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Simple Summary: People who use hiking trails may be exposed to blacklegged ticks (Ixodes scapularis,
also known as deer ticks), some of which are infected with the pathogens that cause Lyme disease,
anaplasmosis, and babesiosis. In areas that also have lone star ticks (Amblyomma americanum), an
added concern is acquiring the alpha-gal red meat allergy. Here, we describe an example of how
such tick-related risks can be assessed at the scale of a local community, while providing a baseline
for further monitoring. We used drag sampling along public trails to quantify tick abundance in
June 2020–2022 at 12 study sites in the town of Nantucket, Massachusetts, USA. One of these sites
was located on nearby Tuckernuck Island. Blacklegged nymphs were common at sites with moist
deciduous woodlands and rare in open grasslands. For several sites, we carried out pathogen testing
and found that ~10–20% of blacklegged nymphs on Nantucket were infected with the bacterium
that causes Lyme disease. Lone star ticks were extremely common on Tuckernuck Island and rare on
Nantucket Island, where they are expected to become more widespread in the future. Both tick species
represent a significant threat to public health and mitigating their impact is an ongoing challenge.

Abstract: Tick-borne diseases and a tick-induced red meat allergy have become increasingly common
in the northeastern USA and elsewhere. At the scale of local communities, few studies have docu-
mented tick densities or infection levels to characterize current conditions and provide a baseline for
further monitoring. Using the town of Nantucket, MA, as a case study, we recorded tick densities
by drag sampling along hiking trails in nature preserves on two islands. Nymphal blacklegged
ticks (Ixodes scapularis Say) were most abundant at shadier sites and least common in grasslands and
scrub oak thickets (Quercus ilicifolia). Lone star ticks (Amblyomma americanum L.) were common on
Tuckernuck Island and rare on Nantucket Island, while both tick species were more numerous in
2021 compared to 2020 and 2022. We tested for pathogens in blacklegged nymphs at five sites over
two years. In 2020 and 2021, infection levels among the four Nantucket Island sites averaged 10%
vs. 19% for Borrelia burgdorferi, 11% vs. 15% for Babesia microti, and 17% (both years) for Anaplasma
phagocytophilum, while corresponding levels were significantly greater on Tuckernuck in 2021. Our
site-specific, quantitative approach represents a practical example of how potential exposure to
tick-borne diseases can be monitored on a local scale.

Keywords: tick-borne pathogen; blacklegged tick; lone star tick; Lyme disease; anaplasmosis; babesiosis

1. Introduction

Lyme disease is the most common tick-borne disease in the USA, while other tick-
borne diseases such as babesiosis and anaplasmosis are increasing in frequency [1–4].
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Infected blacklegged ticks (Ixodes scapularis) carry the bacterial pathogen that causes Lyme
disease, Borrelia burgdorferi, and other disease agents, including Babesia microti (babesio-
sis), Anaplasma phagocytophilum (anaplasmosis; formerly human granulocytic ehrlichiosis),
Borrelia miyamotoi (relapsing fever), and Powassan virus [5,6]. Another public health con-
cern in the eastern USA is the spread of lone star ticks (Amblyomma americanum), which
are expanding their range northward and often co-occur with blacklegged ticks [7–10].
Although primarily a serious nuisance species, lone star ticks can transmit several disease
agents and can cause the alpha-gal “red meat” allergy in people [11–13].

Efforts to understand the underlying causes of tick-borne disease transmission involve
studies of tick abundance and infection status, as well as the roles that local wildlife species
play as bloodmeal hosts for ticks and as reservoirs in the pathogens’ life cycles [14–16].
Blacklegged ticks typically have a 2-year life cycle and require a single bloodmeal at each
active stage—as larvae in late summer, nymphs the following spring or summer, and adults
in fall or the following spring [6]. Larvae and nymphs feed on a range of vertebrate hosts,
including white-footed mice (Peromyscus leucopus), eastern chipmunks (Tamias striatus),
other rodents, shrews (Blarina brevicauda, Sorex cinereus), ground-foraging birds, and deer
(Odocoileus virginianus), while adult females feed primarily on deer [17–19]. Most cases
of Lyme disease, babesiosis, and anaplasmosis are due to bites from nymphs, which are
so small that they may not be noticed when taking a bloodmeal [20,21]. In contrast to
blacklegged ticks, lone star nymphs as well as adults seek bloodmeals during early summer,
larvae emerge in summer/early fall, and all three life stages feed primarily on deer [22,23].

Many large-scale surveys of human-biting ticks have been carried out across states or
regions [24–29], but relatively few published studies focus on local towns or counties [15,30–32].
Although aggregated data on tick abundances and infection levels across states or regions
are useful for documenting large-scale patterns of entomological risk, these data can be
problematic for characterizing community-level conditions, especially when sampling
efforts are spread over a large, heterogeneous area [33].

In this study, we sought to quantify tick abundance and infection status at the scale of a
local residential community using two islands that comprise the town of Nantucket, MA, as
a case study. Our findings document current conditions and provide a baseline for tracking
changes over time, for example in response to extreme weather conditions, changes in
host species abundances, or the arrival of new tick species and tick-borne pathogens. We
focused on blacklegged ticks and lone star ticks, which are common on Tuckernuck Island
but rare on Nantucket Island. We designed the study to rely on a small field crew to record
tick densities by drag sampling along public hiking trails during the month of June. We
quantified the infection prevalence of blacklegged nymphs at a total of five sites, and to aid
in the design of future monitoring efforts, we determined whether infection levels differed
significantly among the four study sites on the island of Nantucket.

Despite a large body of previous research documenting tick-borne diseases on Nan-
tucket, e.g., [20,23,34–40], quantitative surveillance of the abundance of infected black-
legged nymphs has not been reported. Moreover, few previous studies have documented
the early establishment of lone star ticks as they spread to new locations along the coast of
New England [11,41,42]. To our knowledge, this is the first published report of lone star
establishment on Nantucket Island.

A further consideration for choosing to study these islands is that small coastal islands
are attractive sites for testing various types of wildlife interventions to prevent tick-borne
diseases, e.g., [43,44], and baseline data are needed to gauge the efficacy of such efforts.
Specifically, Buchthal et al. [45] proposed releasing white-footed mice that are genetically
engineered to be resistant to B. burgdorferi on Nantucket and Martha’s Vineyard [45,46].
They plan to carry out preliminary field trials with genetically engineered mice on small
islands in the region [45].
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2. Materials and Methods
2.1. Study Sites

Study sites were located on the islands of Nantucket (123 km2) and Tuckernuck
(4.2 km2) in the town of Nantucket, Nantucket County, Massachusetts (Figure 1). Nantucket
Island has a population of ~15,000 people year-round, increasing to ~60,000 residents and
summer visitors in July and August [47], while Tuckernuck Island has <40 homes, all of
which are seasonal. Deer densities on both islands are considered high, roughly estimated
as >20 deer/km2 on Nantucket [48]. Geologically, these islands originated as part of a
terminal moraine deposited ~15,000 years ago during the Wisconsin Glaciation [49]. Their
topography includes upland glacial moraines, sandy outwash plains, freshwater wetlands,
salt marshes, and barrier beaches. Soils are generally sandy, low in nutrients, and acidic,
favoring plant communities dominated by oaks, pines, and ericaceous shrubs.
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Figure 1. Map of nine study sites established on Nantucket Island and one on Tuckernuck Island in
2020. In 2021, two sites were added on Nantucket to document invading Amblyomma americanum
(Long Pond and Clark’s Cove); tick symbol shows sites where A. americanum densities were measured.
Inset map shows eastern Massachusetts.

In 2020, we established 10 long-term study sites where it was possible to sample
ticks along established trails in a variety of habitats, most of which were located on
conservation preserves, and one of which was on Tuckernuck Island (Figure 1, Table 1,
Supplementary Figure S1). These study sites were not intended to be representative of all
tick habitats on the islands; rather, they were chosen as examples of common habitats that
will serve as accessible sites for long-term monitoring of tick populations. Our choice of
study sites across Nantucket included areas and habitats where lone star ticks are expected
to spread in the future. On Tuckernuck, we did not include more than one site due to the
island’s small size. In 2021, two additional sites were established on western Nantucket
where lone star ticks had been observed. At all 12 study sites, property owners maintained
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the trails by annual brush-cutting as needed, and trails with grass were mowed once or
twice during our fieldwork.

Table 1. Characteristics and locations of study sites on Nantucket and Tuckernuck islands. Asterisks
indicate sites where infection prevalence was determined for blacklegged nymphs. See Figure 1 for
map of study sites.

Site Name Year Sampled Vegetation Trail Distance
(km) Lat/Long at 0 km Property Owner

Tuckernuck Island *
(1 site) 2020–2022 Mature oak woods,

high mesic shrubs 1.65 41◦18′13.827′′ N,
70◦15′23.997′′ W

Tuckernuck Land Trust,
private property

Nantucket Island
(11 sites)
• Stump Pond *

2020–2022 Mixed woods, high
mesic shrubs 0.96 41◦17′13.184′′ N,

69◦59′43.139′′ W

Nantucket Islands Land
Bank, Nantucket
Conservation Foundation

• UMass Field Station *
2020–2022 Successional shrubs

and grass 0.54 41◦17′33.409′′ N,
69◦59′43.139′′ W

Nantucket Conservation
Foundation

• Norwood Farm *
2020–2022 Mixed woods, high

mesic shrubs 0.94 41◦17′25.567′′ N,
70◦1′26.811′′ W

Nantucket Conservation
Foundation

• Jewel Pond *
2020–2022 Mixed woods and

scrub oak 0.94 41◦17′19.029′′ N,
69◦59′27.947′′ W Mass Audubon

• Pine Woods—Lovers
Lane 2020–2022 Mixed conifer forest,

shrub border 0.50 41◦15′38.205′′ N,
70◦4′47.223′′ W Commonwealth of MA

• Pine Woods—Water
Tower 2020–2022 Open/disturbed

pitch pine woods 0.64 41◦16′37.853′′ N,
70◦4′15.578′′ W Commonwealth of MA

• South Pasture
2020–2022

Low and
medium-height
scrub oak

1.10 41◦15′6.790′′ N,
70◦0′42.788′′ W

Nantucket Conservation
Foundation

• Barrett Farm Rd
2020–2022 Grassland adjacent to

high mesic shrubs 0.78 41◦16′51.682′′ N,
70◦8′42.164′′ W

Nantucket Islands
Land Bank

• Linda Loring
2020–2022 Grassland with low

heath shrubs 1.50 41◦17′32.323′′ N,
70◦10′11.418′′ W

Linda Loring Nature
Foundation

• Long Pond (lone star
tick site) 2021, 2022 Grassy path through

high mesic shrubs 1.40 41◦16′19.079′′ N,
70◦10′53.758′′ W

Nantucket Islands
Land Bank

• Clark’s Cove (lone
star tick site) 2021, 2022 Grassland with low

heath shrubs 0.40 41◦15′54.623′′ N,
70◦9′51.466′′ W

Nantucket Conservation
Foundation

2.2. Drag Sampling

At each site, we sampled ticks along the edges of hiking trails that had leaf litter
and/or low vegetation on and bordering the trail. The distances over which sampling was
performed ranged from 0.40 km to 1.65 km per site (Table 1), depending on the local trail
system and generally conforming to CDC recommendations to sample along a distance of
at least 750 m for estimating tick densities [50]. Shrub thickets and a dense shrub understory
in many wooded habitats precluded the use of replicated sampling within multiple plots,
as used in other studies, e.g., [15,51,52]. Sampling along public trails allows our sites to be
relocated easily by future investigators, including site managers and citizen scientists.

To quantify the densities of blacklegged nymphs and lone star ticks, we used a com-
mon drag-sampling method that involved dragging a white cotton cloth over known
distances [53–55]. Questing ticks cling to the drag cloth and are easily removed with
silicone putty or a lint roller. Many questing ticks are likely to remain uncaptured after
a single drag sweep [56] and a large fraction of the total population is not expected to be
questing at any given time [57]. Nonetheless, sampling questing ticks with drag cloths is a
widely accepted procedure for estimating relative densities [50].
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A 1 m2 piece of white, rubberized flannel cloth with small lead weights sewn into
the distal corners was dragged slowly over leaf litter and low vegetation along the edge
of the trail and checked every 12 m [58]. Ixodes nymphs were removed from the drag
cloth, counted, and those from five high-density sites were frozen for DNA analyses.
If needed, a few extra sweeps were carried out on additional days to obtain a total of
300–400 nymphs for DNA analyses from each of the five high-density sites. We chose these
target sample sizes to allow for site-specific confidence intervals of approximately ±5%
infection prevalence each year. Lone star nymphs and adults captured from these same
drag samples also were counted, as were clusters of at least 50 lone star larvae per 12 m
drag sweep.

Drag sampling was carried out between 3 and 30 June 2020, 1 and 26 June 2021,
and 29 May and 27 June 2022, coinciding with the period of peak blacklegged nymphal
abundance in coastal Massachusetts [20]. At any given site, the number of questing ticks
collected during drag sampling can be highly variable from day to day [52,59]. Several
steps were taken to standardize our sampling methods. First, the length of the trail at
each site would be expected to cross multiple small clusters of questing nymphs, thereby
representing average local densities and compensating for “hot spots” where deer may
have rested [39,60]. We sampled each site on five days per year and alternated the order
and times of day when each site was sampled. To reduce variation due to unfavorable
conditions for questing, we used tick densities from the four days of sampling that had
the greatest densities at each site to calculate average densities per km of trail per site. All
fieldwork was conducted by the same person (A. Snow), and sampling was carried out
when the vegetation was dry, typically before noon and after 1500 h to avoid mid-day
heat on sunny days. Previous studies have shown that lone star ticks often quest during
drier periods of the day than blacklegged ticks [61], so early afternoon sampling was
included at study sites with lone stars. Adult I. scapularis were uncommon and, therefore,
adult densities are not reported (no larvae were observed). Likewise, Ixodes nymphs were
uncommon at Long Pond and Clark’s Cove, Nantucket, where lone star ticks were sampled
in 2021 and 2022, so Ixodes densities are not reported for these two sites.

2.3. DNA Analyses for Species Identification and Pathogen Prevalence

Ixodes nymphs were transferred to vials and stored in a freezer for DNA analyses,
which were performed on a subset of all sampled Ixodes nymphs from each of the five sites
(Table 1). We analyzed DNA from >330 nymphs per site per year, for a total of 4212 nymphs.
Ixodes nymphs were stored at −20 ◦C, sorted into individual tubes, and total nucleic acids
were extracted from each tick using the Masterpure Complete DNA and RNA Purification
Kit (Biosearch Technologies, WI, USA) following the manufacturer’s protocols.

Tick species identification was determined using Taqman real-time PCR assays [62,63];
Supplementary Table S1). Briefly, a tick gene was used as an internal control for each sample,
and differentiation of I. scapularis vs. I. dentatus was performed using assays specific to
each tick species. A subset of nymphs that were collected in 2021 for DNA analyses were
photographed under a Leica stereo-dissecting microscope to view morphological traits of
DNA-confirmed samples of each species. For nymphs of both Ixodes species, we tested
for the presence of six disease agents: B. burgdorferi (Bb), B. miyamotoi (B miya), B. mayonii,
Babesia microti (Bm), A. phagocytophilum (Ap), and the Ehrlichia-muris-Like Agent (EMLA)
using the methods in Xu et al. [62,63]. Probes and primers used for pathogen identification
are listed in Supplementary Table S1. We did not identify which Ap variants were present
in our Ap-positive samples (see Section 4).

We report 95% confidence intervals to compare nymphal infection prevalence among
sites, between islands, and between years [64]. For nymphs infected with two or more
pathogens, we tested for positive or negative associations between three pairs of pathogens
(Bb+Bm, Bb+Ap, Bm+Ap) using Chi-square tests. If a nymph had three pathogens, it was
included in analyses with each of these pairs for association tests. Expected frequencies
for each pair were calculated as the product of each pathogen’s overall frequency. We
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also used Chi-square tests to determine whether triple-infected nymphs occurred more
often than expected based on each pathogen’s overall frequency. The density of infected
nymphs (DIN) was calculated as the product of the density of nymphs (DON) and nymphal
infection prevalence (NIP).

2.4. Vegetation Surveys

We surveyed plant communities at each site to record current conditions and provide
a baseline for future researchers. Plant communities along the selected trails occurred in a
complex mosaic due to microsite variation in soil moisture, land use history, and manage-
ment practices. To characterize plant communities, we recorded the presence of common
woody species within a radius of 1m on each side of the trail at ~15 m intervals. At each of
these observation points, we also recorded the presence of woody species with branches
extending over the trail, the presence of tall shrubs (>2 m high) immediately adjacent to the
trail (also providing shade), and the presence of open grassland areas lacking shade. These
data were used to estimate the frequencies of shaded trails, common woody species, and
adjacent grassland areas at each site (Supplementary Table S2, Supplementary Figure S2).

3. Results
3.1. Tick Species Other than I. scapularis and A. americanum

We did not encounter Dermacentor variabilis (dog ticks) at the study sites, although
they have been observed on Nantucket in the past [65]. A few nymphs and adults of
rabbit-specific Haemaphysalis leporispalustris were collected each year (data not shown). No
other tick species were identified with the exception of Ixodes dentatus, as noted below.

At the five study sites for which nymphal Ixodes DNA was tested, a few nymphs were iden-
tified as I. dentatus rather than I. scapularis (Supplementary Table S3, Supplementary Figure S3).
In 2020, 10% of Ixodes nymphs from Norwood Farm were I. dentatus, as were 6% of those
from the UMass Field Station, while only a few were found at the other three sites. A
similar pattern was seen in 2021, with 4% identified as I. dentatus at Norwood Farm and
10% at UMass Field Station, and very few, if any, collected at the other three sites. We
detected B. burgdorferi (Bb), Babesia microti (Bm), and A. phagocytophilum (Ap) in a few of
these I. dentatus nymphs (Supplementary Table S3).

3.2. Densities of Ixodes Nymphs

Because we did not attempt to confirm the species identification of all observed
Ixodes nymphs using DNA markers, we refer to these nymphs simply as “Ixodes” when
summarizing the drag-sampling results. We presume that the vast majority of Ixodes
nymphs were I. scapularis, especially at Stump Pond, Jewel Pond, and Tuckernuck Island,
where <1–2% were I. dentatus based on DNA analyses (Supplementary Table S3). We
typically captured ~0–5 Ixodes nymphs along each 12 m section of the sampled trails, or
occasionally up to ~10 nymphs per section at sites with the highest densities. Therefore,
our reported densities at a given site represent nymphs that were collected across many
microsite locations along the length of the sampled trails, averaged across four days of
sampling per year.

Average nymphal densities were generally highest in 2021 and lower in 2020 and
2022, although not every site showed this pattern (Figure 2). Across the 10 study sites, we
observed 37% more Ixodes nymphs/km in 2021 compared to 2020, and 9% fewer in 2022
compared to 2020. The relative nymphal density across the 10 sites was roughly consistent
year-to-year, e.g., Stump Pond and UMass Field Station had the two highest densities each
year while Linda Loring had the lowest (Figure 2).
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Figure 2. Density of Ixodes nymphs at 9 sites on Nantucket and one site on Tuckernuck Island in
2020–2021. Average of 4 sampling days per site per year (±1 SE).

Sites with higher nymphal densities tended to have more shade than those with lower
densities (Supplementary Table S2, Supplementary Figure S2). Scrub oak (Quercus ilicifolia)
was common as a canopy species at Stump Pond, Norwood Farm, and Jewel Pond, while
black oak (Q. serotina) and white oak (Q. alba) were dominant canopy tree species on
Tuckernuck (Supplementary Table S2). Common shrub species at sites with high Ixodes
densities included black huckleberry (Gaylusaccia baccata), viburnum (Viburnum dentatum),
and beaked hazelnut (Corylus cornuta) in the understory of wooded areas, and bayberry
(Morella caroliniensis) in sunnier, open microsites. Five study sites had lower nymphal
densities, including the two Pine Woods sites, where much of the forest floor was carpeted
with pine needles, and South Pasture, where scrub oak grows in a low, dense, nearly
monospecific scrub thicket on dry, sandy soils. The lowest nymphal densities were found
at the two grassland sites, Barrett Farm Road and Linda Loring, where no tree cover was
present along the trails (Supplementary Figure S2).

3.3. Densities of Lone Star Ticks

Lone star nymphs and adults were very abundant on Tuckernuck (Figure 3A). In 2021,
lone star densities on Tuckernuck increased by 3.2-fold for nymphs and 2.3-fold for adults
compared to 2020. Likewise, the total number of 12m sweeps yielding clusters of >50 lone
star larvae increased from 6 in 2020 to 27 in 2021. In 2022, lone star nymphal densities
decreased somewhat and were intermediate between densities observed in 2020 and 2021,
while a total of 24 sweeps had clusters of >50 lone star larvae.
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Lone star ticks were extremely rare at the original nine study sites on Nantucket. At
Linda Loring, we found 1 nymph in 2020, 43 nymphs and 2 adults in 2021, and 3 nymphs
and 13 adults in 2022 (totals over 4 days of sampling). None were found at the UMass Field
Station, Stump Pond, or Norwood Farm, and only 1–5 lone star nymphs or adults were
found at the other five original study sites in 2020–2022. On 16 June 2021 and 15 June 2022,
we also searched for lone star ticks by drag sampling along ~1 km at Coskata Woods in
eastern Nantucket and did not find any.

In 2021, we established two new study sites on western Nantucket where locally
abundant lone star ticks had been reported by colleagues (Table 1, Figure 1). At the Long
Pond site, the wide, unshaded, mowed trail was bordered by tall shrubs and occasional
trees (Quercus ilicifolia, Prunus serotina). The Clark’s Cove site consisted of a mowed trail
through open grassland, adjacent to dense shrub thickets. At both sites, more nymphs than
adults were observed in 2021, and more adults than nymphs in 2022 (Figure 3B).

3.4. Infection Prevalence in Ixodes scapularis

None of the 4071 I. scapularis nymphs tested were positive for EMLA (Ehrlichia-muris-Like
Agent) or Borrelia mayonii, so these pathogens will not be considered further. Borrelia miyamotoi (B
miya) infected <5% of nymphs at all five sites in both 2020 and 2021 (Figure 4). Borrelia burgdorferi
(Bb), Babesia microti (Bm), and A. phagocytophilum (Ap) were common at all sites in both
years. We used 95% CI to identify significant differences in the infection prevalence for Bb,
Bm, Ap, and B miya across sites and years (Figure 4, N = 330–458).

3.4.1. Comparisons among Sites on Nantucket

For Bb and Bm, infection levels were generally similar across sites within years
(Figure 4). Bb prevalence increased significantly from 2020 to 2021 at three of the four
sites. Ap infection levels were similar across sites, although somewhat lower at Stump
Pond, and were consistent between years. At all sites on Nantucket, coinfections with Bb
and Bm were significantly more common than expected due to chance (Table 2; p < 0.05 or
p < 0.01, Chi-square tests). These two pathogens co-occurred in 3–4% of nymphs at each
site in 2020 and 6–9% of nymphs in 2021. Coinfections with Ap were rare and were no
more or less common than expected by chance.
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Table 2. Percent of all Ixodes scapularis nymphs with coinfections at each site on Nantucket and
Tuckernuck islands in 2020 and 2021. Sample sizes for percentages are in parentheses. Pathogen
abbreviations are Bb (Borrelia burgdorferi), Bm (Babesia microti), and Ap (Anaplasma phagocytophilum).
Coinfections with Borrelia miyamotoi are not included as a separate category due to small sample sizes.
Where * p < 0.05 or ** p < 0.01 in Chi-Square tests, coinfections were more common than expected.

Island Site Year Total
Nymphs

Percent
Infected

Co-
Infected Bb+Bm Bb+Ap Bm+Ap Bb+Bm+Ap

Nantucket All sites 2020 1614 35 7 3 * 1 1 0.6
(562) (108) (51) (19) (18) (9)

Stump Pond 2020 448 31 8 3 * 2 2 1
(141) (35) (14) (8) (10) (3)

UMass Field Stn 2020 398 34 6 3 * 1 1 1
(135) (25) (13) (3) (4) (2)

Norwood Farm 2020 338 38 5 2 * 1 1 1
(128) (17) (8) (3) (2) (3)

Jewel Pond 2020 430 37 7 4 * 1 0.5 0.2
(158) (31) (16) (5) (2) (1)

Nantucket All sites 2021 1683 41 11 7 ** 2 1 1
(685) (187) (116) (29) (17) (15)

Stump Pond 2021 398 42 13 9 ** 0 2 2
(169) (52) (34) (1) (7) (6)

UMass Field Stn 2021 412 42 13 7 ** 3 1 1
(175) (52) (27) (14) (4) (5)

Norwood Farm 2021 458 46 10 6 ** 2 1 0.4
(210) (48) (29) (8) (6) (2)

Jewel Pond 2021 415 32 8 6 ** 1 0 0.5
(131) (35) (26) (6) (0) (2)

Tuckernuck Tuckernuck 2020 330 25 6 5 * 1 1 0
(82) (21) (15) (2) (4) (0)

Tuckernuck 2021 444 54 25 8 ** 7 * 2 7 **
(241) (109) (37) (29) (10) (31)
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3.4.2. Comparisons between Nantucket and Tuckernuck

For ease of presentation, we averaged the infection prevalence for the four sites on
Nantucket for each pathogen in each year (Figure 4). Average infection prevalence on
Nantucket was 10% vs. 19% (2020–2021) for Borrelia burgdorferi, 11% vs. 15% (2020–2021)
for Babesia microti, and 17% (both years) for Anaplasma phagocytophilum. Frequencies of all
three pathogens increased dramatically on Tuckernuck in 2021 compared to 2020, from 9%
to 29% for Bb, 9% to 24% for Bm, and 13% to 32% for Ap. Based on non-overlapping 95% CI
levels, the increased prevalence observed in 2021 was significant for Bb on Nantucket and
for all three pathogens on Tuckernuck (Figure 4). Densities of infected nymphs (DIN) also
were greater in 2021 compared to 2020 due to increases in both abundance and infection
prevalence (Table 3).

Table 3. Density of infected Ixodes nymphs (DIN) per km of trail on each island in 2020 and 2021.
DIN is the product of the density of nymphs (DON) and nymphal infection prevalence (NIP). For
Nantucket, DON and DIN are based on the average of four study sites for which NIP was determined.
Sample sizes as in Figure 2 (DON) and Table 2 (NIP). Pathogen abbreviations as in Figure 4.

Location Year DON Bb DIN Bm DIN Ap DIN B miya DIN

Nantucket 2020 108 11 12 18 3
2021 138 27 20 23 3

Tuckernuck 2020 62 6 6 8 0
2021 140 40 33 45 2

Coinfections were found in an average of 7% of nymphs on Nantucket and 6% on
Tuckernuck in 2020 vs. 11% on Nantucket and 25% on Tuckernuck in 2021 (Table 2). In
2020 and 2021, respectively, an average of 37% and 41% of nymphs that were Bb-positive
nymphs on Nantucket were coinfected with Bm, while 52% and 54% of Bb-positive nymphs
on Tuckernuck were coinfected with Bm.

4. Discussion
4.1. Densities of Ixodes Nymphs

Mean densities of Ixodes nymphs (presumably I. scapularis; see Section 3) were greatest
at sites with the most tree canopy, shade, and shrub cover, and lowest in open grasslands,
consistent with many previous studies in the northeastern USA [66]. Four of the five
high-density study sites had abundant oaks, which provide acorn mast for wildlife as
well as shade and leaf litter for ticks. At the UMass Field Station, we found high densities
of nymphs despite a dearth of mature tree cover, but much of the trail was shaded by
tall shrubs.

Previous studies also are consistent with our results showing greater nymphal densities
at four sites dominated by a mix of oaks and other deciduous species compared to two sites
dominated by conifers [66–68]. One low-density site on Nantucket, South Pasture, was
dominated by low-growing scrub oak, which offered shade and shelter from wind, but had
dry soil and low plant diversity (Supplementary Table S2). Two grassland sites with very
little shade, Linda Loring and Barrett Farm Road, had the fewest nymphs/km. Our findings
from the grassland sites are consistent with common public health recommendations for
keeping lawns and walkways mowed and clear of brush and leaf litter to minimize exposure
to blacklegged nymphs [4,69].

During the three years of this study, nymphal densities peaked in 2021 compared to
2020 and 2022 at several sites. Many previous studies have shown year-to-year variation in
tick densities. Stafford et al. [30] sampled woodland habitats at the same 8–10 residential
sites in southern Connecticut from 1989–1997 and reported a 4.7-fold variation in nymphal
densities over the years. In Dutchess County, NY, Ostfeld et al. [70] reported 2–3-fold more
nymphs in forested sites in 1994 compared to the previous two years. These authors and
others have tested for correlations between blacklegged tick densities and factors such as



Insects 2023, 14, 628 11 of 18

acorn production, the abundance of bloodmeal host species, and extremes of temperature or
precipitation [15,71]. A cold, dry winter in the previous year may result in greater nymphal
mortality [27,72], while extremely dry and hot weather in summer can cause nymphs to
spend less time questing [73]. Ostfeld et al. [74] reported increases in nymphal densities
two years after masting in oak-dominated forests, which they attributed to population
increases in white-footed mice and eastern chipmunks.

4.2. Densities of Lone Star Ticks

The expanding range of lone star ticks in New England now includes populations
in coastal New York, Connecticut, Rhode Island, Massachusetts, and Maine [10,11,22,42].
Compared to blacklegged ticks, lone star ticks lay more eggs per female (~5000 vs. 3000),
are more tolerant of desiccation, have better nymphal survival, are more attracted to CO2
emitted by hosts, quest for bloodmeals in more habitats, move greater distances, move
more quickly, and do not rely on small mammals for bloodmeals during their immature
stages, instead feeding primarily on deer [11,61,66,75].

Lone star abundance can far exceed that of blacklegged ticks [7,68], as we observed
each year on Tuckernuck Island. Lone star ticks have been a noticeable nuisance on
Tuckernuck since at least 2015, yet they are still rare on Nantucket. The sharp contrast
between these two islands in lone star densities is puzzling, given their close proximity
(<4 km apart), similar habitats, and similar weather conditions. Lone star larvae and
nymphs can disperse via birds [76], but they do not seem to spread evenly as they disperse
to new areas. Similar to Tuckernuck, isolated populations of lone star ticks have been found
on Manresa Island, CT, and Prudence Island, RI [8,22]. Lone star populations at Long Pond
and Clark’s Cove on Nantucket exhibited year-to-year fluctuations in the relative densities
of nymphs vs. adults during the sampling period, but they are now relatively common at
these two sites. Clusters of lone star larvae have been found nearby [77], confirming that
females are reproducing. We expect that eventually lone star ticks will become more widely
established across Nantucket, but it is not possible to predict how long this could take.

Lone star ticks do not carry B. burgdorferi, and their infection levels for causal agents of
tularemia, ehrlichiosis, heartland virus disease, and infection with Borrelia lonestari appear
to be low in Massachusetts [11,78]. Only 2% of lone star ticks from Massachusetts that were
submitted to the TickReport public testing program in 2015–2021 were positive for a tested
pathogen (N = 464, [78]). In contrast, Williams et al. [44] tested 100 lone star adults and
104 nymphs from Manresa Island, CT, and found disease agents for ehrlichiosis in 47% of
adults and 9% of nymphs. A major health concern regarding lone star ticks is acquiring the
alpha-gal allergy to red meat [13].

4.3. Infection Prevalence in Ixodes scapularis Nymphs

Nymphal infection levels are related to the local abundance of pathogen reservoir species
that are available to larvae. Only four terrestrial mammal species have been observed on
Tuckernuck: Deer, white-footed mouse, eastern cottontail rabbit (Sylvilagus floridianus), and
meadow vole (Microtus pennsylvanicus). These species also occur on Nantucket, along with
the northern short-tailed shrew (Blarina brevicada), eastern gray squirrel (Sciurus carolinensis),
and several other species, but not the eastern chipmunk (Tamias striatus [46]. Bb and Bm can
be transmitted to I. scapularis by white-footed mice, shrews, and other species [36,79–83],
but see [39]. For A. phagocytophilum, variant-ha (Ap-ha) is transmitted by white-footed mice
and causes human anaplasmosis, while variant-1 (Ap-v1) is associated with deer and other
ruminants and is not known to be pathogenic in humans [32,84–87].

Many studies report nymphal infection prevalence (NIP) for common pathogens of
I. scapularis, but smaller sample sizes and the different scales over which sampling occurred
can make it challenging to compare other findings with those reported here. With this
caveat in mind, we note that average infection levels for Bb across the Nantucket sites
were generally comparable to the range of values reported in other northeastern states,
e.g., [32,88,89]. We found that Bb NIP nearly doubled at three sites on Nantucket and
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tripled on Tuckernuck in 2021 (Figure 4). Year-to-year variation in Bb NIP also has been
found in previous studies [29,30,90,91]. In our study, the average Bm NIP across sites was
11% in 2020 and 15% in 2021 (Figure 4), similar to several previous studies [80,91,92], while
values of only ~3–5% Bm NIP were found in others [28,32,88,89,93]. We found that Ap NIP
averaged 17% on Nantucket in both years. However, Ap NIP on Tuckernuck jumped from
13% in 2020 to 32% in 2021, similar to increases seen for Bb and Bm on this island (Figure 4).
Other studies report values of Ap NIP below 10%, e.g., [32,92].

Several publications from the northeastern USA reported B. burgdorferi (Bb) as the
most common pathogen carried by blacklegged nymphs, usually occurring much more
frequently than Babesia microti (Bm) or A. phagocytophilum (Ap) [26,28,32,88,89,92,93]. In
contrast, our data show that the prevalence of Bm and Ap were generally similar to or
greater than the prevalence of Bb within years (Figure 4; also seen by Jordan et al. [91]. To
some extent, this difference could be related to how long the pathogens have been common
in different regions. Babesiosis and Lyme disease have been endemic on Nantucket for at
least 40 years [20,34], unlike other areas of New England and Canada where increases in
the range and prevalence of Bb have preceded the more recent spread of Bm [1,36,94,95].
Anaplasmosis was recorded on Nantucket in 1994 [37] and is still considered to be an
emerging disease in much of the northeastern USA [3].

Although we found comparable nymphal infection levels for Bb, Bm, and Ap in
this study, we note that Lyme disease is typically much more common than babesiosis
and anaplasmosis where these three disease agents co-occur [1,3]. To explore this pattern
further for residents of Nantucket, we queried the Massachusetts Virtual Epidemiological
Network [96] and found that cases of Lyme disease were reported 4.5×more often than
babesiosis and 10× more often than anaplasmosis in 2017–2021. Many factors could be
responsible for lower numbers of reported cases of babesiosis and anaplasmosis, but we
suspect that a portion of the Ap-infected nymphs on Nantucket may have the Ap-v1 variant.
Further research focusing on the frequency of the human infective Ap-ha variant vs. non-
infective Ap-v1 in both field-collected ticks and passive surveillance from tick-testing
services is needed to better understand this disease risk [84,87,97,98].

4.4. Coinfections in Ixodes scapularis Nymphs

Nymphs that are infected with more than one pathogen pose an elevated health
risk for people who acquire more than one disease from them [99]. On Nantucket, 3–7%
of nymphs were coinfected with Bb+Bm in 2020 and 2021, respectively, and 37–41% of
nymphs that were Bb-positive also tested positive for Bm, posing a greater health risk than
either pathogen alone. Coinfection with these two pathogens was even more common on
Tuckernuck. Many previous authors also report that coinfections with Bb+Bm occurred
more frequently than expected based on the overall prevalence of each pathogen individu-
ally [28,92] and references therein, presumably because larvae fed on reservoir hosts that
were coinfected with both pathogens. In addition, laboratory experiments suggest that
coinfection with Bb+Bm in white-footed mice appears to facilitate the transmission of Bm
to larvae of blacklegged ticks [94].

Coinfections involving Ap are not expected to be more common than random ex-
pectations unless the Ap variant commonly co-occurs with Bb or Bm in a reservoir host.
Surprisingly, 7% of the nymphs from Tuckernuck had triple coinfections (Bb+Bm+Ap) in
2021, and another 9% were coinfected with either Bb+Ap or Bm+Ap (Table 2). Because
Ap was strongly associated with Bb and Bm at this site, we suspect that many nymphs
had the human-infective Ap-ha variant acquired from white-footed mice. Consistent with
expectations about different reservoir hosts for each Ap variant, Edwards et al. [93] reported
a positive association for Bb+Ap-ha in coinfected nymphs from eastern Pennsylvania but
not for Bb+Ap-v1, which was more common overall.
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5. Conclusions

This research was designed to serve as an example of how a small field crew can be
deployed to monitor ticks and tick-borne disease agents at the scale of a local community.
Drag sampling along public trails is a simple procedure that can be undertaken by citizen
scientists with a minimum level of training, but analyzing samples for pathogen prevalence
requires substantial expertise and funding. Unlike most previous studies, we sampled
300–400 blacklegged nymphs per site to be able to report the percent infected by each
pathogen with relatively narrow 95% confidence intervals (±5%) for each site. Because
we did not find significant differences among the Nantucket sites, future efforts could
save time and funding by analyzing an equal but smaller number of samples from several
different sites, for a total of ~300–400 nymphs. Sampling could be carried out every few
years to inform public health officials about which pathogens are most common and to
check for newly emerging disease agents and tick species.

Efforts to quantify and compare tick abundances among different studies are inherently
challenging due to the use of different sampling methods, such as timed sampling vs.
sampling over a given distance, as well as day-to-day and year-to-year variation in local tick
densities. To help mitigate this problem, we recommend sampling at least 4 times during
peak nymphal abundance and reporting tick densities per distance sampled (per km or m2),
over a distance of at least 500–750 m at each study site, building on similar recommendations
in the literature [50,100].

For blacklegged nymphs, we recorded density increases that co-occurred with in-
creases in Bb NIP at several of our study sites, thereby amplifying the risk of exposure to
tick-borne pathogens (Table 3). Abundances of blacklegged nymphs were greatest in 2021
on both islands, in synchrony with lone star abundances on Tuckernuck Island, suggesting
that a common but unknown set of conditions may have favored both tick species in 2021.
We also document the establishment of lone star ticks on the western portion of Nantucket
Island. The Asian longhorned tick (Haemaphysalis longicornis), which has recently spread
to eastern Long Island, NY, and Block Island, RI [42,101,102], is an exotic tick species that
was not observed in our study and bears watching in the future. This species was found on
Nantucket in 2023 [103]. Newly established pathogens also could become established in the
future. For example, we did not detect Ehrlichia muris eauclairensis in nymphs of I. scapularis
at our study sites, but this pathogen was recently found in Massachusetts [104].

In summary, our research characterizes current conditions and provides a baseline for
further monitoring of ticks and tick-borne disease agents in the town of Nantucket, MA.
By sampling tick densities and determining the prevalence of tick-borne disease agents at
permanent study sites, we obtained data that can be compared with other studies where
similar methods are employed. Due to the abundance of ticks and tick-borne pathogens on
Nantucket, continued education and vigilance are needed to warn people about the risk of
infections and coinfections involving Bb, Bm, Ap, and, to a lesser extent, B miya, as well as
the risk of acquiring the alpha-gal red meat allergy from lone star ticks.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/insects14070628/s1. Figure S1. Maps and habitat photos of the
sampled trails at each study site. Figure S2. Frequency of tree canopy, high shrubs, and no shade
along trails sampled at each site, based on 33–111 sample points per site. Figure S3. Representative
photos of Ixodes dentatus vs. Ixodes scapularis showing morphological similarity between species.
Table S1. Primers and probes used in DNA analyses for species ID and pathogens. Table S2. A.
Frequency of tree canopy species with branches over the trail at 10 study sites. B. Frequency of
common woody species and vines within 1m of the trail at 10 study sites. Table S3. Frequency and
infection status of Ixodes dentatus nymphs collected at study sites on Nantucket and Tuckernuck
islands in 2020 and 2021.

https://www.mdpi.com/article/10.3390/insects14070628/s1
https://www.mdpi.com/article/10.3390/insects14070628/s1
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