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Simple Summary: Spermatogenesis, an important process in reproduction, is conserved across
species but has unique aspects in silkworms, such as the maintenance of the spermatogonium by
a somatic single cell and coordinated fertilization by nucleated and anucleated sperm. Despite
some histological research, the molecular mechanisms of silkworm spermatogenesis remain largely
unexplored. Taking advantage of advances in RNA-seq analysis technology, this study characterizes
genes expressed in silkworm testis via a comprehensive transcriptome analysis, contrasting different
tissues and regions within the testis and making comparisons with fruit flies. Our investigation
revealed extensive gene expression (86.5% of all genes) in the silkworm testis, the highest number
of tissue-specific genes among examined tissues in silkworm testis. We also identified region-
specific enriched genes in undifferentiated and differentiated germ cells. Moreover, cross-species
transcriptome comparisons confirmed conserved gene expression patterns. Further analysis of region-
specific enriched genes in the silkworm testis revealed the enrichment of genes associated with the
biological process, corroborating findings in silkworms and other organisms. This study extends our
understanding of silkworm spermatogenesis and fills an important gap for future investigations.

Abstract: Spermatogenesis is an important process in reproduction and is conserved across species,
but in Bombyx mori, it shows peculiarities, such as the maintenance of spermatogonia by apical
cells and fertilization by dimorphic spermatozoa. In this study, we attempted to characterize the
genes expressed in the testis of B. mori, focusing on aspects of expression patterns and gene function
by transcriptome comparisons between different tissues, internal testis regions, and Drosophila
melanogaster. The transcriptome analysis of 12 tissues of B. mori, including those of testis, revealed the
widespread gene expression of 20,962 genes and 1705 testis-specific genes. A comparative analysis
of the stem region (SR) and differentiated regions (DR) of the testis revealed 4554 and 3980 specific-
enriched genes, respectively. In addition, comparisons with D. melanogaster testis transcriptome
revealed homologs of 1204 SR and 389 DR specific-enriched genes that were similarly expressed
in equivalent regions of Drosophila testis. Moreover, gene ontology (GO) enrichment analysis was
performed for SR-specific enriched genes and DR-specific enriched genes, and the GO terms of
several biological processes were enriched, confirming previous findings. This study advances our
understanding of spermatogenesis in B. mori and provides an important basis for future research,
filling a knowledge gap between fly and mammalian studies.
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1. Introduction

Gametogenesis is a critical process for the survival of any species and is carried out
differently in different organisms while maintaining its essential reproductive function.
Spermatogenesis is an important biological process for developing mature spermatozoa
from germ cells. Well-orchestrated molecular and cellular events characterize this complex
process, including mitosis, meiosis, and cellular morphogenesis [1,2].

The testis of the silkworm, Bombyx mori, consists of four follicles and several cell types
that contribute to spermatogenesis. The stem cell spermatogonium, formed from primordial
germ cells, undergoes mitosis to produce 64 spermatocytes. These spermatocytes undergo
two meiotic divisions to produce 256 spermatozoa. At the tip of each follicle, a somatic
single cell is known as an apical cell [3,4]. The apical cell is considered to function as
a niche cell for stem-like spermatogonium [4]. The proliferating germ cells around the
apical cell migrate to the basal region of the testis via somatic cell division, meiosis, and
sperm morphogenesis. The spermatids undergo morphogenesis and elongation, eventually
developing into mature sperm. B. mori spermatogenesis is characterized by the production
of two types of sperm bundles, namely nucleate eupyrene sperm and anucleate apyrene
sperm, which diverge according to the timing of elongation [3–7].

Genomic studies have identified several genes that are expressed in a testis-specific
manner in B. mori, such as β-tubulin, BmDmc1, and BmAHA1. Although these genes show
specific expression patterns in the testis, their direct involvement in the process of sper-
matogenesis has not been definitively established [8–10]. In recent years, the advancement
of genome editing technologies like TALEN and CRISPR/Cas9 has significantly simplified
the process of analyzing B. mori in vivo. Along with this progress, it has been reported that
the B. mori genes BmPMFBP1, BmSxl, and BmPnldc1 play a direct role in the process of sper-
matogenesis. Specifically, these genes play an important role in dimorphic spermatogenesis
observed in lepidopteran insects [11–13]. Despite these advancements, the investigation
of spermatogenesis-related genes in B. mori remains a challenging endeavor due to the
complexity of the process and the intricate nature of conducting gene-specific studies.

Over the past several decades, significant progress has been made in understanding
the molecular mechanisms of spermatogenesis, the complex physiological process that
produces mature sperm. The fruit fly, Drosophila melanogaster, has emerged as a powerful
model organism for studying this process due to the availability of advanced genetic tools
and the high degree of conservation of spermatogenesis-related genes between flies and
mammals [14,15]. In recent years, comprehensive transcriptomic analyses using RNA-seq,
including single-cell RNA-seq, have significantly advanced our knowledge of spermatoge-
nesis. These techniques have allowed us to better understand the complex regulation of
gene expression at various stages of spermatogenesis [16–18]. Thus, while spermatogenesis
in D. melanogaster has been extensively studied, spermatogenesis in other insects, such
as B. mori, is not comprehensively understood. The B. mori genome was first decoded in
2004 [19,20], and several researchers subsequently performed transcriptome analyses to
better understand its gene expression and its regulatory mechanisms [21,22]. However,
the details of the molecular mechanism of spermatogenesis in B. mori remain unresolved,
although the mechanism identified in D. melanogaster has been plausibly applied because
the spermatogenesis mechanism is conserved in many organisms. Therefore, we believe it
is important to compare gene expression profiling data from the testes of two model insects,
B. mori and D. melanogaster, due to their genetic and biological similarities yet distinct
differences. This approach would provide a robust tool for elucidating the mechanisms
of spermatogenesis in B. mori and identify genes with similar or conserved expression
patterns among these species. In particular, genes that have already been reported to be
involved in spermatogenesis in D. melanogaster and have similar expression patterns in
B. mori and D. melanogaster testes are likely to have maintained their function throughout
evolution, suggesting that they will play a similar role in B. mori.

In this study, we extensively profiled gene expression in B. mori testes to broaden our
understanding of expressed genes. We compared gene expressions across different tissues
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and germ cell differentiation stages within the B. mori and with data from D. melanogaster.
In these analyses, we strived to clarify which genes expressed in the testes are testis-specific,
which are involved in particular stages of spermatogenesis, and which have their functions
already elucidated in D. melanogaster. Our insights will provide foundational information,
enhancing the understanding of the molecular mechanisms of spermatogenesis in B. mori.

2. Materials and Methods
2.1. RNA-seq Data of B. mori Tissues

RNA-seq raw data of silkworm, B. mori, fifth instar larvae day 3 samples (12 tissues,
35 samples) for comparison of gene expression between tissues were downloaded from
NCBI (accession number: PRJNA559726). Accession numbers for the data used are listed
in Table S1.

2.2. RNA Extraction and RNA Sequencing

The B. mori p50T strain was obtained from the Institute of Genetic Resources, Kyushu
University Graduate School. The larvae were reared on mulberry leaves at 25 ◦C. RNA-seq
testing was performed using B. mori testes from day 3 of 5th instar larvae. First, testes
removed from larvae were dissected in PBS, collected under microscope, and separated
into germinal proliferation centers (called stem region) and other content cells (differen-
tiated region), respectively, in 3 replicates. Total RNA was extracted from each sample
using ISOGEN reagent (Nippon Gene, Toyama, Japan) and purified using RNeasy ® Plus
universal mini kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.
The RNA content and purity of the extracted RNA were analyzed using a NanoDrop One
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and further quantified
using a Quantus Fluorometer (Promega, Madison, WI, USA) according to the manufac-
turer’s instructions. The extracted RNA was then sequenced using the low-cost and simple
RNA-Seq (Lasy-Seq) method [23]. The resulting sequence data have been deposited at
DDBJ/EMBL/GenBank under the accession DRR492946-DRR492951.

2.3. Morphological Observation of B. mori Testis

Testes were carefully dissected from fifth instar, day 3 B. mori and then fixed using
4% paraformaldehyde in 1 × PBS. Following this, we prepared paraffin sections from
the collected testes and performed Hematoxylin and Eosin (HE) staining. Subsequent
observations were conducted using a Leica M205A stereomicroscope (Leica).

2.4. RNA Sequencing (RNA-seq) Experiment

The raw RNA-seq data were trimmed, and the quality was confirmed using fastp
(v-0.12) [24]. The clean reads were directly aligned and quantified using Salmon (v-
1.8.0) [25] to the silkworm reference transcripts data, which were downloaded from
NBDC (https://dbarchive.biosciencedbc.jp/en/kaiko/desc.html (accessed on 3 Febru-
ary 2022)). The expression data of transcript level, which contained several transcriptional
variants, conversed to gene level using Tximport (v-1.22.0) [26]. Differential expression
genes (DEGs) of each sample were determined by DESeq2 (v-1.34.0) [27]. Coding re-
gions within the transcripts were predicted and extracted using the TransDecoder (v-5.5.0:
https://github.com/TransDecoder/TransDecoder/wiki/ (accessed on 21 April 2023)) tool
with the default parameters.

2.5. Statistical Calculations for Tissue-Specific and Region-Enriched Gene Calculations

Tissue-specific gene calculation: Pairwise comparisons between different tissues were
performed using the Wald test via the DESeq2 package. Genes were considered significant
if they had an adjusted p-value (p-adj) of less than 0.05 and a log2FoldChange of less than
0.5. Genes that met these criteria in all tissue comparisons were classified as tissue-specific.
Calculation of region-enriched genes: A procedure similar to step 1 was followed, but
with a focus on comparisons between the stem region (SR) and the differentiated region

https://dbarchive.biosciencedbc.jp/en/kaiko/desc.html
https://github.com/TransDecoder/TransDecoder/wiki/
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(DR). Genes that showed significance (p-adj < 0.05, log2FoldChange < 0.5) in the SR vs.
DR comparison were considered SR-enriched or DR-enriched, respectively. The above
procedures were used to identify genes specifically expressed or enriched in different
tissues and regions.

2.6. Comparative Analysis of Total Genes and Transcripts Between D. melanogaster and B. mori

Comparative analysis was performed between the total genes of fruit fly, D. melanogaster
and the total transcripts of silkworm, B. mori. D. melanogaster total genes were down-
loaded from flybase (http://ftp.flybase.net/releases/FB2022_03/dmel_r6.46/ (accessed on
1 April 2022)). The tblastx function of the BLAST tool was used for this comparison, with
an e-value cut-off threshold of 1 × 10−5.

For each transcript, the D. melanogaster gene with the lowest e-value was annotated as
its homolog. In cases where multiple transcripts were assigned with a single B. mori gene
and annotated with different D. melanogaster gene homologs, the homolog with the lowest
e-value was selected as the representative homolog for that gene.

2.7. GO Enrichment Analysis

The GO term data for the B. mori genes were downloaded from SGID (http://sgid.
popgenetics.net/ (accessed on 8 May 2022)) and adapted to this study’s gene ID [28].
The GO enrichment analysis was implemented using Goatools, a Python library for gene
ontology, under default conditions. The Benjamini–Hochberg (BH) method was employed
to adjust the p-values, which helps control the False Discovery Rate [29].

3. Results and Discussion
3.1. Comparative Analysis of Gene Expression among B. mori Tissues

First, we attempted to characterize genes expressed in the testis by comparing gene
expression among other B. mori tissues. As described under the Materials and Methods,
raw RNA-seq data were obtained from 12 different B. mori tissues (anterior silk glands,
epidermis, fat body, head, hemolymph, malpighian tubule, middle silk glands, midgut,
ovary, posterior silk glands, testis, and trachea) from the NCBI database. The raw data were
then processed using the fastp program for trimming and the Salmon program for mapping
and quantification against B. mori reference transcripts. The R package Tximport program
was then used to calculate gene expression levels in each tissue. For genes with multiple
transcript variants, they were combined to represent a single gene, and the expression level
for each gene was calculated. As a result, according to this definition, 51,926 total transcripts
were integrated for B. mori, resulting in 24,229 total genes (Table S2). The obtained gene
expression data for each tissue were subjected to comparative analysis using DESeq2.

To understand the differences in gene expression between tissues, we performed
PCA analysis and found that the expression levels of genes in “testis” and “midgut” were
different from the other ten tissues on the PC1 and PC2 axes (Figure 1A). Then, the number
of genes expressed in each sample were counted, considering any gene with a count of one
or more as expressed. The number of genes expressed in each tissue was counted as an
average across samples for each gene (count = 1). The results showed that the average
number of genes expressed among the tissues was 16,733. Comparing the number of genes
expressed in each tissue, the posterior silk gland expressed the least number of genes,
14,354. On the other hand, the largest number of genes expressed was in “testis”, with
20,962 genes expressed, representing 86.5% of the total genes. (Figure 1B, Table 1). Next, we
attempted to calculate tissue-specific expressed genes. This was performed by comparing
the expression of genes in a specific tissue to their expression in all other tissues. We defined
tissue-specific genes as those that had a p-value of less than 0.05 and a log2FoldChange
of less than 0.05 across all tissues. Using this definition, we identified 1705 genes as being
specifically expressed in the testis (Figure 1C, Tables 1 and S3).

http://ftp.flybase.net/releases/FB2022_03/dmel_r6.46/
http://sgid.popgenetics.net/
http://sgid.popgenetics.net/
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Figure 1. Comparative analysis of gene expression among B. mori tissues using RNA-seq. (A) Princi-
pal component analysis (PCA) of the transcriptome data. Each dot in the plot represents a distinct
sample, with 12 tissues of the B. mori represented: anterior silk glands, epidermis, fat body, head,
hemolymph, malpighian tubules, middle silk glands, midgut, ovary, posterior silk glands, testis,
and trachea. (B) The number of expressed genes in each tissue. The number of expressed genes
per sample is shown in the box-and-whisker diagram. White circles indicate the number of genes
that had a mean value = 1 between samples of the same tissue. (C) The number of tissue-specific
expressed genes.

Detailed analysis of testis RNA-seq data revealed that 20,962 genes, comprising 86.5%
of all genes, were expressed in the testis. This finding aligns with reports in flies and
mammals, showing a large number of gene species transcribed in the testis [16,30]. The
extensive gene expression in the testis corresponds to a range of biological processes. For
instance, during spermatogenesis, germ cells undergo extensive chromatin remodeling,
leading to an overall permissive chromatin state and widespread transcriptional facilitation.
This process is not limited to coding proteins but involves long non-coding RNAs [16,30]. In
the present study, we sorted the expressed genes into coding and non-coding categories. Of
the 20,962 genes confirmed to be expressed in the testis, 13,111 were protein-coding genes,
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6423 were non-coding genes, and an intriguing set of 1428 genes appeared to potentially
possess both coding and non-coding variants (Figure S1).

Table 1. The number of expression genes under each classification.

Tissue Expressed Genes Tissue-Specific Expressed Genes

Anterior Silk Gland 16,346 349
Epidermis 15,537 139
Fat body 15,677 105

Head 18,653 310
Hemolymph 16,873 513

Malpighian Tubule 16,801 470
Middle Silk Gland 15,130 227

Midgut 14,763 915
Ovary 18,816 248

Posterior Silk Gland 14,354 179
Testis 20,962 1705

Trachea 16,881 198

Simultaneously, new genes emerge via various mechanisms like gene shuffling, gene
fission/fusion, retrotransposition, duplication–divergence, and lateral gene transfer. Recent
studies have highlighted the de novo creation of genes with open reading frames from
non-coding genes [31–35]. Expression patterns of such young genes are often more tissue-
or condition-specific compared to established genes. Particularly, the high expression of
de novo genes has been observed in male reproductive tissues across multiple species,
including flies, mice, and humans [16,34–38]. Our study revealed a substantial number
of 1705 genes with tissue-specific expression in the testis. Mon et al. (2022) identified
272 lepidopteran-specific uncharacterized with no Pfam domain by in silico analysis [39].
Compared to the testis-specific expression of B. mori in this study, 47 of the 272 genes were
expressed in a testis-specific manner (Table S4). Of the 1705 testis-specific genes, 270 genes
were found that all the gene variants were non-coding transcripts, and the other 208 genes
contained non-coding transcripts in some of the gene variants. Xia et al. (2020) suggest that
the widespread transcription during spermatogenesis maintains DNA sequence integrity
in the male germline by correcting DNA damage by a mechanism we term “transcriptional
scanning”. They also propose that transcriptional scanning regulates mutation rates in a
gene-specific manner, preserving DNA sequence integrity for most genes while accelerating
evolution for a specific subset [30]. The comprehensive examination of B. mori testis gene
expression in this study allowed us to detect phenomena similar to those reported in flies
and mammals (widespread gene expression and expression of many testis-specific genes,
including lineage-specific uncharacterized genes and non-coding genes), confirming that
the principles are conserved in the B. mori.

3.2. Transcriptome Analysis of Silkworm, B. mori, and Testis between Different Regions

Spermatogenesis occurs via a series of processes that begin with stem-cell-like sper-
matogonium cells, undergo multiple somatic cell divisions and meiosis to become sperma-
tocytes, and then undergo morphological changes to become spermatozoa. A comparison
between tissues allowed us to detect the characteristics of genes expressed in the testis and
genes specific to the testis, but this information was not sufficient to characterize the stages
of spermatogenesis. Therefore, to obtain more detailed information on expressed genes
during spermatogenesis in the B. mori testis, the testis was divided into the stem region
(SR) and the differentiated region (DR) and sampled for RNA-seq analysis (Figure 2A).
As described in the Introduction, germ cells are surrounded by somatic cells called cyst
cells, which form a seminal vesicle in the B. mori testis. Within this seminal vesicle, germ
cells undergo meiosis, somatic cell division, and sperm elongation. The SR contains sper-
matogonia stage spermatocysts and apical cells (niche cells). The DR, on the other hand, is
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enriched with spermatocysts containing mitotic spermatocytes, meiotic spermatocytes, and
elongating spermatocytes.
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Figure 2. Transcriptome analysis of B. mori testis between different regions. (A) Structural diagram of
B. mori testis (SR: stem region; DR: differentiated region). (B)Venn diagram of the number of genes
expressed in the SR and DR (count = 1). (C) Venn diagram of the number of SR- or DR-specific
enriched expressed genes (p < 0.05).

To compare the gene expression profiles between the SR and DR regions, which are
understood to be at distinct stages of morphological differentiation, we performed RNA-seq
analysis. The RNA-seq analysis was performed using mRNAs extracted from SR and DR in
biological triplicates. The 3’-RNA-seq method was performed using the Lasy-seq method
and HiSeq 2500, a high-throughput library preparation. We processed the obtained raw
data using fastp, Salmon, and Tximport to transform it into gene-level expression data.
We then carried out a comparative analysis of gene expression across different regions
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utilizing DESeq2. The results confirmed that 17,983 genes were expressed in the SR and that
16,717 genes were expressed in the DR in one or more read counts. And 18,803 genes were
identified as being expressed in at least one of the different regions of the testis (Figure 2B,
Tables S4 and S6). Of these, 18,034 genes were also found to be expressed in previous
RNA-seq studies, as shown by the testis transcriptome data used for comparison between
tissues, and the other 769 genes were discovered to be expressed in the present RNA-seq
study (Figure S2). In the SR and DR, 2086 and 820 genes were specifically expressed,
respectively (Figure 2B). The pattern of the transcriptional accumulation of each gene was
then determined, and genes showing significant differences in transcription levels between
regions were filtered based on DESeq2. As a result, we identified 4554 and 3980 genes
with specific enriched expression in the SR and DR, respectively (Figure 2C, Table S6).
Furthermore, among these region-specific enriched genes, we found that 89 in the SR and
1327 in the DR were specifically expressed in the testis (Figure 3).
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3.3. Comparative Analysis of Gene Expression in Histologically and Functionally Homologous
Regions of B. mori and D. melanogaster Testis

Next, we examined whether the expression profiles of these genes, which were
significantly highly expressed in each region of the B. mori testis, were conserved in
D. melanogaster, the same insect order and a model organism for the studies of spermatoge-
nesis. V. Vedelek et al. (2018) performed transcriptome analysis of the D. melanogaster testis,
dividing it into the “apical region”, which contains stem cells and developing spermato-
cytes; the “middle region”, with an enrichment of meiotic cysts; and the “basal region”,
which contains elongated post-meiotic cysts with spermatids [18]. Considering the stages
of germ cell differentiation enriched in each region of both species, the B. mori “stem region
(SR)” corresponds to the “apical region” of D. melanogaster, and the B. mori “differentiated
region (DR)” corresponds to the “middle and basal regions” of D. melanogaster. This com-
parison prompted us to compare the expressed genes between these homologous regions
to investigate whether homologous genes are also expressed between them.
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A BLAST search was performed to investigate homology between all B. mori genes
and D. melanogaster genes. As a result, it was found that 14,447 genes, or 59.6% of all
B. mori genes, had homology with D. melanogaster genes (Table S7). It is important to
note that the term “homologous” in this context could include not only orthologs but
also paralogs. Of the 4554 SR-specific enriched B. mori genes, 3151 were homologous
to 2640 D. melanogaster genes. A comparison of these 3151 genes with the 3214 genes
significantly highly expressed in the D. melanogaster “apical region” revealed that the 1024
D. melanogaster homologues of the 1204 B. mori genes are also highly expressed in the
homologous region of the D. melanogaster testis (Figure 4A, Table S8). We next compared
the gene expression in the “differentiated region” (DR) of B. mori with the corresponding
“middle and basal regions” in D. melanogaster. Of the 3980 genes specifically enriched in the
B. mori DR, 2127 were homologous to 1757 D. melanogaster genes. When these 2127 genes
were compared with the 2152 genes significantly highly expressed in the D. melanogaster
“middle and basal regions”, it was revealed that the 314 D. melanogaster homologs of the
389 B. mori genes are also highly expressed in the homologous region of the D. melanogaster
testis (Figure 4B, Table S8).
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Figure 4. Comparative analysis of gene expression in histologically and functionally homologous
regions of B. mori and D. melanogaster testes. (A) Stem region in B. mori testis vs. apical region
in D. melanogaster testis. (B) Differentiated region in B. mori testis vs. middle and basal region in
D. melanogaster testis. Blue: The number of genes with similar region-specific enriched expression
pattern in both B. mori and D. melanogaster. Light grey: The number of genes with region-specific
enriched expression pattern in only B. mori. Dark grey: The number of genes with region-specific
enriched expression pattern in only D. melanogaster.

3.4. Gene Ontology (GO) Enrichment Analysis of Differentially Expressed Genes (DEGs) in
B. mori Testis

Comprehensive differentially expressed genes (DEGs) analyses were performed from
multiple perspectives to profile B. mori testes by gene expression. Gene ontology (GO) en-
richment analysis was performed to define the DEGs from these analyses further, focusing
specifically on DEGs that show notable variation between stem and differentiated regions
within the B. mori testis. The GO terms for the B. mori gene sets used in this study were
annotated using the GO term sets for the genes assigned to the SGID. Subsequently, GO
enrichment analysis was performed using Goatools (p < 0.05).

3.4.1. GO Enrichment Analysis of SR-Specific Enriched Genes

In the 4554 SR-specific enriched genes, there were 807 GO terms related to biological
process enrichment. In the 807 GO terms, focusing on higher-level terms, there were
significant enrichments in “metabolic process”, “cellular process”, “biological regulation”,
“developmental process”, “reproductive process”, “growth”, and “homeostatic processes”
(Figure 5A, Table S9).
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In our study, “RNA metabolic process” (GO:0016070) emerged as a notable category
among “metabolic process” and “cellular process” with significant enrichment in the SR
(p = 4 × 10−78). It encompassed a total of 1025 genes out of the 4554 genes specifically
enriched in the SR (Tables S9 and S10). These 1025 genes were subjected to enrichment
analysis, followed by a cross-reference check to determine overlap with 1204 genes that
showed increased expression in the SR apical regions of both B. mori and D. melanogaster.
This led to the identification of 488 genes related to “RNA metabolic process” that showed
a similar expression landscape in the testes of both species (Table S10). Importantly, these
488 genes included homologs of Grip75 [40] and maleless [41], all established players in
D. melanogaster spermatogenesis.

Within the SR, the term “regulation of RNA metabolism” (GO:0051252), a sub-category of
“biological regulation”, emerged as another significantly enriched GO term (p = 1.6 × 10−17).It
correlated with 456 genes from the pool of 4554 SR-specific enriched genes (Tables S9 and S10).
These 456 genes were subjected to a focused analysis, followed by another round of cross-
referencing to determine overlap with the 1204 genes with increased expression in the
SR apical regions of B. mori and D. melanogaster. This led to the discovery of 226 genes
associated with “regulation of RNA metabolism” that showed similar expression patterns
in the testes of both species (Table S10). Notably, these 226 genes included homologs of
Brahma-associated protein 55kD [42] and Zn finger homeodomain 1 [43], all of which have
been shown to directly influence spermatogenesis in D. melanogaster.

Our study highlights a significant enrichment of genes associated with “RNA metabolic
processes” or “regulation of RNA metabolic processes” in the SR of B. mori testes. Previous
investigations in Drosophila and mammals have emphasized the crucial role these genes
play in spermatogenesis [14,15,44–50]. The involvement of RNA metabolic processes is piv-
otal for regulating gene expression, which is integral for the functionality of germline stem
cells (GSCs) and their maturation into spermatozoa [48,49]. In line with this, RNA-binding
proteins have been established as key determinants of small RNA and mRNA profiles in
Drosophila testes [50]. Reflecting on these observations, we suggest that B. mori genes impli-
cated in “RNA metabolic processes” or “regulation of RNA metabolic processes” might
be crucial for germline stem cells’ proper growth, differentiation, and upkeep, thereby
contributing to normal spermatogenesis.

Turning our focus to the “meiotic cell cycle process” (GO:0051321), this term, a
category under “metabolic process” and “cellular process”, also revealed significant
enrichment (p = 2.8 × 10−8), relating to 54 out of the 4554 SR-specific enriched genes
(Tables S9 and S10). To delve deeper, we sought out any shared genes between these 54 and
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the 1204 genes, which exhibited similar heightened expression in the SRs of both B. mori and
D. melanogaster. This yielded 35 genes linked to the “meiotic cell cycle process” that showed
analogous expression patterns across the testes of both species (Table S10). Notably, these
included homologs of Rab11 [51] with validated roles in D. melanogaster spermatogenesis.

Another “cell cycle process” term, “mitotic cell cycle process” (GO:1903047), also
emerged as significantly enriched (p = 1.2 × 10−11) and was linked to 91 out of the 4554 SR-
specific enriched genes (Tables S9 and S10). Similarly, a hunt for shared genes between
these 91 and the 1204 genes, which showed similar heightened expression in B. mori
and D. melanogaster SR, led to the identification of 54 genes. These genes, related to
the “mitotic cell cycle process”, exhibited analogous expression patterns in the testes of
both species (Table S10). Intriguingly, this list includes homologs of Bub1 kinase [52] and
tumbleweed [53], each with well-established roles in D. melanogaster spermatogenesis.

Comparable to the D. melanogaster testis apex, the B. mori testis SR also harbors
proliferative spermatogonia and somatic cyst cells around an apical cell, analogous to the
hub cells in D. melanogaster. Every spermatogonium, upon encapsulation by cyst cells,
multiplies by mitosis into 64 cells before proceeding to meiosis [4,54,55]. The observation
of genes associated with “meiotic cell cycle process” and “mitotic cell cycle process” in our
study aligns well with previous histological studies in D. melanogaster and B. mori testes,
reinforcing their critical role in gene expression during spermatogenesis.

3.4.2. GO Enrichment Analysis of DR-Specific Enriched Genes

In contrast, 3980 genes enriched in the DR of the B. mori testis showed enrichment
in 87 biological process GO terms, with higher-levels terms of “microtubule-based pro-
cess”, “cellular component organization or biogenesis”, “cell motility”, “cellular localiza-
tion”, and “regulation of molecular functions and protein-containing complex localization”
(Figure 5B, Table S11).

In our investigation of DR-specific enriched genes, “cilium assembly” (GO:0060271)
emerged as the topmost enriched term (Tables S10 and S11). This subcategory of “cellular
component organization or biogenesis” includes 66 of the total 3980 DR-specific enriched
genes (p = 1.6 × 10−18). Subsequently, a comparative search was conducted between these
66 genes and 389 genes that demonstrate a similar expression enrichment in both the B. mori
DR and D. melanogaster middle and basal regions. This comparison led to the discovery
of 12 genes linked with the “Cilium assembly” term, manifesting equivalent expression
patterns in the testes of both B. mori and D. melanogaster (Table S10). Notably, this subset of
12 genes featured kinesin-like protein at 10A [56], male fertility factor kl2 [57], and male
fertility factor kl3 [57], all of which bear direct implications in D. melanogaster spermatogenesis.
In addition, exploring the tissue specificity of the 66 genes incorporated in “cilium assembly”,
we ascertained that 46 of them were testis-specific in their expression (Table S10).

The differentiation region (DR) of B. mori testes is composed of cells progressing into
advanced stages of spermatogenesis, including spermatocytes, spermatids, and elongated
spermatozoa (Figure 2A). With the indispensable role of cilia and flagella in successful
sperm fertilization, the criticality of cilium assembly in spermatogenesis is evident [2,58,59].
The substantial gene pool in the DR related to ciliary assembly affirms this region’s pivotal
role in spermatogenesis progression. Additionally, we found spermatogenesis to be a
unique process within the testis, typically characterized by a testis-specific expression of
associated genes.

Turning our focus to “microtubule cytoskeleton organization” (GO:0000226), a subterm
of both “microtubule-based process” and “cellular component organization or biogenesis”,
we identified significant enrichment within the DR (p = 3.9 × 10−8) (Tables S10 and S11).
This term incorporated 80 of the 3980 DR-specific enriched genes. Further tissue-specific
examination of these 80 genes revealed that 46 genes exhibited testis-specific expression. A
subsequent comparison between these 80 genes and the 389 genes with similar enriched
expression in both the B. mori DR and D. melanogaster middle and basal regions unveiled
24 genes associated with the RNA metabolic process term, echoing analogous expression
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patterns in the testes of both species (Table S10). Dynein light chain 90F [60], Kinesin-like
protein at 3A [61], and Lkb1 kinase [62] were among these 24 genes, each playing a crucial
role in D. melanogaster spermatogenesis.

Microtubules, integral constituents of the cytoskeleton, comprise protein filaments that
offer structural support, maintain cellular shape, and expedite various cellular processes
like cell division, intracellular transport, and cell motility. During spermiogenesis, the final
leg of spermatogenesis, spermatids transform by a sequence of morphological modifications
to become elongated spermatozoa [63,64]. Moreover, in B. mori, microtubules contribute
to the assembly of the contractile ring in spermatocytes. The distribution of actin in live
B. mori spermatocytes is manipulated by varying configurations of microtubules, a critical
factor for cytokinesis [65,66]. Given this, in the DR, it stands to reason that genes related to
microtubule cytoskeleton organization find expression and likely play a significant role in
comprehensive spermatogenesis.

4. Conclusions

In this study, we performed a comprehensive transcriptome analysis to characterize
the genes expressed in B. mori testes. In particular, RNA-seq analysis performed by dividing
testes into SR and DR according to the germ cell differentiation stage was a novel approach
used for B. mori testes and provided detailed transcriptome profiles. Based on this profile,
we performed a comparative analysis with the D. melanogaster testis transcriptome, which
allowed us to identify genes specifically enriched in homologous regions across species. In
addition, the genes specifically enriched in the SR and DR were confirmed to be related to
the biological processes essential for each region. This research provides comprehensive
transcript information for the B. mori testis and bridges the knowledge gap between
studies on Drosophila and mammals by comparing it with advanced spermatogenesis
research in these organisms, thus providing a crucial foundation for future studies on
B. mori spermatogenesis.
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