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Simple Summary: Canopy spiders are important and abundant predators in canopy habitats. The
responses to elevation change in the diversity and composition of canopy spiders are still largely
neglected. In this study, the issue has been examined and explored. The results show that the richness
of canopy spiders decreased whereas there was an increasing trend in evenness with the elevation
increasing. The responses on the community composition of canopy spiders to elevation at the three
taxonomic levels were different. The degree of impact of habitat factors would be reduced when
raising the taxonomic level.

Abstract: Forest canopies, an essential part of forest ecosystems, are among the most highly threatened
terrestrial habitats. Mountains provide ideal conditions for studying the variation in community
structure with elevations. Spiders are one of the most abundant predators of arthropods in terrestrial
ecosystems and can have extremely important collective effects on forest ecosystems. How the
diversity and composition of canopy spider communities respond to elevation changes in temperate
forests remains poorly understood. In this study, we collected canopy spiders from four elevation sites
(800 m, 1100 m, 1400 m, and 1700 m) on Changbai Mountain using the fogging method in August 2016.
With the methods of ANOVA analysis, transformation-based redundancy analysis, and random forest
analysis, we explored the responses of canopy spider communities to elevation. In total, 8826 spiders
comprising 81 species were identified and the most abundant families were Thomisidae, Clubionidae,
Linyphiidae, and Theridiidae (77.29% of total individuals). Species richness decreased whereas
evenness increased with increasing elevation, indicating that elevation has an important impact on
community structure. The pattern of absolute abundance was hump shaped with increasing elevation.
We found that the community compositions at the three taxonomic levels (species, family, and guild)
along the elevation gradient were obviously altered and the variation in community composition was
higher at low-elevation sites than at high-elevation sites. There were 19 common species (23.46%)
among the four elevations. Regression and RDA results showed that vegetation variables contributed
to the variation in the diversity and composition of canopy spiders. Furthermore, the influence of
factors would be weakened with the taxonomic level increasing. Therefore, our findings greatly
highlight the important role of vegetation in the diversity and composition of canopy spiders and the
influence is closely related to the taxonomic level.
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1. Introduction

Understanding changes in biodiversity at latitudes and altitudes has been an im-
portant theme for centuries. Mountain ranges are known to harbor exceptionally high
biodiversity [1,2] and, thus, they provide an ideal condition for studying the variation in
community structure along elevational gradients [3]. Many studies have focused on the
effects of elevation on plants [4], mammals [5], anurans [6], birds [7], and arthropods [8–10].
Furthermore, some authors have studied the influence of multiple groups from different
trophic levels [11,12]. However, most of these studies were carried out on ground habitats
and much less is known about the effects of forest canopy, especially on canopy arthropods.

Forest canopies play a crucial role in maintaining biodiversity and the provision of
local and global ecosystem services [13,14] and 40% of the world’s terrestrial species live
there [15]. Studies of forest canopies are integral to understanding biodiversity distributions,
global climate change, and whole-forest interactions [16]. Canopy arthropods with several
functional groups (i.e., pollinators, detritivores, and predators) are essential in forest
ecosystems [17–19]. Spiders, sensitive to a wide range of environmental factors [20–22],
are abundant and diverse predators in almost all terrestrial ecosystems [23]. Forest tree
canopies provide spiders with shelter, sites for foraging, ovipositioning, sun-basking, sexual
display, and overwintering [24]; previous studies showed spiders were also important and
abundant predators in canopy habitats. For example, Basset [25] reported that spiders took
the highest proportion (25% of total individuals) in the canopy arthropods in Australian
rainforests. Katayama et al. [26] collected four times more spider individuals than ant
individuals from the canopy in Borneo and found a negative correlation between them.
However, the responses in terms of the diversity and composition of canopy spiders to
elevation change are still largely neglected.

To clarify the difference in vertical distribution of the canopy spiders, an experiment
was conducted on the northern slope of Changbai Mountain. Changbai Mountain is one
of the 25 biodiversity hotspots in the world owing to its high species richness [27]. The
environmental gradients of this mountain provide ‘natural laboratories’ to understand the
influence of elevation gradient on species diversity and composition. Previous studies have
examined the variation in the diversity of arthropods in relation to elevation gradients on
Changbai Mountain, such as ground beetles [28,29], Cerambycidae [30], soil mesofauna [31],
Oribatida [32], and Collembola [33–35]. The patterns in species richness were not consistent.
For example, Gao et al. [30] showed a decreasing trend in the richness of Cerambycidae.
Xie et al. [34] found a hump-shaped pattern in the species richness of Collembola, while
Wu et al. [35] demonstrated an increased pattern in the richness of canopy Collembola with
increasing elevation. The nonmonotonic abundance and richness pattern of Oribatida were
exhibited by Yang [32]. Here, we hypothesize that (1) the abundance and richness of canopy
spiders decrease with increasing elevation; (2) the community composition significantly
changes with increasing elevation and there is more variation at low elevations than at
high elevations; and (3) the diversity and composition can be well explained by vegetation
properties and the influence decreases with the taxonomic level increasing.

2. Materials and Methods
2.1. Study Area

The study area is in the Changbai Mountain Nature Reserve (CMNR, 41◦41′–42◦51′

N, 127◦43′–128◦16′ E) in Jilin Province, Northeast China (Figure 1A), and is one of the
world’s largest continuous widely undisturbed temperate forest ecosystems [36]. Changbai
Mountain is the highest mountain in northeastern China, which breeds three rivers, namely
Songhua River, Yalu River, and Tumen River [37]. Changbai Mountain lies east of Eurasia
and has a typical continental temperate monsoon climate. The average annual temperature
is −7 ◦C to 3 ◦C and the average annual rainfall is approximately 1400 mm to 700 mm
from two meteorological stations (former: Erdao, 591 m; latter: Tianshi, 2623 m) [38].
According to Chen et al. [39] and Sang and Bai [40], five zones of vertical vegetation were
identified, namely the mixed coniferous and broad-leaved forest zone (MCBF) (below
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1100 m), mixed coniferous forest zone (MCF) (1100–1500 m), sub-alpine coniferous forest
zone (SCF) (1500–1800 m), birch forest zone (BF) (1800–2100 m), and tundra zone (above
2100 m).

Insects 2024, 15, x FOR PEER REVIEW 3 of 16 
 

 

700 mm from two meteorological stations (former: Erdao, 591 m; latter: Tianshi, 2623 m) 
[38]. According to Chen et al. [39] and Sang and Bai [40], five zones of vertical vegetation 
were identified, namely the mixed coniferous and broad-leaved forest zone (MCBF) (be-
low 1100 m), mixed coniferous forest zone (MCF) (1100–1500 m), sub-alpine coniferous 
forest zone (SCF) (1500–1800 m), birch forest zone (BF) (1800–2100 m), and tundra zone 
(above 2100 m). 

 
Figure 1. Sampling sites on Changbai Mountain, China. (A) Location. (B,C) Fogging process and 
funnel-like trays. Elevation: Site 1 = 800 m, Site 2 = 1100 m, Site 3 = 1400 m, and Site 4 = 1700 m. 

2.2. Experimental Design and Spider Sampling 
In mid-August 2016, we investigated changes in canopy spider communities along 

an elevation gradient on the northern slope of the CMNR. We chose this sampling time 
because spiders had the highest activities. Four sites, each including four plots, were set 
at 800 m, 1100 m, 1400 m, and 1700 m above sea level. The distance between plots at the 
same site was 30 m (see more details in Wu et al. [35]). Habitats below 800 m do not belong 
to CMNR; thus, they are not suitable for comparisons. Five fundamental vegetation vari-
ables were recorded in each sampling plot, including tree height (TH), shrub height (SH), 
tree coverage (TC), shrub coverage (SC), and herb coverage (HC) (Table 1). 

Canopy fogging, which is less dependent on behavioral characteristics, can provide 
an unbiased method for the true composition of canopy arthropods [41]. Canopy spiders 
were sampled by fogging with a portable thermal fogging machine (Thermal Fogger TS-
35A, Shenzhen Longray Technology Co., Ltd., Shenzhen, China). In each plot, 100 funnel-
like 0.5 m2 trays were used (sample plot area = 50 m2), at the bottom of which a 50 mL tube 
with 25 mL 95% ethanol was placed. The trays connected with ropes were placed 1.5 m 
above the ground (Figure 1B,C). All collected spider specimens were immediately placed 
in 95% ethanol and returned to the laboratory for sorting and identification. Fogging was 
carried out before sunrise to minimize fog-scatter, excluding days after rain, or during 
windy or misty conditions. Fogging was operated for 20 min and 2 L of a 2.2% solution of 
pyrethroid dissolved in diesel oil was used in each plot. To prevent erroneous sampling 

Figure 1. Sampling sites on Changbai Mountain, China. (A) Location. (B,C) Fogging process and
funnel-like trays. Elevation: Site 1 = 800 m, Site 2 = 1100 m, Site 3 = 1400 m, and Site 4 = 1700 m.

2.2. Experimental Design and Spider Sampling

In mid-August 2016, we investigated changes in canopy spider communities along
an elevation gradient on the northern slope of the CMNR. We chose this sampling time
because spiders had the highest activities. Four sites, each including four plots, were set at
800 m, 1100 m, 1400 m, and 1700 m above sea level. The distance between plots at the same
site was 30 m (see more details in Wu et al. [35]). Habitats below 800 m do not belong to
CMNR; thus, they are not suitable for comparisons. Five fundamental vegetation variables
were recorded in each sampling plot, including tree height (TH), shrub height (SH), tree
coverage (TC), shrub coverage (SC), and herb coverage (HC) (Table 1).

Table 1. Environmental variables of sampling plots at four elevations on Changbai Mountain, China
(Mean ± S.E.).

Variable Site 1 Site 2 Site 3 Site 4 p-Value

elevation (m) 800 1100 1400 1700 /
tree height (TH) (m) 26.3 ± 2.4 a 23.0 ± 0.4 ab 20.5 ± 0.5 ab 19.5 ± 0.5 b 0.021

shrub height (SH) (m) 5.4 ± 1.3 a 3.3 ± 0.7 ab 0.9 ± 0.1 c 2.0 ± 0.5 bc 0.002
tree coverage (TC) (%) 80.0 ± 2.9 a 81.3 ± 1.5 a 74.5 ± 0.5 b 68.3 ± 1.2 c <0.001

shrub coverage (SC) (%) 57.5 ± 4.3 a 22.5 ± 6.0 c 35.0 ± 8.7 bc 47.5 ± 7.5 ab 0.018
herb coverage (HC) (%) 52.5 ± 10.5 b 60.0 ± 4.1 b 87.5 ± 2.5 a 82.5 ± 4.8 a 0.005

dominant tree species
Pinus koraiensis,
Tilia amurensis

and Populus cathayana

P. koraiensis,
T. amurensis

and Abies nephrolepis

A. nephrolepis,
Betula ermanii,
Picea jezoensis

and Larix olgensis

A. nephrolepis
and L. olgensis /

Lowercase letters indicate significant difference for multiple comparisons using LSD. p-value of TH was obtained
using Kruscal–Wallis test among the four elevations followed by the DUNN test for multiple comparisons.
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Canopy fogging, which is less dependent on behavioral characteristics, can provide an
unbiased method for the true composition of canopy arthropods [41]. Canopy spiders were
sampled by fogging with a portable thermal fogging machine (Thermal Fogger TS-35A,
Shenzhen Longray Technology Co., Ltd., Shenzhen, China). In each plot, 100 funnel-like
0.5 m2 trays were used (sample plot area = 50 m2), at the bottom of which a 50 mL tube
with 25 mL 95% ethanol was placed. The trays connected with ropes were placed 1.5 m
above the ground (Figure 1B,C). All collected spider specimens were immediately placed
in 95% ethanol and returned to the laboratory for sorting and identification. Fogging was
carried out before sunrise to minimize fog-scatter, excluding days after rain, or during
windy or misty conditions. Fogging was operated for 20 min and 2 L of a 2.2% solution of
pyrethroid dissolved in diesel oil was used in each plot. To prevent erroneous sampling of
arthropods from the lower vegetation layer, small trees were bent and tied to the ground or
shaken to remove spiders before fogging (see more details in Zheng et al. [42]).

2.3. Spider Identification and Statistical Analyses

All spiders were examined and identified to a family and then to a species/morphospecies
level. Some juveniles that could not be identified were not included in the data for further
analysis. Hence, spiders (family level) were grouped into four guilds based on their web-
building and prey-catching behaviors, according to Sørensen [43] and Floren et al. [44]:
ambush predators (AP), cursorial hunters (CH), orb weavers (OW), and sheet-line weavers
(SLW) (Table S1). The Hill number of species richness (0D, q = 0), exponential Shannon
diversity (1D, q = 1), inverse Simpson diversity (2D, q = 2), and inverse Berger–Parker (3D,
q = 3) were calculated according to Chao et al. [45]. In addition, the Pielou evenness index
was used to represent species evenness [46]. All specimens were deposited in the Northeast
Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.

We regarded vegetation properties, community abundance, and diversity (Hill num-
bers and evenness) as response variables, to evaluate the changes with elevation alteration
using ANOVA followed by the least significant difference (LSD). Prior to ANOVA, the data
for response variables were subjected to Shapiro–Wilk and Bartlett tests to check for normal-
ity and homogeneity of variance, respectively. When necessary, the data were transformed
by natural logarithms to improve normality. The community overlap and differences were
determined to illustrate the number of shared and non-shared species using a Venn diagram
from the VennDiagram package [47]. In addition, differences in community composition
among elevations were assessed using the Bray–Curtis dissimilarity index (β-diversity).
The pattern was illustrated using the non-metric multidimensional scaling (NMDS) method
followed by an analysis of similarities (ANOSIM, permutations = 999) [48].

Principal component analysis (PCA) was performed to extract vegetation information.
The first axes of PCA of vegetation (PC1), accounting for 55.9% of the variation in the
five vegetation variables above, was used as a predictor [49]. Then, linear regressions
were used to estimate the effects of vegetation on spider diversity. Transformation-based
redundancy analysis (tb-RDA) with Hellinger transformation was run to visualize the
effects of habitat properties (elevation and vegetation variables) on spider composition.
To obtain the predictors of variation in the diversity of canopy spiders, a random forest
analysis was conducted and the relative importance (increase in mean square error per-
centage) was estimated using the package randomForest [50]. A permutation multivariate
analysis of variance was performed to test for differences in overall models. Following He
et al. [51], the significance of each influencing variable was also assessed with the “envfit”
function (permutations = 999) in the “vegan” package. The main packages involved in
the analyses were vegan [52] and ggplot2 [53]. All statistical analyses were conducted in
R version 4.2.1 [54].

3. Results

Across the elevation gradient, 8826 spiders were identified, representing 15 families
and 81 species (Table S2). Linyphiidae had the highest richness, representing 30.87% of the
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total species, followed by Araneidae (17.29%), Thomisidae (14.82%), Theridiidae (8.64%),
and Salticidae (6.18%). The most abundant family was Thomisidae (28.28%), followed by
Clubionidae (22.94%), Linyphiidae (15.59%), and Theridiidae (10.48%). Combined with
three other families (Araneidae, Tetragnathidae, and Salticidae), they comprised the main
body of the canopy spiders on Changbai Mountain. The other eight families merely made
up 1.16% of the total individuals.

3.1. Response of Canopy Spider Diversity to Changes in Elevation

The value of species richness (0D) was significantly higher at 800 m and 1100 m
than that at 1400 m and 1700 m (Figure 2A, p < 0.001), while it was very similar between
the two lower elevations and between the two higher elevations. The highest value of
exponential Shannon diversity (1D) was obtained at 800 m, followed by 1400 m, 1100 m,
and the lowest at 1700 m with a marginal significance (Figure 2B, p = 0.058). The Pielou
evenness index was significantly higher at 1400 m than at 1100 m (Figure 2E, p = 0.041),
while no significant differences were exhibited between other elevations. In addition,
the inverse Simpson diversity (2D) and inverse Berger–Parker (3D) had no significant
differences among the four elevations (Figure 2C, p = 0.155; Figure 2D, p = 0.196).
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Figure 2. Diversity of canopy spiders to elevation changes on Changbai Mountain, China. (A) Species
richness (0D). (B) Exponential Shannon diversity (1D). (C) Inverse Simpson diversity (2D). (D) Inverse
Berger-Parker (3D). (E) Pielou evenness index. Error bar means standard error (S.E.). The number of
replicates was 4 (n = 4). Lowercase letters indicate significant difference for multiple comparisons
using LSD.

3.2. Response of Community Abundance and Composition of Canopy Spiders to Changes
in Elevation

Total absolute abundance showed a hump-shaped pattern among the four eleva-
tions, peaking at 1100 m (Figure S1, p > 0.05). The top four species ranked were Clubiona
mandschurica (1928 individuals, 22%), Xysticus emertoni (1439 individuals, 16%), Lysiteles
silvanus (631 individuals, 7%), and Drapetisca socialis (364 individuals, 4%). Except the first
species, the relative abundance of the other three species was extremely significant among
elevations (Figure 3A, p < 0.01). The relative abundance of X. emertoni was significantly
greater at 1100 m and 1700 m than that at 800 m. L. silvanus and D. socialis both showed
hump-shaped patterns, which were higher at 1100 m and 1400 m, respectively. At the
family level, Thomisidae, Clubionidae, and Linyphiidae were of dominance at every as-
sessed elevation (Figure 3B, Table S2). The relative abundance of Thomisidae peaked at
1100 m, followed by a peak at 1700 m, which was significantly higher than that at 800 m
and 1400 m. Linyphiidae and Theridiidae had the highest values at 1400 m with both being
of significance among elevations, while the value of Araneidae was significantly higher at
1700 m (Figure 3B and Figure S2A, p < 0.05). Clubionidae and Tetragnathidae exhibited no
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significant variations among elevations (Figure 3B and Figure S2B, p > 0.05). Interestingly,
Salticidae was the dominant family at the elevation of 800 m (17.80%), whereas it drastically
decreased at 1100 m (3.31%) and was not found at higher elevations (Figure S2C, p = 0.003).
At the guild level, there were extremely significant differences in the relative abundance for
all guilds among the four elevations (Figure 3C, p < 0.01). The relative abundance of CH
showed a monotonically decreasing trend, while that of AP, SLW, and OW had the highest
value at 1100 m, 1400 m, and 1700 m, respectively.
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The Bray–Curtis dissimilarity (β-diversity) showed marginal significance within the
four elevations (Figure 4A, p = 0.058). β-diversity at 800 m was the highest, indicating a
large difference in composition among sites at the lowest elevation. Furthermore, NMDS
ordination plots revealed significant spatial segregation of spider communities among
elevations except slightly overlapping at 1400 m and 1700 m (Figure 4B, stress = 0.0402,
p = 0.001).
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3.3. Effects of Habitat Factors on the Canopy Spider Community

Absolute abundance, species richness (0D), and exponential Shannon diversity (1D)
of canopy spiders negatively correlated with the vegetation variable (Figure 5), with
significance (Figure 5B, p < 0.001) and marginal significance (Figure 5C, p = 0.051) in 0D
and 1D, respectively. Random forest analysis explained 46.9% of the variation in richness
and demonstrated that TH, TC, and HC were the important predictors (Figure 5D). The
RDA results illustrated that habitat variables impacted the canopy spider composition in
a varying degree at different taxonomic levels. All habitat variables significantly affected
canopy spider communities at the species level (Figure 6A; first canonical axis, R2 = 38.3%,
p = 0.001; all canonical axes: R2 = 54.3%, p = 0.001) and at the family level (Figure 6B; first
canonical axis, R2 = 22.6%, p = 0.004; all canonical axes: R2 = 32.9%, p = 0.02) except SC.
However, only elevation and SH significantly affected canopy spiders at the guild level
(Figure 6C; all canonical axes: p = 0.376), with the variance explained being 5.8%. Elevation
was the most important factor at the three levels above, yet its importance decreased quickly
with the taxonomic level increasing. TC, HC, and SH were the second most important
variable at the species, family, and guild level, respectively (based on R2 and p-value). The
effect of HC was opposite to that of the other four vegetation variables (TH, SH, TC, and
SC), which were closely related to the site at low elevation (800 m).
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on Changbai Mountain, China. (A) Species level. (B) Family level. (C) Guild level. Abbreviations:
ELE = elevation, TH = tree height, SH = shrub height, TC = tree coverage, SC = shrub coverage,
HC = herb coverage. The 95% confidence ellipses around group centroids. Significant influencing
factors derived from permutational tests are shown (p < 0.05).

4. Discussion

Forest canopies are among the most highly threatened terrestrial habitats globally [42].
To the best of our knowledge, canopy studies are comparatively few and most of them
have been conducted in the tropical regions [26,42,43,55]. In this study, we selected a
typical temperate area (CMNR) as our research site and explored the effects of elevation
on the diversity and composition of canopy spiders and the mechanisms underlying these
changes. This study represents a temporally-constrained ‘snapshot’ of the canopy spiders
and the results should be interpreted with limitations. For instance, certain species may
exhibit activity peaks during other seasons.
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4.1. Difference in Diversity of Canopy Spiders

Generally, there are two major elevation patterns in richness, namely hump-shaped
and monotonically decreased [56–59]. Partly supporting our hypothesis 1, the species
richness of canopy spiders along the elevation gradient on Changbai Mountain followed a
monotonically deceased pattern, which has been well documented for arthropods [60–62].
For example, Burwell and Nakamura [60] found the species richness of ants progressively
declined with increasing elevation in subtropical Queensland, Australia. Previous results
showed that temperature was a primary abiotic factor in diversity in response to spatial
change (elevation or latitude). Binkenstein et al. [12] reported that the richness of predatory
arthropods was lower at a higher elevation and pointed out this phenomenon was mainly
related to the lower mean temperature. Parallel to the findings of a latitudinal study,
Finch et al. [63] also found spider richness was greater in warm regions than in cold
conditions.

At the local scale, vegetation (type or structure), as a primary biotic driver of diversity,
often results in variations in spider communities [64,65]. This was supported by our results
of regression analysis. The dominant trees and the structure of vegetation were altered with
elevation changing and thus significantly decreased the richness of canopy spiders (Table 1,
Figure 5B). At 800 m, the broadleaf trees (e.g., T. amurensis and P. cathayana) take great
proportions, whereas the areas are mainly covered by conifer forests at 1400 m and 1700 m.
We assume the vegetation configuration would result in lower vegetation complexity and
heterogeneity at higher elevations and thus decrease species richness. Previous results
demonstrated that there was a positive relationship between species richness and vegetation
complexity [66,67]. Furthermore, the decrease in richness of canopy spiders with elevation
was more dependent on tree height (Figure 5D) because higher trees generally have more
complex canopy structures and larger canopy volumes. This corresponded with those
of [68] in that forest height likely enhanced canopy arthropod diversity.

Notably, there was a sharp decline in richness between 1100 m and 1400 m in our
results, maybe due to the distinguished changes in vegetation properties (Table 1). As
shown, almost all vegetation variables had significant differences between 800 m and
1400 m and the characteristics were similar between 1400 m and 1700 m. We agree that there
might be a transition zone between low elevations and high elevations [34,40,69] in CMNR,
covered by mixed coniferous forests. Below and above the transition zone were mainly
covered by mixed coniferous and broad-leaved forests and sub-alpine coniferous forests,
respectively. Besides species richness, other diversity indices were also calculated and the
responses to elevation change were different. The exponential Shannon diversity (1D) also
substantially decreased with elevation increasing, whereas Pielou evenness index exhibited
a slightly increasing trend (Figure 2E, p = 0.041). Inverse Simpson diversity (2D) and
inverse Berger–Parker (3D) showed no significant differences among elevations. As known,
1D is more sensitive to rare species whereas 2D and 3D are more sensitive to dominant
species. In total, 0D and 1D both showed decreasing patterns with elevation increasing.
Species evenness is often regarded as a useful proxy for understanding the community
structure and composition. In our study, the community composition significantly changed
with elevation changing (see below). This indicates that it is necessary to pay attention to
community evenness and structure when considering changes in community diversity.

4.2. Changes in Abundance and Composition of Canopy Spiders

Contrasting our first hypothesis, the total abundance of canopy spiders exhibited a
hump-shaped pattern along an elevation gradient in our study. This was mainly because
of a large increase in the abundance of Thomisids at 1100 m (Figure 3A,B). Two dominant
Thomisids (X. emertoni and L. silvanus) took great proportions at 1100 m. The pattern
was not in agreement with previous results. Otto and Svensson [70] showed a decreased
elevation pattern on the abundance of ground spiders while Chatzaki et al. [71] found no
significant effect on the abundance (activity) of Gnaphosids along five elevation zones
(0–2400 m) in Crete. Similar to changes in diversity, changes in abundance might also be
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related to habitat characteristics (or vegetation). Moreover, the relation between abundance
and vegetation was complex, not a simple linear pattern (in our study, p = 0.124).

β-diversity, as a measurement for community composition, is closely related to ecosys-
tem function [72]. It has been well documented to generally decline with increasing
elevation [73]. The decrease in β-diversity might be related to the increase in individuals
of the same species or the decrease in individuals of different species in the community.
Our results partly supported this point and the lowest value of β-diversity was obtained
at 1100 m probably due to a large increase in individuals of Thomisids mentioned above
(Figure 4A and Figure S1). The ordination map demonstrated that the variance in com-
position at lower elevations (between 800 m and 1100 m) was greater than that at higher
elevations (between 1400 m and 1700 m) (Figure 4B). Similar results have been reported
by other researchers [34,48], suggesting that habitats at higher elevations are more similar
for animals. Furthermore, this phenomenon can also be supported by the endemic species
at every elevation. Levels of spider endemicity mirrored the vegetation complexity and
heterogeneity in the region [12]. Of the total number of species (81 species), 14 species
(17.28%) were endemic to 800 m, 5 (6.17%) to 1100 m, 1 (1.23%) to 1400 m, and 2 (2.46%) to
1700 m (Figure 7). There were 19 shared species across the four elevations, accounting for
23.46% of the total number of species. Most of them had a strong capacity for ballooning,
such as Linyphiids (6 species), Theridiids (4 species), and Araneids (3 species) [74,75]. There
were 23 shared species between 800 m and 1100 m and 6 between 1400 m and 1700 m. There
were three and five species mutually distributed at 800 m, 1100 m, 1400 m, 1100 m, 1400 m,
and 1700 m, respectively. No shared species clearly existed between other combinations of
elevations. Accordingly, the changes in spider composition were greater in low-elevation
areas than in high-elevation areas. The results indicate that the β-diversity of canopy
spiders is positively related to environmental heterogeneity.
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Figure 7. Venn diagram based on the composition of canopy spiders among elevations on Changbai
Mountain, China. The different colors represent different elevations, and the different numbers
indicate the shared and non-shared species among elevations.

The responses on the relative abundance of canopy spiders to elevation changes were
different at the three taxonomic levels, which were in line with our second hypothesis. Tak-
ing family response as an example, the relative abundance of Theridiidae and Linyphiidae
was significantly higher at 1400 m while Clubionidae demonstrated no significant differ-
ences with elevation change in the study. This was not in agreement with the findings of
Russell-Smith and Stork in Indonesia [55], which showed that the proportion of Theridiidae
was almost similar and that of Clubionidae was increasing with elevation. Sørensen [43]
demonstrated that the importance of Linyphiidae increased with the elevation increasing.
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We assume that the different responses reflect preference and adaption to certain habitat
characteristics. For instance, Mcnett and Rypstra [66] discussed the habitat selection of
Argiope trifasciata (Araneidae, a large orb-weaving spider) and highlighted an important
role in vegetation complexity. Koponen [76] found that Lycosidae was abundant in open
habitats while Linyphiidae preferred forested habitats. The statement was in line with
the results of our study that Linyphiidae ranked third in total abundance, yet Lycosidae
was found only once. Some authors also attempted to explore what factors would be
responsible for this kind of selection of habitats. Wise [77] pointed out that spider distri-
bution was dependent on wind, moisture, and temperature. Entling et al. [78] compared
spider communities from 70 habitat types in central Europe using correspondence analysis
and characterized the distribution of spider species along two environmental gradients
(shading and moisture). Especially, the preference can be obviously demonstrated by the
relative abundance of the guild (Figure 3C, p < 0.01).

We found that at the species or family level, vegetation variables almost had significant
effects on community composition, especially TC and HC being of greater importance at
the species and family level, respectively (Figure 6A,B). This partly matched the findings,
which highlighted the importance of vegetation cover [65,79]. It is noteworthy that the
composition at the guild level showed no significance in the study, which supported the
hypothesis that composition in the guild was more stable than taxonomic composition [80].
Additionally, this result indicated that the influence of elevation and vegetation factors
weakened, in consistency with our third hypothesis. We suppose when considering com-
munity diversity or composition at different taxonomic levels, that the impact of factors
would be different or completely changed. This was partly in line with the previous result.
For example, Peters et al. [11] sampled 25 major plant and animal taxa on Mt. Kilimanjaro
and found temperature would be the main predictor of species richness when scaling up
diversity from single taxa to community level.

In fact, elevation change involves a compound influence resulting from many variables.
In addition to vegetation factors, there are still many other important factors that might be
responsible for the variation in canopy spider communities along elevation gradients, such
as spatial (area and mid-domain-effect) and food resources at the local scale or climatic
factors at large scale. Similar work has been conducted on ants or moths [9,81], yet there
is little work involving these aspects on canopy spiders. Of course, the influence caused
by human activities should also be considered [82]. No single factor appears adequate to
account for the patterns. In combination with as many factors as possible, it would provide
a comprehensive understanding of the effect of elevation on canopy spider communities.

5. Conclusions

We evaluated the changes in the diversity and composition of canopy spider com-
munities with elevation changes in a typical temperate forest. Species richness decreased
and evenness slightly increased, indicating the importance of community structure. The
responses on the composition of canopy spiders to elevation changes were altered at dif-
ferent taxonomic levels (species, family, and guild). Our results support the widely held
view that vegetation affects spider communities. Furthermore, the degree of influence of
vegetation on composition would decrease with the taxonomic level rising. For our results
obtained from a single sampling area, we admit that more work-related improvements are
necessary in the future for generality and extension.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/insects15030154/s1. Figure S1: Absolute abundance of canopy
spiders to elevation changes at the species level on Changbai Mountain, China; Figure S2: Relative
abundance of Araneidae, Tetragnathidae, and Salticidae to elevation changes on Changbai Mountain,
China; Table S1: Category of four functional guilds of spiders; Table S2: Individuals of canopy spiders
at four elevation sites on Changbai Mountain, China.
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