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Simple Summary: We investigatedwhether honey bee colonies adjust the nutritional quality of royal
jelly based on the pollen patties they are fed. Pollen patties made of oak or rapeseed bee pollen were
given to youngworker bees, and the harvested royal jelly was analyzed for its chemical composition,
which is of nutritional importance. Surprisingly, the nutritional levels of the pollen patties did not
significantly impact the overall composition of the royal jelly, except for the crude fat. Despite differ‑
ences in the protein intensity, 10‑HDA content, the key indicator of the royal jelly quality, remained
consistent between the oak and rapeseed pollen patty treatments. The findings suggest that honey
bees possess a mechanism to compensate for nutritional variations in pollen patties.

Abstract: Young workers, i.e., nurse honey bees, synthesize and secrete royal jelly to feed the brood
and queen. Since royal jelly is a protein‑rich substance, the quality of royal jellymay be influenced by
the consumption of feed with varying protein content. We tested whether honey bee (Apis mellifera)
colonies compensates for the nutritional quality to produce royal jelly by feeding different pollen
patties made of oak or rapeseed pollen. After harvesting royal jelly, we examined the chemical com‑
position including proximate nutrients, amino acids, proteins, fatty acids, and minerals of royal jelly
samples obtained from two treatments. The results revealed that pollen patties with different nu‑
tritional levels did not influence the nutritional composition except for the crude fat. The levels of
10‑HDA, which serves as an indicator of the royal jelly quality, showed no significant difference be‑
tween the oak and rapeseed treatments, with values of 1.9 and 2.1 g/100 g, respectively. However,
we found some differences in the protein intensity, particularly the MRJP3 precursor, MRJP3‑like,
and glucose oxidase. This study suggests that honey bees may have mechanisms to compensate for
nutritional standards to meet the brood’s and queen’s nutritional requirements during bee pollen
collection, preserving bee bread and royal jelly secretion.

Keywords: honey bee; Apis mellifera; bee pollen; pollen patty; protein; amino acid; zinc; iron; nutrition
supplement

1. Introduction
Royal jelly (RJ) is a substance secreted from the hypopharyngeal and mandibular

glands of young worker (5–15 days old nurse) honey bees [1]. It plays a crucial role in
the caste determination of honey bees [2]. A fertile queen is developed by feeding on RJ.
The nutritional source affects the gene silencing ofDNAmethyltransferaseDnmt 3, leading
to the emergence of a fertile queen honey bee that shares genetic identity with sterile adult
worker honey bees [3]. Thus, in order to understand the component that triggers its func‑
tion, the study of the chemical composition of RJ is of the utmost importance. Chemical
analyses reveal that it contains water (60–70%), protein (12–18%), carbohydrate (10–16%),
lipid (3–6%), minerals, vitamins (thiamin, riboflavin, pantothenic acid, pyridoxine, niacin,
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folic acid, inositol, and biotin), and phenolic content [4–7]. About 185 organic compounds
are present in RJ, amongwhich royalactin is the predominating protein. Among others, nu‑
cleotides (i.e., uridine, guanosine, adenosine, cytosine), acetylcholine, and gluconic acid
were remarkably present in RJ [8–11]. 10‑hydroxy‑2‑decenoic acid (10‑HDA), found in
substantial quantities in royal jelly (RJ), demonstrates immunomodulatory, anti‑microbial,
and anti‑tumor properties [12,13]. Additionally, it contributes to reproductive health by
promoting the synthesis of ovulation hormones and reducing the expression of follicle‑
stimulating hormone (FSH) and luteinizing hormone (LH) in young ovarian cells [14–16].
Approximately 15% of RJ is made up of proteins, specifically major royal jelly proteins
(MRJPs), with nine of them identified as the most abundant, known as MRJP1–9. MRJP1–
3 and MRJP5 collectively make up 82–90% of the total proteins in RJ [17,18]. The levels of
expression and protein content of MRJP1–5 and MRJP7 exhibit an age‑dependent pattern
in the hypopharyngeal glands and brains of worker bees, with the brains showing a rela‑
tively lower abundance compared to the glands. The expression increases post hatching
until the nurse bee phase, followed by a decline in older workers engaged in foraging [18].
In contrast, MRJP6 expression differs significantly from other MRJPs, remaining relatively
stable in the brain but displaying peak expression in the hypopharyngeal glands during
the forager period. Notably,MRJP6 is unique as its transcript abundance does not correlate
with protein levels. Additionally, MRJP8 and MRJP9 demonstrate notably low expression
in both tissues compared to other MRJPs [18].

Given its exceptional biological properties, RJ is receiving considerable attention and
commercial appeal from industries including pharmaceutical, functional food, as well as
cosmetics and manufacturing industry [7]. Concern has been reflected in attempt to stan‑
dardize the quality of RJ by several countries such as Switzerland, Bulgaria, Brazil, and
Uruguay [7,19]. Countries like China, Japan, the USA, Canada, Australia, and some Eu‑
ropean countries stand at the forefront of RJ production. So far, in Korea, RJ stands as
the third most significant beekeeping product in the industry, valued at�28.1 billion [20].
Despite the absence of official production statistics, the current domestic output of RJ in
Korea falls short of meeting the domestic demand [21]. Consequently, a substantial por‑
tion of the supply relies on imports. According to the latest data from the Korea Trade
Statistics Service (TRASS), RJ imports have consistently risen from 27,726 kg in 2016 to
79,920 kg in 2020 [21,22].

Various factors can impact the production of RJ, including genetics, the internal popu‑
lation condition of colonies, food supply, and external environmental factors influenced by
weather conditions. A study by Ibrahim indicates that queenless colonies tend to produce
a greater quantity of RJ compared to queenright colonies [23]. Bee race itself is identified as
another influencing factor on RJ production [24]. In order to understand the RJ production
of honey bees, it is important to focus few parameters on which the production of jelly or
jelly proteins depends. These regulatory factors include pollen quality and quantity result‑
ing in bee bread storage and consumption, and its related worker physiology reflected by
vitellogenin and juvenile hormone titers. Pollen consumption is positively correlated with
the development of the hypopharyngeal gland [25,26], which is specialized for jelly produc‑
tion. Also, the consumption of pollen increases vitellogenin expression and vitellogenin
levels. Worker honey bees fed on a 50% pollen diet had higher vitellogenin levels than
workers fed on a 15% pollen diet [27]. Vitellogenin, massively present in the haemolymph
of worker honey bees during the period when these nurse bees feed growing larvae with
jelly [28,29], is a probable source for the proteinaceous RJ synthesis [30]. Nonetheless, the
impact of consuming pollen fromvarious floral sources on the quality of royal jelly remains
largely unexplored. Typically, beekeepers supply hives with pollen patties composed of
diverse bee pollens, especially in early spring, to fortify the colony. These pollen patties
consist of various bee pollens, and changes in composition occur during their processing,
primarily influenced by the bee pollen utilized. Notably, the nutrient content of oak and
rapeseed bee pollen differs; for instance, the protein content of rapeseed pollen (26.8%) sur‑
passes that of oak pollen (23.2%) [31,32]. Consequently, the nutrient composition of pollen
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patties created with these bee pollens may vary. Therefore, our study aimed to investigate
the nutrient composition of royal jelly produced by honey bee colonies that were fed on
pollen patties from two distinct floral sources: oak pollen patty and rapeseed pollen patty.

2. Materials and Methods
2.1. Materials

This study was carried out in collaboration with a local apiary situated close to the
Andong National University. Ten healthy honey bee colonies were recruited for the study.
Within the apiary, we allocated two different treatments for two months. Two different
types of RJ were based on the feed provided to the honey bee colonies. Five bee colonies
(n = 5) were fed with oak (and Dioscorea powder) pollen patty and the other colonies
(n = 5) were fed with the rapeseed pollen patty. The pollen patties were crafted by a lo‑
cal farm using corresponding bee pollens. Bee pollen was sourced from the market and
examined pollen morphology under microscope for verification. The pollen patties con‑
sisted of 70% bee pollen and 30% sugar solution, with the sugar solution concentration
being 50% w/w. All other management practices were the same as common royal jelly pro‑
duction. No pollen traps were installed during the production, so that natural inflow of
pollen was not restricted, as Korean royal jelly production is mostly executed in summer.
During summer, wildflower blooming is limited, thus the influence of natural pollen in‑
flow would be limited. Continuous monitoring of the apiary facilities was consistently
maintained throughout the entire study duration. Proximate nutrient content of oak and
rapeseed bee pollen is represented in Supplementary Table S1. Total protein contents of
oak and rapeseed bee pollens were 23.2 and 26.8%, and total fat was 7.0 and 12.2%, respec‑
tively [31,32]. Royal jelly was produced following the standard procedure and collected
from five beehives in each treatment group, storing the samples in glass bottles at a temper‑
ature of −20 ◦C. From storage, we sampled 5 random royal jelly bottles from each group
for analyses.

2.2. Chemical Analyses
2.2.1. Proximate and Amino Acid Analysis

All proximate nutrient contents, including moisture, crude protein, crude lipid, fiber,
ash, and nitrogen free extract (NFE) of the RJ samples were estimated following standard
methods of AOAC [31]. Moisture was estimated on an ‘as is’ basis, while the other prox‑
imate components were estimated on a dry weight basis. Royal jelly samples were dried
using Christ Alpha 1‑4LD Plus Freeze Dryer (CHRIST, Osterode am Harz, Germany). The
amino acid composition was determined on an ‘as‑is’ basis using a Sykam Amino Acid
analyzer S433 (Sykam GmbH, Eresing, Germany) coupled with a Sykam LCA L‑07 col‑
umn, following the standard AOAC method [33]. RJ samples underwent hydrolysis in
6 N HCl for 24 h at 110 ◦C under a nitrogen atmosphere. Subsequently, the hydrolyzed
sampleswere concentrated using a rotary evaporator, reconstitutedwith themanufacturer‑
supplied sample dilution buffer (physiological buffer 0.12 N citrate buffer, pH 2.20) and
then introduced into the analyzer for amino acid anlaysis.

2.2.2. 2D PAGE for Protein and MALDI‑TOF
2D PAGE and protein identification by MALDI‑TOF were conducted by the commer‑

cial facility of Genomine Inc, Pohang, South Korea. RJ samples were homogenized using a
PowerGen125 homogenizer (Fisher Scientific, Waltham, MA, USA) with sample lysis solu‑
tion [7Murea, 2MThiourea containing 4% (w/v) 3‑[(3‑cholamidopropy)dimethyammonio]‑
1‑propanesulfonate(CHAPS), 1% (w/v) dithiothreitol (DTT) and 2% (v/v) pharmalyte and
1 mM benzamidine]. After vortexing for one hour at room temperature and centrifuga‑
tion, the soluble fraction was used for 2D gel electrophoresis. Protein concentration was
determined by the Bradford method [34].

IPG dry strips (4–10NL IPG, 24 cm, Genomine, Pohang, Republic of Korea) were equi‑
librated and loaded with the sample. Isoelectric focusing (IEF) was conducted using the
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Multiphor II electrophoresis unit and EPS 3500 XL power supply (Amersham Biosciences,
Buckinghamshire, UK). After IEF, strips were incubated and inserted onto SDS‑PAGE gels.
SDS‑PAGE was performed using the Hoefer DALT 2D system (Amersham Biosciences,
Buckinghamshire, UK), and gelswere stainedusingColloidal CBBwithout glutaraldehyde
following the method described by Oakley et al. [35].

Quantitative analysis using PDQuest software (version 7.0, BioRad, Hercules, CA,
USA) normalized spot intensity, and protein spots with over two‑fold expression varia‑
tion compared to the control were selected. MALDI‑TOF MS was employed for peptide
identification following standard procedures [36].

2.2.3. Fatty Acid and 10‑HDA Analysis
The fatty acid composition on an ‘as‑is’ basiswas assessed using gas chromatography–

flame ionization detection (GC‑14B, Shimadzu, Tokyo, Japan) with an SP‑2560 column, fol‑
lowing the prescribedmethod in the Korean Food Standard Codex [37]. Samples were con‑
verted into fatty acid methyl esters (FAMEs). Identification and quantification of FAMEs
were carried out by comparing retention times of peaks and peak areas with those of pure
standards obtained from Sigma (Yongin, Republic of Korea) and analyzed under identical
conditions. The determination of Trans‑10‑Hydroxy‑2‑Decenoic acid content of RJ samples
followed the established procedure by Zhou et al. [38].

2.2.4. Mineral Analysis
Mineral analysis on an ‘as is’ basis was conducted in adherence to established proto‑

cols outlined in the Korean Food Standard Codex [37]. The samples underwent digestion
with a mixture of nitric and hydrochloric acid (1:3) at 200 ◦C for 30 min. The filtrate was
stored in cleaned glass vials before subsequent analysis. Mineral content determination
was performed utilizing an inductively coupled plasma optical emission spectrophotome‑
ter (ICP‑OES 720 series; Agilent; Santa Clara, CA, USA).

2.3. Statistics
We followed the composite sampling procedure to collect samples for chemical analy‑

ses. In order to compare among the variables, we carried out an ANOVA and t‑test where
necessary using SPSS16.0. We reject the null hypothesis for p < 0.05 (CI = 95%).

3. Results
3.1. Proximate Composition

A comparative analysis of the proximate content of the royal jelly (RJ) samples is de‑
picted in Figure 1. The moisture content of the RJ samples ranged from 59.4% to 68.2%
(Supplementary Table S2). On a dry matter basis, the protein content fell within the range
of 43.6 to 50.3%, while the lipid content of the RJ samples was notably low, accounting for
5.7 to 6.7%. Additionally, the fiber content ranged from 4.2 to 4.90%, and the ash content
was reported to be between 1.9 and 3.7% (Supplementary Table S2).

Significantly, no notable differences in the proximate chemical composition were ob‑
served, except for fat, among the RJ samples obtained from the colonies that were fed on
pollens from two distinct floral sources, namely oak and rapeseed (moisture: df = 8, t = 0.456,
p = 0.330; protein: df = 8, t = −0.325, p = 0.376; fat: df = 8, t = 2.458, p = 0.019; fiber: df = 8,
t = −0.86, p = 0.207; ash: df = 8, t = −0.931, p = 0.190) (Figure 1).

3.2. Amino Acid Composition and Peptide
Figure 2 illustrates a comparative analysis of the amino acid content in the two distinct

types of royal jelly (RJ) samples. Tryptophan and cysteine were not determined, likely due
to the acid digestion method employed. The total amino acid content ranged from 7.93 to
10.46 g/100 g RJ (Supplementary Table S3). No significant differences were observed in both
the individual (Figure 2) and total amino acid content of the RJ samples obtained from the
colonies fed on pollens from two different floral sources (t = −0.976, df = 6, p = 0.367). All
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the essential amino acids, with the exception of tryptophan, were present in the RJ samples.
Among the essential amino acids, leucine was the most abundant, followed by lysine. As for
the non‑essential amino acids, aspartic acid predominated, followed by glutamic acid.
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with oak and rapeseed pollen patties as feed supplements, respectively.

The 2D electrophoresis analysis identified a total of 69 spots based on the molecular
weight and isoelectric point, and Supplementary Table S4 provides a list of the separated
proteins. Variations in the presence of proteins were observed between the two types of
RJ, although no specific trend was established. Upon conducting the MALDI‑TOF analy‑
sis based on the spot intensity, the MRJP1, MRJP2, MRJP3, and MRJP5 precursors and pro‑
teins were identified. Interestingly, the MRJP3 precursor and MRJP3 like protein densities
were significantly higher in the oak treatment compared to the rapeseed treatment, with O/R
(Oak/Rapeseed) ratios of 11 and 6.2, respectively (Table 1). Additionally, glucose oxidase was
identified, showing a higher intensity in the oak RJ compared to the rapeseed RJ.
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Table 1. Protein separation, spot intensity (mean ± SD), and selected identification of protein of
royal jelly samples by MALDI‑TOF showing O/R > 2.

Standard Spot Molecular
Weight

Isoelectric
Point

Spot Intensity
Protein Identified O/R *

Oak Rapeseed

2001 17.50 6.25 55.2 ± 39.5 26.2 ± 23.2 2.1

2201 45.40 5.89 474.4 ± 480.9 75.6 ± 166.8 6.3

4606 78.04 6.91 3971.4 ± 5532.4 1519.0 ± 1097.8 2.6

6101 29.17 7.21 461.9 ± 297.8 127.8 ± 231.8 3.6

6802 109.36 7.28 50.7 ± 54.0 17.3 ± 36.5 2.9

7101 29.34 7.54 461.9 ± 297.8 41.8 ± 39.6 MRJP3 precursor 11.0

7503 68.26 7.84 1084.4 ± 591.0 416.3 ± 280.9 MRJP3 2.6

7701 87.58 7.48 341.1 ± 251.9 131.1 ± 105.0 Glucose oxidase 2.6

7702 79.52 7.63 1704.3 ± 877.1 843.5 ± 451.1 2.0

8103 34.82 8.13 301.0 ± 389.0 45.3 ± 27.2 6.6

8106 44.39 8.26 470.0 ± 415.1 76.0 ± 42.0 MRJP3 like 6.2

8801 80.69 7.91 107.6 ± 98.7 34.0 ± 73.7 3.2

8803 88.11 7.67 30.9 ± 34.1 14.0 ± 17.9 2.2
* O/R = oak/rapeseed.

3.3. Fatty Acid Composition of 10‑HDA Content
The fatty acid compositions of the two distinct types of royal jelly (RJ) samples are com‑

paratively illustrated in Figure 3. The total content of fatty acids ranged from 44.27 to
66.33 mg/100 g of RJ (Supplementary Table S5). Similar to amino acids, there were no sig‑
nificant differences observed in either the total fatty acid contents between the two types of
RJ (t = 0.291, df = 8, p = 0.779) or in any category of fatty acids (Figure 3). In most cases, satu‑
rated fatty acids (SFAs) were found to be abundant, followed by polyunsaturated fatty acids
(PUFAs) and monounsaturated fatty acids (MUFAs), except in rapeseed royal jelly 4, where
MUFAs were higher than PUFAs. Certain fatty acids, such as palmitoleic acid, docosadienoic
acid, and docosahexaenoic acid were not consistently present in the RJ samples. Linoleic acid
(cis) was absent in all the samples; however, linoelaidic acid (trans) was present, albeit incon‑
sistently, in some RJ samples (Supplementary Table S5).

The content of 10‑hydroxy‑2‑decenoic acid (10‑HDA) is presented in Figure 4, with val‑
ues ranging from 1.67 to 2.76 g/100 g of RJ (Supplementary Table S6). No statistically signif‑
icant difference in the 10‑HDA content was observed between the two types of RJ (rapeseed:
2.1± 0.51, oak: 1.9± 0.12 g/100 g; t = −1.057, df = 8, p = 0.321).

3.4. Mineral Content
Figure 5 illustrates the mineral content of the royal jelly (RJ) samples (Supplementary

Table S7). No significant differences were observed between the two types of RJ for various
minerals (calcium: t = 1.945, p = 0.088; magnesium: t = 0.877, p = 0.409; sodium: t = 1.489,
p = 0.187; potassium: t = 0.265, p = 0.799; phosphorus: t = 0.981, p = 0.371; iron: t = 1.231,
p = 0.273; manganese: t = 0.849, p = 0.424; zinc: t = 1.296, p = 0.236; copper: t =−0.728, p = 0.494).
The most abundant minerals were potassium (rapeseed: 289.6 ± 20.80, oak: 292.5 ± 13.22
mg/100 g) and phosphorus (rapeseed: 210.4 ± 13.46, oak: 216.7 ± 4.94 mg/100 g), followed
bymagnesium (rapeseed: 27.4± 1.53, oak: 28.1± 0.91mg/100 g). Among themacrominerals,
the sodium content was the lowest (rapeseed: 4.0 ± 0.38, oak: 4.3 ± 0.19 mg/100 g). Among
the micro minerals, zinc predominated (rapeseed: 2.3 ± 0.10, oak: 2.4 ± 0.15 mg/100 g), fol‑
lowed by iron (rapeseed: 1.2 ± 0.09, oak: 1.3 ± 0.31 mg/100 g), copper (rapeseed: 0.5 ± 0.04,
oak: 0.5± 0.02 mg/100 g), and manganese (0.1± 0.01 mg/100 g for rapeseed and oak).
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4. Discussion
Honey bee colonies were providedwith feeds of varying nutritional value: oak and rape‑

seed pollen patties. Despite differences in the nutrient composition between the two bee pol‑
lens and their respective patties, there were no statistical significant variations, except for the
crude fat, in the nutritional content of the resulting royal jelly (RJ) from the colonies fed with
different provisions (Figures 1–5). Despite the rapeseed pollen exhibiting a higher fat con‑
tent compared to the oak pollen [31,32], this discrepancy was not reflected in the respective
royal jelly. The consistent nutrient content in both types of royal jelly suggests an adaptive
capacity to meet nutritional standards, ensuring the dietary needs of the brood and queen
during bee pollen collection, preserving both bee bread and royal jelly secretion. The absence
of restrictions on incoming bee pollen might allow for potential blending with the feed. How‑
ever, during the summer, wildflower bloomings are limited, thus restricting the extent of its
influence. A previous study noted that a pollen patty made from bee pollen contained lower
protein and fat content than the corresponding bee pollen [32]. Additionally, when honey
bees transform the feed (in this case, pollen patty) into bee bread, the nutritional composi‑
tion undergoes a transformation [39]. The collection and storage process of pollen by honey
bees also alters the nutritional composition of pollen [40]. Hence, the alteration of the feed
could serve as a plausible explanation for the production of royal jelly with a similar quality.
The process of transforming bee pollen or pollen patties into bee bread might involve a com‑
pensation mechanism in honey bees to maintain the nutritional content. Balancing feed with
adequate nutrients is crucial to prevent negative consequences on honey bee physiology. Our
investigation reveals that, within certain levels, honey bees can compensate for differences in
the nutrient content between different bee feeds and therefore, no differences in nutritional
quality were observed between two different types of royal jelly.

The obtained values for the moisture content, falling within the range of 59.4 to 68.2%,
alignwith those reported in previous studies (51.03 to 69.7%), with variations attributed to the
age of the royal jelly and the season of collection [41,42]. Protein constitutes approximately
50% of royal jelly (RJ) based on the dry weight [43], which we found to be true in the present
study. Protein, comprising proteinogenic amino acids, serves various vital roles in animal
physiology. The protein levels in the oak and rapeseed bee pollen were 23.2% and 26.8%,
respectively. Nevertheless, when the bees were fed on pollen patties containing these two
types of bee pollens, the resulting royal jelly (RJ) samples from two distinct hives did not ex‑
hibit significantly different amino acid contents. Essential amino acids, obtained from the
diet, are particularly crucial during early life, such as the growth period. In contrast, adults
primarily require amino acids for fundamental somatic functions and/or reproduction, and
their demand for essential amino acids diminishes with age [44,45]. Unlike adults, larvae
have a higher protein and amino acid requirement. However, the protein content in the diet
for young larvae fluctuates with their age and is subject to seasonal variations [46]. Consid‑
ering the total amino acids as the protein content, the obtained results (ranging from 7.9 to
10.5 g/100 g RJ) align with published reports on the protein content (9 to 18%) of fresh royal
jelly (RJ) [7]. The proportion of essential amino acids (54.4% for oak RJ and 55.6% for rapeseed
RJ) was found to be higher than that of non‑essential amino acids in both types of RJ. The dis‑
tribution of amino acids in the RJ concurred with previous reports, where aspartic acid was
identified as the most abundant, followed by glutamic acid and leucine [47].

The primary component of this protein is major royal jelly protein (MRJP), which com‑
prises nine different types, withMRJP1–3 and 5 being themost abundant [29], as corroborated
by our study. Two‑dimensional electrophoresis revealed varying concentrations (based on
protein spot intensity) for the RJ samples obtained from the hives supplementedwith oak and
rapeseed pollen patties. Interestingly, in some cases, the protein intensity was significantly
higher in the RJ obtained from the hives supplemented with oak pollen patties compared to
those supplemented with rapeseed pollen patties, which contradicts the protein content of
these two pollens. The observed variation, represented by the ratio of the spot intensity of
protein in the two different types of RJ samples, may be attributed to the influx of bee pollen.
However, further investigations are required to determine the extent of this impact. MRJPs
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play a crucial nutritional role in the diet of queen honey bees. Specifically, MRJP1, MRJP4,
and MRJP5 serve as the primary source of essential amino acids [5,48–51], while MRJP2 and
MRJP5 act as significant nitrogen reserves for larval growth. MRJP3, exhibiting size poly‑
morphism, contributes to the nitrogen supply [49,52]. Moreover, MRJP1 and MRJP2 exhibit
antibacterial activity [53,54] and have been identified as major allergens in RJ, stimulating the
production of TNF‑α in mouse macrophages in vivo [55,56].

Pollen consumption holds significant importance in this context, serving as the primary
source of protein, fat, and minerals for honey bees. Previous studies have indicated that the
efficient production of royal jelly protein relies on the basic upregulation of MRJP expression
and increased acini volumes, enabling higher protein production in nurse bee hypopharyn‑
geal glands [29,57]. Pollen consumption enhances vitellogenin expression and increases vitel‑
logenin levels in hemolymph [58]. The upregulation of MRJP is likely dependent on vitel‑
logenin. Additionally, the consumption of pollen leads to an increase in the size of the hy‑
popharyngeal glands [26]. Therefore, the protein content of pollen plays a crucial role in the
context of royal jelly production.

10‑HDA stands out as the primary fatty acid compound in royal jelly (RJ) and constitutes
the most pivotal component of RJ. In the current study, the obtained 10‑HDA values in the RJ
samples were either similar or slightly lower than those reported byWang et al. [42]. Notably,
all the RJ samples contained 10‑HDA levels surpassing the suggested quality standardization
for RJ [7]. Wang et al. [42] highlighted a decline in the amount of 10‑HDA with increasing
storage days, and another study demonstrated a 0.4% and 0.6% reduction in 10‑HDA in two
RJ samples stored at room temperature for 12 months [59]. Beyond serving as a marker com‑
ponent, 10‑HDA plays a crucial role in various biological activities associated with colony
development strategies. Crailsheim and Riessberger‑Gallé [60] showed that different concen‑
trations of RJ and worker jelly inhibit the growth of Paenibacillus larvae. Additionally, it has
been suggested that 10‑HDA exhibits antipathogenic activity in larval foodwithin themidgut
of young larvae, contributing to larval resistance againstP. larvae [61]. However, the inhibitory
activity of 10‑HDA is influenced by the pH [61]. The persistent occurrence of n‑3 PUFA, par‑
ticularly linolenic acid, underscores its significance, as evidenced by prior research showing
that bees subjected to linolenic‑acid‑deficient diets exhibit a reduced hypopharyngeal gland
size and impaired learning acquisition [62], while the intake of diets with high ω6:ω3 ratios
leads to elevated mortality and diminished brood rearing capacity [63].

The obtained values for the ash content of the royal jelly (RJ) fall within the range re‑
ported in previous studies [7,64]. Consistent with our present findings, potassium emerged
as the most abundant mineral in the RJ, aligning with other published reports [11,42,65]. No‑
tably, our study revealed an exceptionally low amount of sodium. The presence of minerals
is primarily influenced by external factors such as food sources, pollen quality, production
periods, and environmental conditions [11].

5. Conclusions
Royal jelly, a remarkable substance produced by nurse honey bees, plays a crucial role

within the hive, particularly in the development and sustenance of the queen bee, who, as
the hive’s reproductive center, is vital for the colony’s survival and growth. Royal jelly is fed
to her throughout her entire life, endowing her with enhanced size, longevity, and fertility
compared to worker bees. Ensuring the hive’s prosperity relies on the honey bee’s ability
to compensate for variations in input quality. One possible mechanism of compensation in‑
volves the production of nutritionally balanced foods, such as bee bread. Nurse bees feeding
on the bee bread produce royal jelly that is consistent with its nutritional quality. However,
the full extent of this compensation is yet to be determined, as the quality of the oak and rape‑
seed pollen did not differ highly and both of them are often used as bee feed ingredients. An
alternative possibility could be that royal jelly results from the amalgamation of secretions
from the hypopharyngeal and mandibular glands, suggesting that there is no immediate di‑
rect conversion of pollen into royal jelly. Assessing the impact on the quality of royal jelly
when the feed quality varies significantly remains a task for further investigation.
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