubia and Chrysomya
rufifacies could be distinguished by using a linear discriminant classification model based
on HSI data, and the accuracy rate could reach up to 92.5% [28].

Our previous research found that the biochemical profile of the insect cuticle and
puparium could change over time, as detected by FTIR and GC-MS [21,29]. There is
potential for discernible alterations in the reflectance patterns of the puparium as time
progresses, which could serve as indicators for estimating the pupa age. The composition of
the insect (puparium and larvae) cuticle is highly dynamic according to gene regulation [30].
The intricate functions of the insect cuticle underscore the notion that its composition
is intricately linked to internal physiological processes [31]. Detectable alterations in
the biochemical makeup of the cuticle during blow fly pupariation contribute to species
differentiation and play a role in age determination. Consequently, we anticipate that
distinct differences in reflectance profiles, discernible through HSI, will manifest in pupa at
varying ages and temperatures.

HSI technology may have several potential advantages compared to existing methods
for pupa age inference. Firstly, HSI possesses non-invasive analytical capabilities, appli-
cable to live specimens and unique specimens. Secondly, HSI is more economical and
convenient than techniques like differential gene expression detection and GC-MS; the HSI
camera is compact, portable, operationally simple, and does not require specific reagents
nor pretreatment during detection. It can capture images at the crime scene and potentially
achieve automated classification. Finally, HSI technology data are based on sample re-
flectance, providing an objective basis for discrimination. This feature opens the possibility
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of developing image analysis support software, reducing the professional knowledge re-
quired for interpretation. Thus, hyperspectral imaging technology holds ample theoretical
basis and unique technical advantages for pupa age inference in necrophagous fly species,
providing a potential solution to the drawbacks of existing methods and establishing a
more efficient and convenient inference approach.

In this study, we utilized a laboratory population of the blow fly Chrysomya mega-
cephala (Fabricius, 1794) (Diptera: Calliphoridae), collecting pupa samples under constant
temperature conditions of 15 ◦C, 20 ◦C, 25 ◦C, and 30 ◦C. We employed HSI technology to
collect hyperspectral data and then Principal Component Analysis (PCA) for dimensional-
ity reduction. After that, machine learning models were used to predict the development
time of Ch. megacephala pupa.

2. Materials and Methods
2.1. Sample Collection

Adult specimens of Ch. megacephala were collected in Changsha (28◦12′ N; 112◦58′ E),
Hunan, China, in September 2021 and conserved in Guo’s laboratory. The species were
identified according to mitochondrial DNA (OR739421 and OR739422) [32]. The adults were
reared in a nylon box (35 × 35 × 35 cm3) and assigned to an artificial climate cage (250A
GPL, Shen Zhen Ren Gong. Ltd., Tianjin, China) with the temperature set at 25.0 ± 1.0 ◦C,
relative humidity 70%, and a 12:12 h Light/Dark photoperiod cycle. Water was provided
at all times through soaked cotton, and they were fed a 1:1 mixture of milk powder (Guilin
Zhiren Food Industry Co., Ltd., Guilin, China) and sugar (white granulated sugar) in Petri
dishes (9.0 × 1.5 cm3 diameter).

Pork lung (50 g) was used to stimulate oviposition. After two hours, egg masses were
collected and carefully divided into four parts. Each portion was reared in a plastic bowl
(18 cm diameter, 5 cm height) with a relative quantity of fresh pork lung. These plastic
bowls were then moved into fly-rearing cages (35 × 35 × 35 cm3) covered with 2 cm of
sand until pupation. The fly-rearing boxes were placed into the artificial climate incubator
(LRH-250-GSI, Taihong Co., Ltd., Shaoguan, China) at constant temperatures of 15 ◦C,
20 ◦C, 25 ◦C, and 30 ◦C, with 70% RH and a photoperiod 12:12 L/D cycle. Fresh pieces of
pork lung were replenished 1–3 times a day according to the consumption by the larvae.
When the larvae developed into the pupal stage, which could be distinguished based on
the color of the puparium, the samples were collected every day until eclosion under each
temperature. The pupa was immersed in hot water at 90 ◦C for 30 s and then preserved in
75% ethanol under 4 ◦C.

2.2. Hyperspectral Imaging

The HSI was collected with a 15 W, 220 V LED artificial light bulb under controlled
laboratory conditions. These bulbs were installed in a room with a temperature of 24 ± 2 ◦C
and a relative humidity of 30–40%. The pupa collected at different temperatures were placed
on a custom-designed scanning platform. The platform was connected to a hyperspectral
imaging device, and the instrument was controlled using the SOC710-VP data acquisition
software (V6.0.3). The HSI was acquired and displayed as a hyperspectral image cube.

2.3. Hyperspectral Image Reflectance Transformation

For the acquired hyperspectral image cube, the SRAnal710e (V3.5) software provided
with the instrument was utilized for reflectance transformation to obtain relative reflectance.
Relative reflectance is typically the ratio of reflectance obtained from a white calibration
board (white = 1) to that obtained from complete darkness (dark = 0). In this experiment,
we selected a calibration board with a grayscale of 18% for additional calibration, ensuring
consistency in data acquisition over a period. Specifically, the calibration board was scanned
before and after each operation to obtain its average reflectance curve. This procedure
aimed to ensure that changes in the pupa, observed due to environmental and human
factors, were less than 3% during each observation, thereby confirming that changes in
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pupa reflectance were the key factor in presenting experimental results. The HSI images
and post-reflectance transformation were opened using ENVI5.3 software. The region
reflectance extraction feature was employed to select the central region of each fly pupa,
and output processing was executed to obtain the average relative reflectance for each pupa.

2.4. Data Analysis

The initial dataset underwent dimensionality reduction through PCA, followed by
training and validation using machine learning algorithms. PCA is an orthogonal linear
transformation that eliminates correlated variables, producing a new set of uncorrelated
variables known as principal components (PCs). Consequently, the transformed dataset
exhibits a reduced number of PCs compared to the original set. The weights used for
converting variables into PCs, referred to as “loadings”, signify the variables contribut-
ing the most to the transformation. The decision on the number of PCs utilized in the
transformation was guided by achieving a cumulative interpretation rate exceeding 99%.

For regression models, various machine learning models, including Random Forest
(RF), Support Vector Regression with Radial Basis Function kernel (SVR-RBF), Support Vec-
tor Regression with Polynomial kernel (SVR-POLY), eXtreme Gradient Boosting Regression
(XGBR), and Least Absolute Shrinkage and Selection Operator (Lasso), were chosen. In the
experimental setup, the dataset was divided into a training set (80%) and a testing set (20%),
where the former facilitated model training and the latter assessed the model’s perfor-
mance and generalization ability. The selected algorithms learned the mapping relationship
between input and output during training. The GridSearchCV algorithm optimized the
model and identified optimal hyperparameters, and the model underwent scoring through
7-fold Cross-Validation. Four metrics, namely Mean Square Error (MSE), Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), and R-Square Score (R2 score), were chosen
to evaluate the model. MSE and RMSE, while sensitive to outliers, provide insights into
the distribution of prediction errors, with RMSE offering values closer to the predicted
outcome. MAE, less sensitive to outliers, cannot reflect the distribution of prediction errors.
The selection of the most suitable algorithm was based on the comprehensive analysis
outlined above, all implemented using Python 3.

3. Results
3.1. Hyperspectral Imaging Spectroscopy of Ch. megacephala Pupa Stage under
Different Temperatures

In this study, the pupa samples of Ch. megacephala were collected at temperatures
of 15 ◦C, 20 ◦C, 25 ◦C, and 30 ◦C. After processing using ENVI 5.3 software, the average
reflectance spectra were obtained for each pupa in the wavelength range of 377–1035 nm,
with 128 bands. Spectrograms were generated to visualize the daily average reflectance
data for Ch. megacephala at each temperature (Figure 1). In the 15 ◦C group, the aver-
age reflectance on the first day was the highest compared to other groups, followed by
days 2–12, showing a complex arrangement of reflectance. Finally, days 13–15 exhibited
a gradual decrease in spectral reflectance. A similar pattern was observed in the 20 ◦C
and 25 ◦C groups, while at 30 ◦C, the average reflectance gradually decreased with pupa
development, with a slight increase on the last day.

In summary, the spectrogram indicates that irrespective of temperature, the average
reflectance is highest on the first day of pupation, and is significantly higher than other
periods. Lower temperatures show more significant differences in average reflectance
between early and late pupa stages. Over time, the average reflectance at each temperature
exhibits a decreasing trend.
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Figure 1. The relative reflectance changes with pupa development under different temperatures.
(a) The pupa reared under 15 ◦C; (b) the pupa reared under 20 ◦C; (c) the pupa reared under 25 ◦C;
(d) the pupa reared under 30 ◦C. Different colors line means different pupa development day.

3.2. Machine Learning Models for Estimating the Development Time of Pupa

In this section, the dataset underwent preprocessing using the T2 Hotteling test on
the original dataset to identify significant deviations from the central position of given
observation values [33]. Outliers (at a 99% confidence level) were removed, and the
remaining samples were used for subsequent machine learning analysis, as detailed in
Table 1. Based on temperature, the data were divided into 15 ◦C, 20 ◦C, 25 ◦C, 30 ◦C, and
ALL (including all temperatures) groups. The analysis utilized the accumulated degree
days (ADD) as the regression target, and regression models were constructed between
spectral data and ADD. ADD could be used to compare the development time under
different temperatures. After preliminary experiments, a temperature of 10.43 ◦C was
selected as the absolute developmental zero (D0).

Table 1. Data set.

Temperature Data Set Revised Data Set * Training Set Testing Set

15 ◦C 449 423 338 85
20 ◦C 241 220 176 44
25 ◦C 150 143 114 29
30 ◦C 150 149 119 30

All 990 935 748 187

* The revised data were obtained by removing outliers (95% confidence level) using the T2 Hotteling test.

Following data preprocessing, PCA was applied for dimensionality reduction. The
number of principal components (PCs) used in the model were selected according to the
cumulative explanatory rate > 99%, which means the data features were reduced from the
original 128 to 6 (15 ◦C), 7 (20 ◦C), 6 (25 ◦C), 8 (30 ◦C), and 5 (ALL). Finally, five machine
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learning models (RF, SVR-RBF, SVR-POLY, XGBR, Lasso) were employed for regression
analysis. The optimal hyperparameters were obtained using seven-fold cross-validation
(see Table 2). The comparison between predicted and actual values on the test set is
illustrated in Figure 2. In this study, models with R2 > 0.8 were considered suitable.

Table 2. Evaluation metrics and hyperparameters of different models based on the testing set under
different temperatures.

Temperature PCs *
Evaluation Metrics Hyperparameter

ML Model R2_Score MSE RMSE MAE

15 ◦C 6 RF 0.8777 46.5585 6.8234 4.7646 max_features = 4, n_estimators = 21
SVR-RBF 0.9154 32.1844 5.6731 4.2668 C = 10000, gamma = 0.01, kernal = ‘rbf’
SVR-POLY 0.8304 64.5724 8.0357 5.9882 C = 1000, degree = 1, kernal = ‘poly’
XGBR 0.9069 35.4416 5.9533 3.9156 max_depth = 7, n_estimators = 1000

Lasso 0.8265 66.0429 8.1267 6.2645 alpha = 0.5995, fit_intercept = Ture,
max_iter = 1000

20 ◦C 7 RF 0.8694 49.1035 7.0074 4.7850 max_features = 6, n_estimators = 41
SVR-RBF 0.8459 57.9510 7.6126 5.4913 C = 100, gamma = 0.01, kernal = ‘rbf’
SVR-POLY 0.6432 134.1670 11.5830 8.9330 C = 1000, degree = 2, kernal = ‘poly’
XGBR 0.8629 51.5522 7.1800 4.5486 max_depth = 7, n_estimators = 1000

Lasso 0.7793 82.9672 9.1086 6.8378 alpha = 0.0215, fit_intercept = Ture,
max_iter = 1000

25 ◦C 6 RF 0.7855 71.9127 8.4801 6.4624 max_features = 4, n_estimators = 51
SVR-RBF 0.8046 65.5165 8.0942 6.0240 C = 10000, gamma = 0.001, kernal = ‘rbf’
SVR-POLY 0.7302 90.4554 9.5108 7.1135 C = 100, degree = 1, kernal = ‘poly’
XGBR 0.6607 113.7281 10.6643 7.1470 max_depth = 8, n_estimators = 100

Lasso 0.7347 88.9378 9.4307 7.1464 alpha = 0.7743, fit_intercept = Ture,
max_iter = 1000

30 ◦C 8 RF 0.9376 37.7242 6.1420 4.7838 max_features = 6, n_estimators = 51
SVR-RBF 0.9359 38.7600 6.2258 5.1263 C = 1000, gamma = 0.001, kernal = ‘rbf’
SVR-POLY 0.8988 61.1887 7.8223 6.7235 C = 100, degree = 1, kernal = ‘poly’
XGBR 0.9460 32.6807 5.7167 3.9733 max_depth = 7, n_estimators = 1000

Lasso 0.8918 65.4251 8.0886 6.7544 alpha = 0.2783, fit_intercept = Ture,
max_iter = 1000

ALL 5 RF 0.7583 118.1160 10.8681 7.0315 max_features = 3, n_estimators = 91
SVR-RBF 0.6041 193.4511 13.9087 7.6207 C = 10000, gamma = 0.01, kernal = ‘rbf’
SVR-POLY 0.6111 190.0203 13.7848 10.6602 C = 100, degree = 1, kernal = ‘poly’
XGBR 0.7449 124.6266 11.1636 7.3951 max_depth = 7, n_estimators = 100

Lasso 0.6016 194.6762 13.9526 10.7460 alpha = 1, fit_intercept = Ture,
max_iter = 1000

* The number of principal components (PCs) used in the model with the cumulative explanatory rate was >99%.

In the 15 ◦C group, all machine learning algorithms performed well, with SVR-RBF
and XGBR exhibiting the best performance: SVR-RBF had the optimal R2 score (0.9154),
MSE (32.1844), and RMSE (5.6731), while XGBR had the minimum MAE (3.9156). In the
20 ◦C group, RF, SVR-RBF, and XGBR performed well. The RF model had the best R2 score
(0.8694), with optimal MSE (49.1035) and RMSE (7.0074). Like the 15 ◦C group, XGBR
had the minimum MAE (4.5486). In the 25 ◦C group, SVR-RBF demonstrated the best
performance with an R2 score of 0.8046, MSE of 65.5165, RMSE of 8.0942, and MAE of 6.0240.
In the 30 ◦C group, all machine learning algorithms performed well, with XGBR showing
the best performance. XGBR had an R2 score of 0.9460, MSE of 32.6807, RMSE of 5.7167,
and MAE of 3.9733. When combining all temperature data, RF was the best-performing
model (R2 score: 0.7583, MSE: 118.1160, RMSE: 10.8681, MAE: 7.0315). XGBR’s model was
slightly inferior to RF.
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Figure 2. The prediction results (testing set) of reflectance-based age determination with different
machine learning models under each group (15 ◦C, 20 ◦C, 25 ◦C, 30 ◦C, and all temperatures group).
The vertical axis of each graph is the actual value, and the horizontal axis is the predicted value,
both of which are ADD. RF: Random Forest; SVRRBF: Support Vector Regression with Radial Basis
Function kernel; SVRPOLY: Support Vector Regression with Polynomial kernel; XGBR: eXtreme
Gradient Boosting Regression; Lasso: Least Absolute Shrinkage and Selection Operator.

4. Discussion

This study elucidated the potential of HSI technology as a tool for estimating the age of
blow fly pupa developing under various temperature conditions. Over time, changes in the
physical and chemical structure of the cuticular layer of the pupa, along with corresponding
alterations in reflectance, constitute a theoretical foundation for utilizing HSI in age determi-
nation during the pupa stage [28]. The pupa exoskeleton, derived from the cuticularization
of the larval epidermis, is intricately linked to complex internal physiological processes
crucial for water regulation, temperature modulation, and defense against pathogens. Prior
research has demonstrated the variation of cuticular hydrocarbons in Sarcophaga peregrina
over time [21]. Our result is similar to that which Voss et al. reported [28], indicating signif-
icant differences in reflectance curves among pupa of different ages and species. Analysis
of average reflectance spectra of the pupa stage at various temperatures for Calliphora vicina
revealed noticeable fluctuations in the average reflectance curve, closely associated with
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pupa age, though this variation is subtle [28]. Overall, there is a discernible decreasing
trend in reflectance during the pupa stage, potentially linked to the gradual darkening of
pupa color. In addition to the influence of the pupa exoskeleton on spectral reflectance,
internal morphological changes within the pupa may contribute to variations in the average
reflectance curve, as suggested in previous studies [28,34]. In our finding, HSI images,
particularly in the 764 nm wavelength range, could capture partial morphological changes
within the pupa (see Figure 3). Tao et al. reported a similar result, as they found that
single-band images of silkworm pupa could observe the textural information of gonads at
500 nm [34]. Given the lack of comprehensive research in this domain, further exploration
is warranted to ascertain the reasons behind these observations.
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changes, such as wings and legs, on the first day contributes to this phenomenon. 

Figure 3. Spectral images of pupa. (a–c) Pupa at day 8 under 15 ◦C; (d–f) pupa at day 15 under
15 ◦C. RGB: Spectral images at RGB color pattern (Red, Green, Blue); RGB-IR: Spectral images at
RGB-infrared; 764 nm: Spectral images at 764 nm.

In our spectral data, across all temperatures, the pupa exhibited the highest average
reflectance on the first day, likely attributed to the initial absence of cuticular tanning,
resulting in a yellow-white appearance distinct from the mid-to-late pupa stages. This aligns
with findings from Voss et al. [28], who proposed that the lack of key morphological changes,
such as wings and legs, on the first day contributes to this phenomenon. Furthermore, we
observed non-uniform declines in spectral average reflectance at the same temperature. For
example, at 15 ◦C (chosen for its slower transitions), in the early stages, such as the first day,
the average spectral reflectance was highest, gradually decreasing with pupa development.
However, between days 2–12, while a decreasing trend persisted, daily reductions were
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not substantial. By day 13, there was a noticeable acceleration in the decline of average
reflectance. Similar trends were evident at 20 ◦C and 25 ◦C, suggesting a collaborative
effect of pupa cuticle color and internal morphology on this decline.

In this study, ADD served as a temporal scale for predicting development time,
enabling the comparison of developmental data across different temperatures. ADD is
widely utilized in insect developmental time estimation [17]. Given the high-dimensional
nature of pupa spectral data involving 128 spectral bands within the 377–1035 nm range,
traditional multivariate statistical analysis methods were inadequate for constructing
suitable regression models. Consequently, machine learning methods were employed
for model development. Our results indicated that RF, SVR-RBF, and XGBR models
better use hyperspectral data in developmental time estimation. Among these, the XGBR
model consistently exhibited the most minor errors, ranging between 3.9156 and 7.3951
(MAE). However, models such as SVR-POLY and Lasso failed to meet the requirements for
estimation. Notably, the efficacy of different models varied, emphasizing the absence of a
universally optimal machine-learning algorithm. While the field of entomology currently
does not employ his in conjunction with machine learning for developmental time inference,
it is noteworthy that scholars in diverse fields are actively investigating suitable regression
models for hyperspectral data analysis [35]. For predicting winter wheat yields, employing
hyperspectral sensitive bands as features and using Artificial Neural Network (ANN),
Gaussian Process Regression (GPR), Multivariate Linear Regression (MLR), RF, Ridge
Regression (RR), and SVM as base learners, with MLR as the meta-learner, an ensemble
learning model yielded higher accuracy than individual algorithms [36]. Compared to PLS,
SVM exhibited higher precision in estimating nitrogen content, crude protein content, and
dry matter mass for leguminous crops and forage grasses [37]. These variations in optimal
models underscore the importance of selecting appropriate models for pupa developmental
time estimation.

This study represents the first application of machine learning algorithms and hyper-
spectral data for inferring the developmental stage of insect pupa. The results suggested
thhisHSI data can be employed to estimate the developmental time of Ch. megacephala
pupa. However, the sample size in this study requires further enhancement, and utilizing
accumulated degree hours (ADH) as a temporal scale may enhance predictive accuracy
because using ADD in the group of all temperatures in this study does not predict better
than in individual temperature groups. Additionally, spectral scans of different parts of
the pupa may yield variations, necessitating future research to focus on spectral changes
in different pupa regions, offering a potential avenue for improving model accuracy. Fur-
thermore, developing any predictive model necessitates validation in forensic practices
under field conditions and relevant error rates. Blind testing in real-world scenarios and
case studies is imperative to comprehensively establish the credibility of this technology
in providing expert testimony in courtroom litigation. Portable hyperspectral detection
instruments can now be easily taken to the crime scene for spectral detection of the pupa
after adding machine learning models to the instrument to complete rapid non-destructive
detection of the development time of the pupa, aiding TOC estimation.

5. Conclusions

This study reveals the potential of HSI in blow fly pupa age estimation. Machine learn-
ing models, notably RF, SVR with RBF kernel, and XGBR, could show promise in accurate
developmental time estimation using accumulated degree days after data dimensionality
reduction through PCA. However, the study acknowledges the need for a larger sample
size, consideration of accumulated degree hours, and exploration of spectral changes in
different pupa regions. This successful proof-of-concept study identifies the value of further
refinement of the technique in forensic applications involving entomological specimens
and identifies the considerable potential of HSI in forensic practice.



Insects 2024, 15, 184 10 of 11

Author Contributions: Conceptualization, J.C. and C.Z.; methodology, Z.Z.; software, X.Z., H.Q.,
S.C. and Z.Z.; validation, X.Z., H.Q., Z.Z. and S.C.; investigation: X.Z., H.Q., F.J.N., F.Y. and J.X.;
formal analysis: F.J.N., F.Y., J.X. and Y.G.; resource: Y.G.; data curation: F.J.N., F.Y., J.X. and Y.G.;
writing—original draft preparation, X.Z. and H.Q.; writing—review and editing, Z.Z., S.C., F.J.N.,
F.Y., J.X., Y.G., J.C. and C.Z.; visualization, H.Q.; supervision, J.C. and C.Z.; project administration, J.C.
and C.Z.; funding acquisition, X.Z., J.C. and C.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by grants from the National Natural Science Foundation of
China (grant number 82072114 and 82371895) and the Fundamental Research Funds for the Central
Universities of Central South University (2023ZZTS0546).

Data Availability Statement: The data and code presented in this study are contained in the
manuscript and available on request from the corresponding author; therefore, they are not filed in a
public repository.

Acknowledgments: We thank Lushi Chen (Guizhou Police Officer Vocational College) for his exper-
tise in species identification.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Catts, E.P.; Goff, M.L. Forensic entomology in criminal investigations. Annu. Rev. Entomol. 1992, 37, 253–272. [CrossRef]
2. Tomberlin, J.K.; Benbow, M.E.; Tarone, A.M.; Mohr, R.M. Basic research in evolution and ecology enhances forensics. Trends Ecol.

Evol. 2011, 26, 53–55. [CrossRef]
3. Benecke, M. A brief history of forensic entomology. Forensic Sci. Int. 2001, 120, 2–14. [CrossRef]
4. Muñoz, J.I.; Suárez-Peñaranda, J.M.; Otero, X.L.; Rodríguez-Calvo, M.S.; Costas, E.; Miguéns, X.; Concheiro, L. A new perspective

in the estimation of postmortem interval (PMI) based on vitreous. J. Forensic Sci. 2001, 46, 209–214. [CrossRef]
5. Madea, B. Estimation of the Time since Death, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2015.
6. DuPre, D.P. Homicide Investigation Field Guide; Academic Press: San Diego, CA, USA, 2013.
7. Benecke, M.; Josephi, E.; Zweihoff, R. Neglect of the elderly: Forensic entomology cases and considerations. Forensic Sci. Int. 2004,

146, S195–S199. [CrossRef]
8. Niederegger, S.; Pastuschek, J.; Mall, G. Preliminary studies of the influence of fluctuating temperatures on the development of

various forensically relevant flies. Forensic Sci. Int. 2010, 199, 72–78. [CrossRef]
9. Wang, Y.; Li, L.L.; Wang, J.F.; Wang, M.; Yang, L.J.; Tao, L.Y.; Zhang, Y.N.; Hou, Y.D.; Chu, J.; Hou, Z.L. Development of the green

bottle fly Lucilia illustris at constant temperatures. Forensic Sci. Int. 2016, 267, 136–144. [CrossRef]
10. Zhang, Y.; Wang, Y.; Sun, J.; Hu, G.; Wang, M.; Amendt, J.; Wang, J. Temperature-dependent development of the blow fly

Chrysomya pinguis and its significance in estimating postmortem interval. R. Soc. Open Sci. 2019, 6, 190003. [CrossRef]
11. Wang, Y.; Yang, L.J.; Zhang, Y.N.; Tao, L.Y.; Wang, J.F. Development of Musca domestica at constant temperatures and the first

case report of its application for estimating the minimum postmortem interval. Forensic Sci. Int. 2018, 285, 172–180. [CrossRef]
12. Hu, G.L.; Wang, Y.; Sun, Y.; Zhang, Y.N.; Wang, M.; Wang, J.F. Development of Chrysomya rufifacies (Diptera: Calliphoridae) at

Constant Temperatures Within its Colony Range in Yangtze River Delta Region of China. J. Med. Entomol. 2019, 56, 1215–1224.
[CrossRef]

13. Yang, L.; Wang, Y.; Li, L.; Wang, J.; Wang, M.; Zhang, Y.; Chu, J.; Liu, K.; Hou, Y.; Tao, L. Temperature-dependent Development of
Parasarcophaga similis (Meade 1876) and its Significance in Estimating Postmortem Interval. J. Forensic Sci. 2017, 62, 1234–1243.
[CrossRef]

14. Alotaibi, F.; Alkuriji, M.; AlReshaidan, S.; Alajmi, R.; Metwally, D.M.; Almutairi, B.; Alorf, M.; Haddadi, R.; Ahmed, A. Body Size
and Cuticular Hydrocarbons as Larval Age Indicators in the Forensic Blow Fly, Chrysomya albiceps (Diptera: Calliphoridae). J.
Med. Entomol. 2020, 58, 1048–1055. [CrossRef]

15. Barros-Cordeiro, K.B.; Pujol-Luz, J.R.; Báo, S.N. A Study of the Pupal Development of Five Forensically Important Flies (Diptera:
Brachycera). J. Med. Entomol. 2021, 58, 1643–1653. [CrossRef]

16. Archer, M.S.; Elgar, M.A.; Briggs, C.A.; Ranson, D.L. Fly pupae and puparia as potential contaminants of forensic entomology
samples from sites of body discovery. Int. J. Leg. Med. 2006, 120, 364–368. [CrossRef]

17. Zhang, X.; Li, Y.; Shang, Y.; Ren, L.; Chen, W.; Wang, S.; Guo, Y. Development of Sarcophaga dux (diptera: Sarcophagidae) at
constant temperatures and differential gene expression for age estimation of the pupae. J. Therm. Biol. 2020, 93, 102735. [CrossRef]

18. Shang, Y.; Amendt, J.; Wang, Y.; Ren, L.; Yang, F.; Zhang, X.; Zhang, C.; Guo, Y. Multimethod combination for age estimation of
Sarcophaga peregrina (Diptera: Sarcophagidae) with implications for estimation of the postmortem interval. Int. J. Leg. Med.
2023, 137, 329–344. [CrossRef]

19. Sukontason, K.L.; Kanchai, C.; Piangjai, S.; Boonsriwong, W.; Bunchu, N.; Sripakdee, D.; Chaiwong, T.; Kuntalue, B.; Siriwat-
tanarungsee, S.; Sukontason, K. Morphological observation of puparia of Chrysomya nigripes (Diptera: Calliphoridae) from
human corpse. Forensic Sci. Int. 2006, 161, 15–19. [CrossRef]

https://doi.org/10.1146/annurev.en.37.010192.001345
https://doi.org/10.1016/j.tree.2010.12.001
https://doi.org/10.1016/S0379-0738(01)00409-1
https://doi.org/10.1520/JFS14950J
https://doi.org/10.1016/j.forsciint.2004.09.061
https://doi.org/10.1016/j.forsciint.2010.03.015
https://doi.org/10.1016/j.forsciint.2016.07.019
https://doi.org/10.1098/rsos.190003
https://doi.org/10.1016/j.forsciint.2018.02.004
https://doi.org/10.1093/jme/tjz052
https://doi.org/10.1111/1556-4029.13389
https://doi.org/10.1093/jme/tjaa256
https://doi.org/10.1093/jme/tjab039
https://doi.org/10.1007/s00414-005-0046-x
https://doi.org/10.1016/j.jtherbio.2020.102735
https://doi.org/10.1007/s00414-022-02934-7
https://doi.org/10.1016/j.forsciint.2005.10.013


Insects 2024, 15, 184 11 of 11

20. Schoborg, T.A.; Smith, S.L.; Smith, L.N.; Morris, H.D.; Rusan, N.M. Micro-computed tomography as a platform for exploring
Drosophila development. Development 2019, 146, dev176685. [CrossRef]

21. Zhang, X.; Shang, Y.; Ren, L.; Qu, H.; Zhu, G.; Guo, Y. A Study of Cuticular Hydrocarbons of All Life Stages in Sarcophaga peregrina
(Diptera: Sarcophagidae). J. Med. Entomol. 2022, 59, 108–119. [CrossRef]

22. Brown, K.; Harvey, M. Optical coherence tomography: Age estimation of Calliphora vicina pupae in vivo? Forensic Sci. Int. 2014,
242, 157–161. [CrossRef]

23. Nansen, C.; Elliott, N. Remote Sensing and Reflectance Profiling in Entomology. Annu. Rev. Entomol. 2016, 61, 139–158. [CrossRef]
24. Hren, R.; Sersa, G.; Simoncic, U.; Milanic, M. Imaging perfusion changes in oncological clinical applications by hyperspectral

imaging: A literature review. Radiol. Oncol. 2022, 56, 420–429. [CrossRef]
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