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Simple Summary: Phytoseiid mite Neoseiulus barkeri is a widely recognized and commercially
accessible predator of many insects and pest mites, with a global presencE. In this study, we evaluated
the biological control potential of N. barkeri against Eotetranychus sexmaculatus, Eutetranychus orientalis
and Oligonychus biharensisin, which are major spider mites causing serious damage to rubber trees in
China. The biological performance of N. barkeri on these pests in comparison to that on Tyrophagus
putrescentiae, a storage mite used to mass-rear this predator, was determined in the laboratory. When
fed on these spider mites, N. barkeri could complete its life cycle and had a high fecundity on
E. orientalis or O. biharensisin. It performed better on E. orientalis than on other two spider mites. It
performed similarly on O. biharensisin and T. putrescentiae, in terms of its immature developmental
period, survivorship, fecundity and intrinsic rate of increase on these preys. The data provides
valuable insights into our understanding of the potential efficacy of N. barkeri as a biological control
agent for the management of pest spider mites on rubber trees.

Abstract: The spider mites Eotetranychus sexmaculatus, Eutetranychus orientalis and Oligonychus biharensisin
are severe pests of rubber trees in China. The predatory mite Neoseiulus barkeri has been found to be a
natural enemy of these three pests, while nothing is known about the biological performance of this
phytoseiid predator against these phytophagous mites. In this study, the development, survivorship,
reproduction, adult longevity, fecundity, sex ratio and population growth parameters of N. barkeri fed on
these pests were evaluated in comparison to the factitious prey Tyrophagus putrescentiae in the laboratory
at 25 ± 1 ◦C, 75 ± 5% relative humidity and a 12:12 (L:D) h photoperiod. The results showed that
N. barkeri could develop from egg to adult and reproduced successfully on the three preys. The survival
rate of N. barkeri from egg to adult was higher when fed on E. orientalis (100%) and T. putrescentiae
(100%) than when fed on O. biharensisin (93.60%) and E. sexmaculatus (71.42%). The shortest and longest
generation time for N. barkeri were observed on E. orientalis with 6.67 d and E. sexmaculatus with 12.50 d,
respectively. The maximum fecundity (29.35 eggs per female) and highest intrinsic rate of increase
(rm = 0.226) were recorded when N. barkeri fed on E. orientalis, while feeding on E. sexmaculatus gave
the minimum fecundity (1.87 eggs per female) and lowest reproduction rate (rm = 0.041). The values
of these parameters for N. barkeri evaluated on O. biharensisin were found to be comparable to those
obtained on T. putrescentiae. The sex ratio of N. barkeri progeny on the preys mentioned above, apart
from O. biharensisin, was female biased. According to the findings, N. barkeri could serve as a promising
biocontrol agent against E. orientalis and O. biharensisin, and possibly E. sexmaculatus on rubber trees.
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1. Introduction

Biological control is a cost-effective and environmentally friendly alternative to chem-
ical control in managing pest [1]. Currently, there are more than 230 species of natural
enemies available for augmentative biological control worldwide, with the Acari group,
which includes 30 species of commercially available natural enemies, occupying the second
largest group after hymenopteran parasitoids within the arthropods used in augmentative
releases [2]. Predatory mites from the family Phytoseiidae have proven to be the most
successful biocontrol agents from Acari used to control some of the most important pests
including two-spotted spider mite Tetranychus urticae, western flower thrips Frankliniella
occidentalis and whitefly Bemisia tabaci, which infest vegetables and ornamental crops world-
wide [3–5]. For example, in 2005, the predatory mite Amblyseius swirskii, originating from
the East Mediterranean coast, was introduced to the market, and by 2014, it had been
sold to over 50 countries and used successfully in pest management in many greenhouse
crops [3,6,7]. Most of the commercially used phytoseiid predatory mites belong to the
genera Amblyseius and Neoseiulus [8]. As one of the earliest commercial biocontrol agents,
N. barkeri has been available in the market for thrips control since 1981 [3,9]. Apart from
thrips, it is now widely used to effectively control several other small insect pests and
spider mites [10]. This predatory mite can be commonly found in citrus, mango, rubber
and other plants, as well as stored products [11,12]. Due to its economic significance, the
biological and ecological studies on N. barkeri have received a lot of attentioN. For instance,
several studies have investigated the effects of different temperatures and photoperiods
on the development and reproduction of N. barkeri [9,11–13], the impact of female age
on mating and food deprivation periods on reproduction of N. barkeri [14], the effects of
UV-B radiation on the survival and egg hatchability of N. barkeri [15] and the tolerance of
N. barkeri to high temperature and desiccation stresses [16]. Although a limited number
of studies have evaluated the biological performance of N. barkeri against phytophagous
mites and pests of crops [9,17–21], little is known about its potential ability to control pests
on trees. Further evaluation of the performance of N. barkeri against tree pests will provide
a better understanding of its suitability as a biocontrol agent and potentially enhance its
use in various fields.

The rubber tree, Hevea brasiliensis, is originally from the Amazon, which is a highly
valuable tree used in economical production of natural rubber latex [22]. Over recent
decades, rubber plantations have expanded rapidly across southern China, particularly
in Hainan Island, which possesses the largest rubber plantation area, accounting for ap-
proximately one quarter of the total flora [23]. Unfortunately, rubber trees are heavily
damaging by a variety of phytophagous mites, including six-spotted mite Eotetranychus
sexmaculatus, oriental red mite Eutetranychus orientalis and Oligonychus biharensisin in China
(Figure 1) [24,25]. These three spider mites cannot spin web but seriously affect the growth
and latex production of rubber trees, causing significant economic loss [26]. The control of
these spider mites currently relies primarily on acaricides, but the overuse of acaricides has
resulted in pesticide resistance among the spider mites, adverse effects on natural enemies,
and environmental pollution [24,27]. Since N. barkeri, a commercially produced predatory
mite, has been found to be a natural enemy of these phytophagous mites on the rubber tree
in China [28,29], it has application potential for controlling them.

In this study, we assessed the biological performance of N. barkeri on E. sexmaculatus,
E. orientalis and O. biharensisin in comparison to that on the mold mite Tyrophagus putrescen-
tiae. This species is a common mite found ubiquitously in soil, stored products and house
dust, which is often used as factitious prey for mass-rearing predatory mites, including
N. barkeri [13,30]. The development, survival and fecundity of N. barkeri on all four preys
were compared under laboratory conditions. The results provide valuable insights into
the potential use of N. barkeri in an augmentative biological control program aimed at
mitigating spider mite infestations in rubber trees.
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Figure 1. Three spider mites causing damage to rubber trees. (A) Eotetranychus sexmaculatus, (B) 
Eutetranychus orientalis and (C) Oligonychus biharensisin. 
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ure 1) were collected from rubber trees located in the suburbs of Danzhou city, Hainan 
province, China, and maintained in the laboratory for more than five generations. These 
three spider mites were fed with leaves of rubber trees, which were kept in an upside-
down position. To maintain leaf freshness, their host leaves from the middle stratum of 
the tree were placed on sterile water-absorbed cotton in a 25 cm × 18 cm disc. In line with 
their natural habits of damaging rubber tree leaves [26], leaf surface was placed upwards 
for rearing E. sexmaculatus and E. orientalis, while laid upside down for rearing O. biha-
rensisin. Every 3 days, fresh rubber tree leaves were replaced. Predatory and prey mites 
were maintained at 25 ± 1 °C, 75 ± 5% relative humidity and a 12:12 (L:D) h photoperiod. 

2.2. Experimental Unit 
The experimental unit is a homemade structure designed to resemble a stock culture 
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tioned in the center of the lower layer. A cotton thread is threaded through this hole, which 
is dipped in water contained within an enamel tray. Water was added every day to pre-
vent the cotton from drying out. The three-layer acrylic plates are secured together at the 
ends using long tail clamps, forming a closed feeding cell for mites. 

Figure 1. Three spider mites causing damage to rubber trees. (A) Eotetranychus sexmaculatus,
(B) Eutetranychus orientalis and (C) Oligonychus biharensisin.

2. Materials and Methods
2.1. Mites

A colony of the predatory mite N. barkeri used in this study was maintained in the
laboratory for over 50 generations within artificial climate chambers. As a factitious prey,
T. putrescentiae was utilized and fed with wheat bran for more than ten generations within
an artificial climate box (MGC-300H, Blue pard, Shanghai, China) that originated from
the laboratory’s stock culturE. The preys E. sexmaculatus, E. orientalis and O. biharensisin
(Figure 1) were collected from rubber trees located in the suburbs of Danzhou city, Hainan
province, China, and maintained in the laboratory for more than five generations. These
three spider mites were fed with leaves of rubber trees, which were kept in an upside-down
positioN. To maintain leaf freshness, their host leaves from the middle stratum of the tree
were placed on sterile water-absorbed cotton in a 25 cm × 18 cm disc. In line with their
natural habits of damaging rubber tree leaves [26], leaf surface was placed upwards for
rearing E. sexmaculatus and E. orientalis, while laid upside down for rearing O. biharensisin.
Every 3 days, fresh rubber tree leaves were replaced. Predatory and prey mites were
maintained at 25 ± 1 ◦C, 75 ± 5% relative humidity and a 12:12 (L:D) h photoperiod.

2.2. Experimental Unit

The experimental unit is a homemade structure designed to resemble a stock culture
rearing unit (Figure 2), composing of three layers of acrylic board. The upper layer is
39.5 × 39.5 × 1.5 mm. The lower layer is 39.5 × 39.5 × 4 mm. The middle layer features
a circular hole with a diameter of 18 mm in the center, which serves as a space for mite
activity. To supply the moisture needed for the mites, a small hole with a diameter of
1.5 mm is positioned in the center of the lower layer. A cotton thread is threaded through
this hole, which is dipped in water contained within an enamel tray. Water was added
every day to prevent the cotton from drying out. The three-layer acrylic plates are secured
together at the ends using long tail clamps, forming a closed feeding cell for mites.

2.3. Experimental Setup

The predatory mite N. barkeri was maintained in a rearing unit consisting of a Petri dish
(5 cm diameter) with a foam plastic pad (3 cm diameter, 1 cm thick) soaked in water, which
has a piece of filter paper (3 cm diameter) with plastic film (2 cm diameter) on it [31]. Each
rearing unit housed an adult female N. barkeri with sufficient amounts of E. sexmaculatus,
E. orientalis, O. biharensisin or T. putrescentiae provided as food. To ensure synchronized
eggs for the experiments, newly laid N. barkeri eggs less than 8 h old were collected and
transferred to the experimental unit using a fine camel hair brush. A single egg was
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placed in each experimental unit. Sixty eggs were tested in each biological replicatE. Three
biological replicates were conducted for each prey.
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Figure 2. A schematic diagram of the experimental unit. 1, lower layer of the acrylic board; 2, middle
layer of the acrylic board; 3, upper layer of the acrylic board; 4, cotton thread; 5, circular hole in the
middle layer of the acrylic board (a space for mite activity); 6, long tail clamp; 7, enamel tray for
containing water.

The hatching of N. barkeri eggs was observed every 8 h, at 7:00, 15:00 and 23:00
throughout the day. The hatchability and developmental period of the eggs were recorded.
Once the eggs hatched, they were provided with an abundant supply of different types
of prey as a food sourcE. The development, duration of immature stages and mortality of
N. barkeri were observed and recorded until they developed into adult mites. The newly
emerged predatory adult mites were paired to obtain couples of one male and one female,
which were subsequently placed into separate rearing units for individual cultivatioN. They
were supplied with different adult preys as a food sourcE. The longevity of the female
predators and the number of eggs laid by them were recorded daily until their death. The
eggs laid by the predators were collected and reared until adulthood, as described above,
in order to determine the gender of their offspring. All experiments were carried out in an
incubator under controlled conditions at 25 ± 1 ◦C, 75 ± 5% relative humidity, and a 12:12
(L:D) h photoperiod.

2.4. Data Analysis

Life table parameters of N. barkeri fed on various preys were determined by using the
survivorship and fecundity, following the methods outlined by Xu [32]. The net increase
rate R0 is calculated as the sum of lx multiplied by mx. The mean generation time (T) was
obtained as Σlx × mx × x/R0. The intrinsic rate of increase (rm) was computed using the
formula rm= lnR0/T. The finite rate of increase (λ) was calculated as λ = er

m and doubling
time (DT) as DT = ln2/rm. In these equations, x represents a unit interval of time, lx denotes
the age-specific survival rate (proportion of individuals alive at age x), mx connotes the
age-specific fecundity (the number of female progenies per female at age x), and e is a
constant of nature.

The data were prepared in Microsoft Excel and then subjected to statistical analysis
using SPSS v.22.0 (SPSS, Chicago, IL, USA). The effects of different prey types on the
development, mortality, longevity and fecundity of N. barkeri were analyzed using one-way
ANOVA, and significant differences between means were confirmed by applying Tukey’s
honestly significant difference (HSD) test. All the data were tested for the assumption
of normality and homoscedasticity before ANOVA tests. The sex ratios of the offspring
were compared using χ2 tests. The graphical illustrations were generated using Origin 7.5
(OriginLab Corporation, Northampton, MA, USA).
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3. Results
3.1. Development Period of Immature Stages

The predatory mite N. barkeri completed its development successfully when fed on
E. sexmaculatus, E. orientalis, O. biharensisin and T. putrescentiae. It showed no difference
in the egg (F = 0.269; df1 = 3, df2 = 173; P = 0.848) and protonymph (F = 0.246; df1 = 3,
df2 = 173; P = 0.864) developmental times when fed on the four different prey types (Table 1).
However, the developmental duration of larvae (F = 18.869; df1 = 3, df2 = 173; P < 0.001),
deutonymph (F = 2.827; df1 = 3, df2 = 173; P = 0.04) and total immature stage (F = 17.815;
df1 = 3, df2 = 104; P < 0.001) of N. barkeri were significantly influenced by preys. When
E. sexmaculatus was used as a food source, the development time of larval N. barkeri was
the slowest at 1.52 ± 0.11 d. In contrast, N. barkeri developed most rapidly when fed on
E. orientalis, taking only 0.67 ± 0.03 d to complete the larval stagE. Developmental period
for larvae fed on O. biharensisin and T. putrescentiae did not significantly differ (F = 2.119;
df1 = 1, df2 = 69; P = 0.150). The deutonymph developmental duration of N. barkeri was
observed to be significantly longer when fed on T. putrescentiae compared to those fed
the other three preys (F = 5.319; df1 = 3, df2 = 156; P = 0.002). The shortest and longest
generation time recorded for N. barkeri were 6.67 ± 0.08 d and 12.50 ± 0.08 d, when fed on
E. orientalis and E. sexmaculatus, respectively.

Table 1. Development duration (days ± S.D.) of Neoseiulus barkeri fed on different preys.

Species Egg Larva Protonymph Deutonymph Generation Time

Tyrophagus putrescentiae 1.65 ± 0.07 a 0.74 ± 0.04 bc 1.61 ± 0.10 a 1.79 ± 0.08 a 9.24 ± 0.06 b
Eutetranychus orientalis 1.67 ± 0.04 a 0.67 ± 0.03 c 1.57 ± 0.08 a 1.34 ± 0.09 b 6.67 ± 0.08 c
Oligonychus biharensisin 1.68 ± 0.07 a 1.00 ± 0.10 b 1.54 ± 0.23 a 1.09 ± 0.07 b 10.95 ± 1.25 a

Eotetranychus sexmaculatus 1.72 ± 0.06 a 1.52 ± 0.11 a 1.45 ± 0.11 a 1.25 ± 0.12 b 12.50 ± 0.08 a

The means within the same column followed by different letters are significantly different (p < 0.05).

3.2. Age-Specific Survival Rate

When N. barkeri fed on E. orientalis or T. putrescentiae, all its immature survived (Table 2).
When N. barkeri fed on O. biharensisin, mortality was observed at the deutonymph stage
of this predatory mite, but not at the egg and other immature stages. The eggs of the
predator fed on E. sexmaculatus survived, but an increasing mortality was observed during
the protonymph (F = 1067.077; df1 = 3, df2 = 8; P < 0.001) and deutonymph (F = 1323.392;
df1 = 3, df2 = 8; P < 0.001) stages. The accumulated survival rate of this predatory mite
from egg to adult was 93.60% for those fed on O. biharensisin and 71.42% for those fed on
E. sexmaculatus (F = 2101.222; df1 = 3, df2 = 8; P < 0.001).

Table 2. Survival rate (% ± S.D.) of immature stages of Neoseiulus barkeri fed on different preys.

Species Egg Larva Protonymph Deutonymph Egg-Adult

Tyrophagus putrescentiae 100.00 ± 0.00 a 100.00 ± 0.00 a 100.00 ± 0.00 a 100.00 ± 0.00 a 100.00 ± 0.00 a
Eutetranychus orientalis 100.00 ± 0.00 a 100.00 ± 0.00 a 100.00 ± 0.00 a 100.00 ± 0.00 a 100.00 ± 0.00 a
Oligonychus biharensisin 100.00 ± 0.00 a 100.00 ± 0.00 a 100.00 ± 0.00 a 93.55 ± 1.82 b 93.60 ± 2.05 b

Eotetranychus sexmaculatus 100.00 ± 0.00 a 100.00 ± 0.00 a 93.20 ± 3.05 b 76.81 ± 4.01 c 71.42 ± 4.30 c

The means within the same column followed by different letters are significantly different (p < 0.05).

3.3. Adult Longevity and Reproduction

Preys had a notable impact on the longevity of female adult of N. barkeri. The
longest recorded female adult longevity was observed in individuals fed on E. orientalis
(34.55 ± 3.02 d), followed by those fed on T. putrescentiae (19.10 ± 1.41 d), both of which
were significantly longer than those fed on O. biharensisin and E. sexmaculatus (approxi-
mately 15 d) (F = 26.441; df1 = 3, df2 = 138; P < 0.001) (Table 3). Additionally, the longest
female adult age of N. barkeri was recorded in individuals fed on E. orientalis (69 d), fol-
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lowed by those fed on T. putrescentiae (39 d), O. biharensisin (36 d) and E. sexmaculatus (30 d)
(Figure 3).

Table 3. Duration of adult (days ± S.D.), fecundity (eggs/female) and sex ratio (female:male) of
Neoseiulus barkeri fed on different preys.

Species Pre-Oviposition
Period

Oviposition
Period Longevity Fecundity Sex Ratio

Tyrophagus putrescentiae 3.45 ± 0.19 b 13.64 ± 10.2 a 19.10 ± 1.41 b 18.45 ± 1.62 b 1.95 ± 0.02 b
Eutetranychus orientalis 1.42 ± 0.21 c 13.32 ± 0.80 a 34.55 ± 3.02 a 29.35 ± 2.25 a 2.10 ± 0.06 a
Oligonychus biharensisin 5.64 ± 0.84 a 7.65 ± 0.60 b 14.71 ± 1.26 c 15.36 ± 1.11 c 1.00 ± 0.00 d

Eotetranychus sexmaculatus 6.56 ± 1.26 a 2.22 ± 0.65 c 14.88 ± 1.32 c 1.87 ± 0.50 d 1.70 ± 0.02 c

The means within the same column followed by different letters are significantly different (p < 0.05).
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Figure 3. Age-specific survival rate (lx) and age-specific fecundity (mx) of Neoseiulus barkeri fed on
different preys. (A) Tyrophagus putrescentiae, (B) Eutetranychus orientalis, (C) Oligonychus biharensisin
and (D) Eotetranychus sexmaculatus. lx is age-specific survival rate (proportion of individuals alive at
age x), and mx is age-specific fecundity (the number of female progenies per female at age x).

Different types of prey had significant effects on the reproductive parameters of
N. barkeri. The pre-oviposition period was shortest when fed on E. orientalis (1.42 ± 0.21 d),
followed by T. putrescentiae (3.45 ± 0.19 d) (F = 10.659; df1 = 3, df2 = 120; P < 0.001). Feeding
on these two preys resulted in a longer oviposition period of approximately 13.5 d (Table 3)
(F = 48.624; df1 = 3, df2 = 167; P < 0.001). In contrast, the longest pre-oviposition period
and shortest oviposition period for N. barkeri were observed when fed on E. sexmaculatus.
Regarding daily egg production, N. barkeri females fed on E. sexmaculatus did not show any
peak, while peaks appeared in females fed on E. orientalis, O. biharensisin and T. putrescentiae.
These peaks corresponded to 10 d, 5 d and 5 d after the emergence of adults (Figure 3).
The maximum reproductive ability was found when N. barkeri fed on E. sexmaculatus, with
eggs laid daily at 0.37 eggs per female per day. But the maximum reproductive ability of
N. barkeri was recorded as 1.2 eggs per female per day for 15 d when fed on T. putrescentiae.
Females of N. barkeri reared on E. orientalis had significantly greater fecundity, producing
29.35 ± 2.25 eggs per female, compared to those reared on other three preys (F = 102.457; df1
= 3, df2 = 168; P < 0.001) (Table 3). The fecundity of N. barkeri females fed on E. sexmaculatus
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was only 1.87 ± 0.50 eggs per femalE. As shown in Table 3, the sex ratios of N. barkeri
fed on E. sexmaculatus, E. orientalis and T. putrescentiae were all female biased (F = 222.170;
df1 = 3, df2 = 8; P < 0.001).

3.4. Life Table Parameters

Based on the developmental time, survivorship, fecundity and longevity of N. barkeri
when fed on different preys, population life table parameters of this predator were analyzed
and presented in Table 4. The results showed that the type of prey significantly influenced
the growth of the population of N. barkeri. The net increase rate, intrinsic rate of increase,
and finite rate of increase of N. barkeri reached their highest values of 29.650, 0.226 and 1.253,
respectively, when the predator was fed with E. orientalis. Conversely, these parameters
were lowest when N. barkeri were fed with E. sexmaculatus with values of 2.556, 0.041 and
1.042, respectively. When feeding on O. biharensisin and T. putrescentiae, the values of these
parameters for N. barkeri are comparablE. These results demonstrate that the population of
N. barkeri had significantly better growth when fed with E. orientalis, whereas E. sexmaculatus
had the most unfavorable impact on its population growth.

Table 4. Life table parameters of Neoseiulus barkeri fed on different preys.

Species R0 T rm λ DT

Tyrophagus putrescentiae 12.390 15.180 0.166 1.181 4.176
Eutetranychus orientalis 29.650 15.020 0.226 1.253 3.072
Oligonychus biharensisin 12.772 18.677 0.136 1.146 5.082

Eotetranychus sexmaculatus 2.556 22.944 0.041 1.042 16.947
R0, net increase rate; T, mean generation time; rm, intrinsic rate of increase; λ, finite rate of increase; DT, doubling timE.

4. Discussion

Since N. barkeri can feed on a diverse range of species, such as spider mites, eriophyid
mites, storage mites, broad mites, thrips, whitefly eggs, fungi and nematodes, and are
easy to mass-produce, it has become an ideal biocontrol agent widely used to regulate
populations of phytophagous pests in agricultural and ornamental crops [3,10,17,18]. In
this study, we firstly evaluated the biological performance of N. barkeri against three
phytophagous mites including E. sexmaculatus, E. orientalis and O. biharensisin, which cause
serious damage on rubber trees in China [24,25]. The results indicate that N. barkeri is
capable of completing its life cycle and successfully reproducing on these three mites.
However, we observed developmental mortality in this predatory mite when fed on
E. sexmaculatus and O. biharensisin, and a very low reproductive ability when fed on
E. sexmaculatus.

The durations of N. barkeri larval and protonymphal development were found to
differ significantly depending on the species of spider mites infesting rubber trees on
which they preyed upoN. Among the three different types of spider mites, the immature
developmental period of N. barkeri was observed to be the shortest (around 5.5 d) when
fed on E. sexmaculatus and O. biharensisin, comparable to or shorter than other prey mite
species such as Colomerus vitis (5.43 d), Aceria guerreronis (5.6 d), T. urticae (8.45 d) and thrips
(6.2 d) at 25 ◦C or higher temperatures, as evaluated until now [9,17–21]. When N. barkeri
fed on E. orientalis, the immature development period and generation time of N. barkeri
were the shortest found (5.25 d and 6.67 d, respectively), much lower than when compared
to T. putrescentiae, a preferred prey used for mass-rearing N. barkeri along with two other
studied preys [13,30].

The oviposition period, longevity and fecundity of female N. barkeri fed on E. orientalis
and O. biharensisin fall within the range of data obtained when it fed on other preys, such as
mites, thrips and whiteflies in previous studies [17,20]. However, when fed on E. orientalis,
female N. barkeri exhibited significantly longer oviposition period, greater longevity and
higher fecundity than those fed on O. biharensisin. Moreover, when compared to the
factitious prey, T. putrescentiae, the oviposition period and fecundity of female N. barkeri
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when evaluated against E. orientalis were also much longer or higher. On the other hand,
when the food source was E. sexmaculatus, the oviposition period and fecundity of female
N. barkeri were significantly shortened and reduced compared to previous studies using
other preys as food source (oviposition period ranged from 17.85 to 28.15 d, and fecundity
ranged from 20.50 to 40.25 eggs per female) [9,17–21]. Interestingly, it has been observed that
N. barkeri tends to prey on E. sexmaculatus more efficiently than on E. orientalis, O. biharensisin
or T. putrescentiae, with the highest number of E. sexmaculatus consumed by N. barkeri within
a day [29]. This suggests that the nutritional composition of E. orientalis is better suited for
the development and reproduction of N. barkeri than that of E. sexmaculatus. The latter may
contain harmful substances that negatively affects the fecundity of female N. barkeri.

Generally, the offspring sex ratio (percentage of females) of predatory phytoseiid mites
is strongly biased towards female [20,33–35]. Consistent with previous literatures, the
offspring sex ratios of N. barkeri fed on E. sexmaculatus, E. orientalis and T. putrescentiae
showed a female bias. However, when this predatory mite was fed on O. biharensisin, it did
not exhibit a preference for female progeny. The sex ratio of N. barkeri fed on E. orientalis
was higher than those observed for mites fed on other species including the date dust mite
Oligonychus afrasiaticus (66.6%), the tetranychid mite Tetranychus urticae (70%), the grape
erineum mite Colomerus vitis (73.33%) and the citrus flat mite Brevipalpus lewisi (56.67%), for
which the highest value reported is 80% [17,20,36]. It has been discovered that temperature
can influence the sex ratio of N. barkeri, such that the percentage of females is highest
at 35 ◦C and lowest at 25 ◦C when female predatory mites fed on C. vitis, T. urticae or
B. lewisi [17]. Therefore, if N. barkeri were fed on E. orientalis at a higher temperature, it is
probable that a larger percentage of female offspring would be produced.

Based on the life table parameters, it is evident that the growth of N. barkeri population
is significantly affected by various preys. The population growth rates for N. barkeri fed
on E. orientalis and E. sexmaculatus were found to be most promising and unfavorable,
respectively. This can be substantiated by the intrinsic rate of natural increase (rm), which
was 0.226 when fed on E. orientalis, while it was 0.041 on E. sexmaculatus. Notably, the
intrinsic rate of natural increase (0.226) and net increase rate (R0) (29.65) of N. barkeri when
fed on E. orientalis were much higher than those obtained on various preys at 25 ◦C or
even higher temperatures as per previous studies [17,20]. For instance, high values of these
two parameters in N. barkeri were evaluated in Thrips tabaci (R0 = 27.78, rm = 0.22) [8] and
T. urticae (R0 = 22.02, rm = 0.22) [21] at 25 ◦C. Moreover, these two parameters observed
in N. barkeri when fed on O. biharensisin were within the ranges (R0, 10.44–30.87, and rm,
0.09–0.27) previously reported on different preys [17,20], and are comparable to those
recorded on T. putrescentiae. The mean generation time (T) showed the lowest value for
N. barkeri when fed on E. orientalis compared to the values obtained in previous studies
(12.26–19.76 d) [9,17–21]. These data indicate that E. orientalis is highly suitable for the
population growth of N. barkeri.

According to the biological performance of N. barkeri when fed on E. sexmaculatus,
E. orientalis and O. biharensisin, this predatory mite has promising potential in controlling of
E. orientalis and O. biharensisin in the field, particularly with regard to protecting rubber
trees. This is primarily due to its ability to thrive well on these two types of pests, as well
as to complete its lifecycle and produce sufficient progeny that help support population
growth. Considering the favorable promising immature development time, reproductive
capability and population growth potential of N. barkeri on E. orientalis, it would be a
favorable prey for mass-rearing N. barkeri. Although N. barkeri is not well-suited for
establishing a population on E. sexmaculatus, it favors preying on this phytophagous
mite [29]. Furthermore, E. sexmaculatus, E. orientalis and O. biharensisin are all phytophagous
mites that damage rubber trees during the same time period [24–26]. Pollen grains of
some plants in the rubber forest can serve as alternative food sources for N. barkeri to
complete their life history and reproduce [19,36]. Therefore, N. barkeri can efficiently control
E. sexmaculatus in the field when other available prey is present along with pollen food.
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Additionally, it is reasonable to assume that N. barkeri will perform better under natural
environments with the presence of different spider mites and pollen food.

5. Conclusions

Our study represents the first attempt to evaluate the biological performance of the
predatory mite N. barkeri in controlling spider mites including E. sexmaculatus, E. orientalis
and O. biharensisin on rubber trees. Our results indicate that N. barkeri fed on E. orientalis and
O. biharensisin yielded positive results, including high rates of developmental, fecundity
and population parameters. These results exceeded or were comparable to data obtained
using T. putrescentiae for mass-rearing N. barkeri. Although N. barkeri was unable to sustain
its population on E. sexmaculatus due to its low reproductive rate, it exhibited considerable
predation when consumed on this prey resulting in completing its life cyclE. Our results
underscore the promising potential of N. barkeri in controlling spider mites including
E. orientalis and O. biharensisin, and possibly E. sexmaculatus, which could prevent substantial
damage to rubber trees. Our study can serve as a guide for further investigations aimed at
fully exploring the biocontrol potential and effectiveness of N. barkeri against spider mites
on rubber trees, subsequently being used in augmentative release programs.
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