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Simple Summary: Almost all insects demonstrate a wide variety of behavioral, physiological, bio-
chemical and molecular circadian rhythms during their natural selection process. Some examples of
the circadian rhythm in insects include the sleep–wake cycle, foraging time, migration and hormone
fluctuation. Although the circadian rhythms of activities have been studied in several termite species,
the molecular mechanisms of circadian rhythms in termites are unclear. In this study, we observed
that, even in complete darkness, the termites Reticulitermes chinensis and Odontotermes formosanus
showed clear circadian rhythms of locomotor activity. Knockdown of the clock genes cryptochrome 2
(Cry2) and period 1 (Per1) impaired the circadian rhythms of locomotor activity in constant darkness
in the two termite species. We verified that locomotor activity in subterranean termites is controlled
by the circadian clock. Thus, this study contributes to a better understanding of circadian clock
mechanisms in subterranean insects.

Abstract: Locomotor activity rhythms are crucial for foraging, mating and predator avoidance in
insects. Although the circadian rhythms of activity have been studied in several termite species,
the molecular mechanisms of circadian rhythms in termites are still unclear. In this study, we
found that two termite species, R. chinensis and O. formosanus, exhibited clear circadian rhythms of
locomotor activity in constant darkness along with rhythmically expressed core clock genes, Cry2 and
Per1. The knockdown of Cry2 or Per1 expression in the two termite species disrupted the circadian
rhythms of locomotor activity and markedly reduced locomotor activity in constant darkness, which
demonstrates that Cry2 and Per1 can mediate the circadian rhythms of locomotor activity in termites
in constant darkness. We suggest that locomotor activity in subterranean termites is controlled by the
circadian clock.

Keywords: circadian rhythms; termites; circadian clock; cryptochrome 2; period 1

1. Introduction

Almost all insects demonstrate a wide variety of behavioral, physiological, molecular
and biochemical circadian rhythms during their natural selection process [1]. In insects,
circadian rhythms are observed in various forms, such as the sleep–wake cycle, forag-
ing/mating time, migration, gene expression, hormone fluctuation and so on [2–5]. Over
the past 30 years, the molecular mechanisms of circadian rhythms in insects have been
extensively investigated [6]. At present, Drosophila is the primary model used in research
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on the molecular mechanisms of the circadian clock in insects [7–9]. In Drosophila, the
endogenous circadian clock is driven primarily by positive and negative feedback loops
that involve a series of circadian clock genes, such as period (Per), timeless (Tim), cryptochrome
(Cry), cycle (Cyc), clock (Clk), double-time (Dbt), shaggy (Sgg), vrille (Vri), clockwork-orange
(Cwo), etc. [10–14].

In insects and mammals, it is well recognized that Cry, Per and Tim play a vital role in
the endogenous circadian clock pathway [15–17]. In the cockroach Blattella germanica, the
knockdown of Cry2 severely disrupted the circadian rhythms of locomotor activity even in
constant darkness (DD) [18]. Under a 12 h light:12 h dark cycle (LD), mice exhibited clear
circadian rhythms of locomotor activity, whereas with a double knockout of Cry1/Cry2
in mice they exhibited no clear circadian rhythms of locomotor activity [19]. Similarly,
mosquitoes show a rhythmicity of swarming to attract females for mating at certain times
of the day [20], but knocking down the circadian clock genes Per and Tim disrupts male
swarming behavior and limits their mating success [5]. In the cricket Gryllus bimaculatus,
the knockdown of Per impaired the circadian rhythm of locomotor activity under DD
conditions [21]. Thus, these examples indicate that the circadian clock genes Cry, Per and
Tim can regulate the circadian rhythms of activities in insects and mammals. Notably, a
recent study verified that Tim is lost in some social insects (nearly all termites) [22]. In
addition, light intensity, temperature and social interactions regulate the circadian rhythms
of behavior and physiology in insects [23–27]. Although the circadian rhythms of activities
have been studied in several termite species (R. speratus, Macrotermes bellicosus, etc.) [28–30],
the molecular mechanisms of circadian rhythm activity in subterranean termites are unclear.

The termites Reticulitermes chinensis and Odontotermes formosanus are widely distributed
in China, especially in the area south of the Yangtze River [31]. These two termite species
make excellent candidates for studying circadian rhythms due to their irrelevant visual
cues [32,33]. In addition, the study of circadian rhythms in termites provides insight into the
rhythmicity of subterranean insects and mammals. In order to investigate the behavioral
and molecular mechanisms of activity rhythms in subterranean termites, we first tested
the circadian rhythms of locomotor activity in the two termite species under different
photoperiods. Second, we assessed the temporal expression patterns of clock genes in the
heads of two termite species. Finally, we used RNA interference to analyze the influence of
the clock genes Cry2 and Per1 on the circadian rhythms of locomotor activity in the two
termite species.

2. Materials and Methods
2.1. Experimental Termites

We collected the termites R. chinensis and O. formosanus from Shizi Hill (Wuhan, China).
The number of termite colonies used in this study is shown in Supplementary Tables S1 and S2.
We transported these colonies of termites to the laboratory and then placed them in plastic
boxes. Before the experiments, the termites were fed with pieces of moist filter paper for
3 days. Worker termites were used as experimental subjects in these experiments. The
conditions for rearing the worker termites were as follows: 25 ± 1 ◦C and 70 ± 5% relative
humidity (RH) in full darkness.

2.2. Measurement of Locomotor Activity

Termites were transferred to 9 cm Petri dishes (six worker termites per dish) with
moist filter paper and then sealed with sealing film (it has been discovered in laboratories
that moist filter paper can remain wet for more than 10 days). Before the experiments,
termites were randomly divided into three different groups. One group was acclimated
to constant darkness (DD) for 3 days, and the other two groups were acclimated to the
light/dark cycle (LD, 12 L:12 D, illumination time 08:00–20:00 (Beijing Time, China); light
intensity, 100 lux; irradiance, 0.62 W/m−2) or constant light (LL, light intensity, 100 lux;
irradiance, 0.62 W/m−2) for 3 days, respectively (Figure 1A,B). During each experiment, we
used a video camera with an infrared module (acA1920-40gc, Basler, Germany) to record
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the circadian rhythms of the locomotor activity of worker termites. The camera captured
video at 25 frames/s, and video analysis was conducted using the Noldus EthoVision
tracking system (EthoVision XT 14, Wageningen, The Netherlands) [32–34]. The distances
moved by worker termites were measured in different photoperiods (DD, LD or LL) for
48 h (Figure 1A,B). The conditions of the trials were as follows: 25 ± 1 ◦C and 70 ± 5% RH
in infrared illumination [35].
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Figure 1. Experimental settings and tracking method for the termites. (A) Experimental setup of the
quantitative system for analyzing behavior of termites. The video recordings were converted to mpeg
format for analysis of the parameters using the EthoVision video tracking system. (B) Schematic
diagram of the timeline for the behavioral assay.

2.3. Expression Patterns of Clock Genes

Expression patterns of clock genes (Cry2 and Per1) were observed at different times
of the day (00:00, 04:00, 08:00, 12:00, 16:00 and 20:00) (Beijing Time, China) under DD
and LD conditions by qRT-PCR. We extracted the total RNA from the heads of 10 worker
termites using RNAiso Plus (Takara, Code No: 9109, Dalian, China). Then, we synthesized
cDNA templates using total RNA at the concentration of one microgram according to
the instructions of the PrimeScriptTM RT Reagent Kit with gDNA Eraser (Takara, Code
No: RR047A, Dalian, China). Next, qRT-PCR was performed with the synthesized cDNA
templates, gene-specific primers and SYBR Green Master Mix (High Rox Plus) (YEASEN,
Code No: 11203ES08, Shanghai, China) using the QuantStudio 6&7 Flex Real-Time PCR
System (Applied Biosystems, Life Technologies Italia, MA, USA). Finally, mRNA levels
were quantified using three genes (β-actin, Hsp 70 or NADH) as the reference genes [32,35].
The primer sequences used for qRT-PCR are presented in Supplementary Table S3. The
qRT-PCR data for the two clock genes Cry2 and Per1 were calculated via the 2−∆∆CT method
to analyze them [36].
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2.4. Synthesis of dsRNA and Microinjection

Double-stranded Cry2 (dsCry2) and Per1 (dsPer1) were synthesized with the T7 tran-
scription kit (Thermo Fisher Scientific, Code No: AM1354, MA, USA) according to the
manufacturer’s instructions. Firstly, PCR was carried out using the plasmids as templates
in combination with specific primers (See Supplementary Table S4). Subsequently, with
the purified PCR products as templates, T7 RNA Polymerase was used to generate dsRNA
in transcription reactions. Next, dsRNA was dissolved in diethyl pyrocarbonate water
and quantified by the NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific, MA,
USA). The dsRNA was subjected to 1% agarose gel, and the dsRNA solution was stored
at −80 ◦C.

Two micrograms of dsRNA solution were injected into the side of the thorax in worker
termites using a sterilized microinjector (World Precision Instruments, SYS-PV820, Florida,
USA) [37,38]. Termites were placed on moist filter paper within 9 cm Petri dishes after
dsRNA injection. Ten worker termites were collected for measuring the mRNA of Cry2
or Per1 three days and five days after injection. In addition, three days after injection, the
locomotor activities of worker termites were recorded for 48 h. An equivalent solution of
double-stranded green fluorescent protein (dsGFP) was injected in control groups [39].

2.5. Statistical Analysis

The rhythms of locomotor activity over a 48 h period were determined using the
cosinor procedure (http://www.circadian.org/softwar.html, accessed on 13 November
2023) [40]. IBM SPSS Statistics 19.0 software was used to analyze the metric data. The
normal distribution of the metric data was tested using the Shapiro–Wilk method. One-way
analysis of variance (ANOVA) and Tukey’s HSD test were used to analyze the temporal
expression levels of genes and walking distances. The abnormal distribution of the metric
data was tested using the Wilcoxon signed-rank test and Mann–Whitney test. The Wilcoxon
rank-sum test was used to analyze the expression of the targeted genes Cry2 or Per1 after
injection. Locomotor activity during the subjective day and subjective night was evaluated
using the Mann–Whitney test. The significance level was set as p < 0.05.

3. Results
3.1. Effects of Different Photoperiods on the Circadian Rhythms of Locomotor Activity in the Two
Termite Species

We examined the effects of different photoperiods on the circadian rhythms of locomo-
tor activity in the two termites R. chinensis and O. formosanus. We found that the termite R.
chinensis exhibited a significant circadian rhythm of locomotor activity under DD condi-
tions (p < 0.001) (Figure 2A). Similarly, the termite O. formosanus also exhibited a significant
circadian rhythm of locomotor activity under DD conditions (p < 0.001) (Figure 3A). At the
same time, the circadian periods of the two termites R. chinensis and O. formosanus were
close to 24 h under DD conditions. However, under LD and LL conditions, the circadian
rhythms of locomotor activity were abolished in the two termites R. chinensis (LD, p = 0.130;
LL, p = 0.558) (Figure 2B,C) and O. formosanus (LD, p = 0.60; LL, p = 0.242) (Figure 3B,C).

We also found that locomotor activity showed significant changes under different
photoperiods in the two termites R. chinensis (ANOVA, F(2,25) = 285.21, p < 0.001) (Figure 2D)
and O. formosanus (ANOVA, F(2,25) = 46.91, p < 0.001) (Figure 3D), and locomotor activity
under DD conditions was significantly higher than that under LD and LL conditions
in the two termite species. Moreover, locomotor activity during the subjective day was
significantly higher than during the subjective night under DD conditions in the two
termites R. chinensis (Mann–Whitney test, Z = −3.78, df = 20, p < 0.001) (Figure 2E) and
O. formosanus (Mann–Whitney test, Z = −3.78, df = 20, p < 0.001) (Figure 3E). Under LD
conditions, locomotor activity during the subjective day was significantly lower than
during the subjective night in the termite R. chinensis (Mann–Whitney test, Z = −3.58, df = 18,
p < 0.001) (Figure 2F), but there was no significant difference in daily active intensity in the
termite O. formosanus (Mann–Whitney test, Z = −1.28, df = 18, p = 0.20) (Figure 3F). Under
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LL conditions, locomotor activity during the subjective day was significantly higher than
during the subjective night in the termite R. chinensis (Mann–Whitney test, Z = −3.14, df = 18,
p < 0.01) (Figure 2G), but locomotor activity during the subjective day was significantly
lower than during the subjective night in the termite O. formosanus (Mann–Whitney test,
Z = −3.58, df = 18, p < 0.001) (Figure 3G).
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Figure 2. The circadian rhythms of locomotor activity in the termite R. chinensis under different
photoperiods. (A–C) Locomotor activity of the termite R. chinensis under DD (n = 10) (A), LD (n = 9)
(B) and LL (n = 9) (C) photoperiod conditions. The data in the figures are mean ± SEM, and the
circadian rhythms of locomotor activity were analyzed using the cosinor procedure (A–C). (D) The
total walking distances of the termite R. chinensis during a 48 h experimental period. The data in the
figures are mean ± SEM, and different letters express significant differences according to Tukey’s HSD
test (p < 0.05) (D). (E–G) The total walking distances of the termite R. chinensis in subjective day and
subjective night under DD (E), LD (F) and LL (G) photoperiod conditions. The data represent mean
± SEM. Asterisks indicate significant differences determined by the Mann–Whitney test (** p < 0.01;
*** p < 0.001) (E–G). The horizontal bars represent the light conditions during the experiment. White
boxes represent light and black and gray boxes represent dark in (A–C).
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Figure 3. The circadian rhythms of locomotor activity in the termite O. formosanus under different
photoperiods. (A–C) Locomotor activity of the termite O. formosanus under DD (n = 10) (A), LD (n = 9)
(B) and LL (n = 9) (C) photoperiod conditions. The data in the figures are mean ± SEM, and the
circadian rhythms of locomotor activity were analyzed using the cosinor procedure (A–C). (D) The
total walking distances of the termite O. formosanus during a 48 h experimental period. The data
in the figures are mean ± SEM, and different letters express significant differences according to
Tukey’s HSD test (p < 0.05) (D). (E–G) The total walking distances of the termite O. formosanus in
subjective day and subjective night under DD (E), LD (F) and LL (G) photoperiod conditions. The data
represent mean ± SEM. Asterisks indicate significant differences determined by the Mann–Whitney
test (*** p < 0.001) (E–G).

3.2. Cry2 and Per1 Temporal Expression under DD Conditions in the Two Termite Species

We assayed head Cry2 and Per1 mRNA abundance over time in the two termite species
by qRT-PCR in DD and LD conditions. Under DD conditions, we found that the expression
of Cry2 and Per1 in the termite R. chinensis showed significant differences at different times
of the day (ANOVA, Cry2, F(6,49) = 8.67, p < 0.001; Per1, F(6,49) = 4.42, p < 0.001), and the
expression of Cry2 and Per1 in R. chinensis showed peak levels at 08:00–12:00 and its lowest
level at 04:00 (Figure 4A,B). In the termite O. formosanus, we also found that the expression
of Cry2 and Per1 showed significant differences at different times of the day (ANOVA, Cry2,
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F(6,49) = 11.18, p < 0.001; Per1, F(6,49) = 11.40, p < 0.001), and the expression of Cry2 and Per1
in O. formosanus showed peak levels at 12: 00 and its lowest level at 20:00 (Figure 4C,D).
In addition, under LD conditions, we found that the expression of Cry2 and Per1 in the
termites R. chinensis (ANOVA, Cry2, F(6,56) = 0.56, p = 0.764; Per1, F(6,56) = 1.82, p = 0.112) and
O. formosanus (ANOVA, Cry2, F(6,56) = 1.95, p = 0.089; Per1, F(6,56) = 2.24, p = 0.052) showed
no significant differences at different times of the day (Supplementary Figure S1).
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Figure 4. The patterns of Cry2 and Per1 gene expression in two termite species. (A) The patterns
of Cry2 expression in the termite R. chinensis under DD conditions (n = 8). (B) The patterns of Per1
expression in the termite R. chinensis under DD conditions (n = 8). (C) The patterns of Cry2 expression
in the termite O. formosanus under DD conditions (n = 8). (D) The patterns of Per1 expression in the
termite O. formosanus under DD conditions (n = 8). The data in the figures are the mean ± SEM, and
different letters express significant differences according to Tukey’s HSD test (p < 0.05). The mRNA
levels were normalized relative to the two termite species collected at 04:00. Gray and black bars
represent subjective day and subjective night, respectively.

3.3. Cry2 and Per1 Knockdown Disrupted the Circadian Rhythms of Locomotor Activity under DD
Conditions in the Two Termite Species

The injection of dsCry2 or dsPer1 caused a significant decrease in the Cry2 or Per1
mRNA level in the head of the termite R. chinensis (Wilcoxon signed-rank test, 3 days: Cry2,
Z = −2.36, n = 7, p < 0.05; Per1, Z = −2.36, n = 7, p < 0.05; 5 days: Cry2, Z = −2.31, n = 4,
p < 0.05; Per1, Z = −2.31, n = 4, p < 0.05) (Figure 5A,B), suggesting that Cry2 and Per1 were
significantly knocked down 3 days and 5 days after injection. Similarly, the injection of
dsCry2 or dsPer1 caused a significant decrease in Cry2 or Per1 mRNA level in the head of
the termite O. formosanus (Wilcoxon signed-rank test, 3 days: Cry2, Z = −2.67, n = 9, p < 0.05;
Per1, Z = −2.37, n = 7, p < 0.05; 5 days: Cry2, Z = −1.83, n = 4, p < 0.05; Per1, Z = −1.83,
n = 4, p < 0.05) (Figure 5C,D), suggesting that Cry2 and Per1 were significantly knocked
down 3 days and 5 days after injection.
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termite species. (A,B) The mRNA levels of Cry2 (3 days: n = 7; 5 days: n = 4) (A) and Per1 (3 days:
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The injection of dsGFP (control) did not significantly affect the circadian rhythms of
locomotor activity under DD conditions in the termite R. chinensis (p < 0.001) (Figure 6A).
However, the injection of dsCry2 or dsPer1 disrupted the circadian rhythms of locomotor
activity (dsCry2, p = 0.152; dsPer1, p = 0.083) (Figure 6B,C). In addition, the injection of
dsCry2 significantly decreased locomotor activity compared with the control in the termite
R. chinensis (ANOVA, F(2,32) = 4.34, p < 0.05) (Figure 6D). In the termite O. formosanus, the
injection of dsGFP did not significantly impact the circadian rhythms of locomotor activity
under DD conditions (p < 0.001) (Figure 6G), but the injection of dsCry2 or dsPer1 dis-
rupted the circadian rhythms of locomotor activity under DD conditions (dsCry2, p = 0.128;
dsPer1, p = 0.230) (Figure 6H,I). Moreover, the injection of dsCry2 or dsPer1 significantly de-
creased locomotor activity compared with the control in the termite O. formosanus (ANOVA,
F(2,51) = 21.68, p < 0.001) (Figure 6J).

In addition, during the subjective day, the injection of dsCry2 or dsPer1 significantly
decreased locomotor activity compared with the control under DD conditions in the termite
R. chinensis (ANOVA, F(2,32) = 13.76, p < 0.001) (Figure 6E), but during the subjective night,
the injection of dsCry2 or dsPer1 had no effect on locomotor activity as compared to
the control (ANOVA, F(2,32) = 0.17, p = 0.849) (Figure 6F). For the termite O. formosanus,
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the injection of dsCry2 or dsPer1 significantly decreased locomotor activity during the
subjective day and night compared with the control under DD conditions (ANOVA, Day,
F(2,51) = 45.56, p < 0.001; Night, F(2,51) = 6.62, p < 0.01) (Figure 6K,L).
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Figure 6. Knockdown of Cry2 and Per1 disrupted the circadian rhythms of locomotor activities in the
two termite species. (A–C) The circadian rhythms of locomotor activities of the termite R. chinensis
injected with dsGFP (n = 12) (A), dsCry2 (n = 12) (B), or dsPer1 (n = 12) (C) were assessed 3 days
after injection. (D) The walking distances of the termite R. chinensis after 3 days of dsRNA injections
during a 48 h experimental period. (E,F) The walking distances of the termite R. chinensis 3 days after
injecting dsRNA during subjective day (E) and night (F). (G–I) The circadian rhythms of locomotor
activities of the termite O. formosanus injected with dsGFP (n = 18) (G), dsCry2 (n = 18) (H), or dsPer1
(n = 18) (I) were assessed 3 days after injection. (J) The walking distances of the termite O. formosanus
after 3 days of dsRNA injections during a 48 h experimental period. (K,L) The walking distances of
the termite O. formosanus 3 days after injecting dsRNA during subjective day (K) and night (L). The
rhythmicity of locomotor activity was analyzed using the cosinor procedure (A–C,G–I). The data in
the figures are mean ± SEM, and different letters express significant differences according to Tukey’s
HSD test (p < 0.05) (D–F,J–L). Gray and black bars represent subjective day and subjective night,
respectively (A–C,G–I).

4. Discussion

Even though circadian rhythms are self-sustaining under constant conditions, organ-
isms (insects and mammals) nevertheless respond to environmental stimuli, particularly
illumination intensity and duration [41–43]. In this study, our results showed that the two
termites R. chinensis and O. formosanus exhibited no clear circadian rhythms of locomotor
activity under LL and LD conditions, which is different to the pattern observed in other
insects and mammals [18,44]. In addition, since these two termite species have adapted to
dark, underground environments, light may be a stressful environment for subterranean
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termites, which indicates that light conditions impair the circadian rhythms of locomotor
activity in termites. Thus, subterranean termites have evolved different circadian rhythms
of locomotor activity in response to their living environment. Surprisingly, under DD
conditions, the termites R. chinensis and O. formosanus exhibited clear circadian rhythms
of locomotor activity. Similarly, the cockroach Periplaneta americana exhibited a clear circa-
dian rhythm of locomotor activity under complete darkness [18]. The subterranean vole
Lasiopodomys mandarinus (eusocial mammal) also exhibited a clear circadian rhythm of
locomotor activity under DD conditions [44]. These observations reflect the adaptation of
subterranean termites, cockroaches, and voles to dark underground environments. Because
the circadian rhythms of locomotor activity are exhibited even in constant conditions, we
suspect that the endogenous circadian clock is important for the regulation of the circadian
rhythms of locomotor activity in termites.

In insects and mammals, the expression of clock genes fluctuated rhythmically in
a 24 h period [24,45]. In this study, the Cry2 levels of two termite species exhibited a
clear circadian rhythm, with higher levels during subjective day and lower levels during
subjective night under DD conditions, which exactly coincided with the circadian rhythm
of locomotor activity in two termite species. Per1 levels showed a similar trend to Cry2,
exhibiting a clear circadian rhythm. The Cry and Per genes are established clock core
complex molecules [46,47]. We conclude that Cry2 and Per1 genes may play a critical role
in the circadian rhythm of locomotor activity in these two termite species.

Knockdown of Cry2 or Per1 significantly impaired the circadian rhythms of locomotor
activity and markedly reduced locomotor activity under DD conditions in R. chinensis and
O. formosanus. Analogously, knockdown of Cry2 severely disrupted the circadian rhythms
of locomotor activity under DD conditions in the cockroach B. germanica [18]. Silencing of
Per in the cricket G. bimaculatus completely disrupted the circadian rhythm of locomotor
activity in constant darkness [21]. In mammals, Cry2 mutation caused a shortened circadian
period and impaired behavioral rhythms under a light–dark cycle in mice [19]. We suggest
that the two core clock genes Cry2 and Per1 can regulate the circadian rhythms of locomotor
activity under DD conditions in termites. Furthermore, knockdown of Cry2 or Per1 in R.
chinensis and O. formosanus markedly reduced locomotor activity during the day, which
indicates that Cry2 and Per1 are essential for the maintenance of termite circadian rhythms
and their locomotor behavior.

5. Conclusions

Taken together, our study delivers evidence that the two termites R. chinensis and
O. formosanus exhibit clear circadian rhythms of locomotor activity under DD conditions.
However, under LD and LL conditions, complete loss of circadian rhythms of locomotor
activity was observed in these two termites. Subterranean termites’ foraging activities
mainly occur during the subjective day. Strikingly, the clock genes Cry2 and Per1 display
cyclical expression in the heads of termites under DD conditions. In addition, knockdown
of Cry2 and Per1 disrupted the circadian rhythms of locomotor activity in the two termites,
which suggests that Cry2 and Per1 participate in termite circadian rhythms under DD
conditions. Thus, this study contributes to a better understanding of circadian clock
mechanisms in subterranean insects.
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the dsRNA template.
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