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Simple Summary: Current mosquito control efforts are insufficient for preventing mosquito-borne
illnesses. Attractive targeted sugar bait (ATSB) technology is an emerging mosquito control method
that involves luring mosquitoes to feed on a sugar suspension containing a poison. Here, we
comprehensively review the existing literature to evaluate the potential utility of ATSBs for mosquito
control. We highlight milestones in the development of ATSBs, focusing on the selection of toxic
ingredients and attractive components, methods of deployment, and efficacy studies. We discuss the
potential utilization of ATSBs in combination with other control technologies and identify the existing
gaps in the ongoing development of this promising technology. We conclude that the deployment of
ATSBs in integrated mosquito control programs will help address mosquito control challenges and
prevent diseases that result from pathogens transmitted by mosquitoes.

Abstract: Due to the limitations of the human therapeutics and vaccines available to treat and prevent
mosquito-borne diseases, the primary strategy for disease mitigation is through vector control.
However, the current tools and approaches used for mosquito control have proven insufficient
to prevent malaria and arboviral infections, such as dengue, Zika, and lymphatic filariasis, and
hence, these diseases remain a global public health threat. The proven ability of mosquito vectors to
adapt to various control strategies through insecticide resistance, invasive potential, and behavioral
changes from indoor to outdoor biting, combined with human failures to comply with vector control
requirements, challenge sustained malaria and arboviral disease control worldwide. To address
these concerns, increased efforts to explore more varied and integrated control strategies have
emerged. These include approaches that involve the behavioral management of vectors. Attractive
targeted sugar baits (ATSBs) are a vector control approach that manipulates and exploits mosquito
sugar-feeding behavior to deploy insecticides. Although traditional approaches have been effective
in controlling malaria vectors indoors, preventing mosquito bites outdoors and around human
dwellings is challenging. ATSBs, which can be used to curb outdoor biting mosquitoes, have the
potential to reduce mosquito densities and clinical malaria incidence when used in conjunction with
existing vector control strategies. This review examines the available literature regarding the utility of
ATSBs for mosquito control, providing an overview of ATSB active ingredients (toxicants), attractants,
modes of deployment, target organisms, and the potential for integrating ATSBs with existing vector
control interventions.

Keywords: Anopheles; Aedes; Culex; sugar feeding; mosquito control; malaria; insecticide

1. Introduction and Historical Perspective of Insect Baiting

Vector-borne diseases pose a major economic and public health burden globally, with
mosquito-borne diseases causing more than 700,000 deaths annually [1]. With the rapid
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emergence and increased prevalence of mosquito-borne diseases, mosquito control is
presently the most effective strategy for disease mitigation. Various mosquito control
methods are presently employed, including community-based operations for larval source
reduction through the removal of aquatic breeding sites, biological control through the
use of natural predators, microorganisms, or modified mosquitoes, and chemical con-
trol through pesticide applications. For many decades, chemical-based insecticides have
been the backbone of mosquito control programs, which rely on insecticide spraying,
impregnated bed nets, fogging, and larviciding [2]. However, the effectiveness of these
interventions continues to decline due to the rapid spread of insecticide resistance to all four
major classes of synthetic chemicals in mosquito populations [3], and non-target effects,
in addition to public and environmental safety, are of concern [4]. Therefore, the current
toolbox for mosquito control is insufficient to support ongoing efforts toward disease
mitigation, necessitating the discovery and implementation of new methods for integrated
mosquito management that are effective and environmentally safe. Several promising new
strategies under consideration include the sterile insect technique (SIT), gene drives, the
incompatible insect technique (IIT), the release of insects carrying a dominant lethal gene
(RIDL) [5,6], and ATSB technology [7]. ATSBs, a new form of insect baiting, employ an
attract-and-kill strategy that exploits the sugar-feeding behavior of adult mosquitoes.

Insect baiting is a medieval concept that is used to kill or dissuade pests of agricultural,
urban, and medical importance. The concept dates back to 77 A.D. when Pliny the Elder,
a Roman naturalist, hung a fish on a tree next to vegetation to repel ants, as described in
Historia Naturalis [8]. He also used plant-based sugar lures to target insects. In the 1920s,
toxic sugar baits (TSBs) containing arsenic were used to control termites in Australia, and
the usefulness of the baits for termite control was again documented in the 1930s when a
sugar solution containing sodium arsenite was found to kill harvester termites [9]. In the
1970s, wooden blocks treated with mirex, an organochloride, were used as baits to control
termite attacks on southern pines in the USA [10]. In the 1950s, insecticides mixed with
food and protein hydrolysate as the attractant were used on a large scale to control the
Mediterranean fruit fly in Hawaii [11]. This baiting technique has been modified several
times and is applied to control fruit flies around the world. By the mid-19th century,
insect baits targeting urban pests were prepared by mixing an insecticide with regular
food [12]. In the 1960s, various baits, including Kepone mixed with peanut butter as
a food bait, as well as mirex mixed with soy corncob grit, were produced and widely
used for fire ant control [11]. In 1965, the first mosquito toxic sugar bait formulation was
pioneered in the laboratory by Lea, who was targeting Aedes aegypti on a TSB-treated paper.
The sugar bait included malathion as a toxicant and a 20% sugar solution as a feeding
stimulant [13]. The invention and use of the metabolic inhibitor hydramethylnon, which
was included in food baits for cockroaches and ant control in the 1990s, paved the way
for the development of food baits used for insect control. Since then, more refined and
sophisticated bait formulations have been developed on a large scale and commercialized,
consequently helping to revolutionize insect baiting as part of integrated pest management
(IPM) on a worldwide scale. Furthermore, the invention of slow-acting and highly effective
insecticides that are not topical poisons has tremendously improved baiting for insect pest
control [14].

The evaluation of TSBs composed of a toxicant and a sugar bait led to an understanding
of the shortcomings of this method for mosquito control. The limited attractiveness of the
sugars mixed with the toxicants, which were not as attractive as natural sugar sources,
diminished the efficacy of this intervention [15–17]. To address this, alternative mosquito
attractants were explored as possible components of the TSBs. The concept of attractive
baits was first explored in 1910 when plant-based attractants were discovered for the control
of cabbage butterfly larvae against mustard plants [8]. In the 1920s, the potential of several
attractive aromatic compounds to dissuade orchard insects from visiting plants, their food
source, was explored [8]. These evaluations and the discovery of compounds with attractive
scents revolutionized insect control approaches through attractive baiting. ATSBs have
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been explored extensively in tropical regions where vector-borne diseases are endemic.
Sugar feeding behavior has been observed in mosquitoes [18–20], sandflies [21–23], and
black flies [23], demonstrating that these insects utilize sugar as an energy source. Plant
sugar is a critical dietary requirement for most adult mosquitoes [18]. Soon after emergence,
both males and females seek sugar as an energy source for mating [24] and continue to
utilize the carbohydrate source throughout their lifespans. The males exclusively feed
on sugars throughout their lifetime while the females periodically sugar feed in between
blood feeding cycles to obtain energy reserves. Sugar meals enhance the fitness and
reproductive success of both sexes [25]. Since 1965, there has been tremendous development
in the use of sugar baiting for mosquito control ranging from TSBs to the current ATSB
regimens that employ a commercially formulated attractant. The ATSB solution consists of a
scented compound that is attractive to the target vector, a sugar component that encourages
feeding (feeding stimulant), and an oral toxicant (insecticide) designed to induce mosquito
mortality/morbidity upon ingestion of the solution [20].

Here, we provide an overview of ATSB technology that focuses on active ingredi-
ents and attractants used in ATSBs, various modes of ATSB deployment, a summary of
efficacy studies, and the promise, challenges, and future work required for achieving
the long-term goal of integrating this promising new technology with existing vector
control interventions.

2. Active Ingredients Used in ATSBs

Active ingredients are critical ATSB components that make sugar meals toxic and lethal
to target mosquitoes. To date, several toxic compounds, including chemicals, biopesticides,
and plant products, have been evaluated, as reviewed in detail by Fiorenzano et al. [7].
Chemical-based toxins in ATSBs have mainly included different classes of insecticides
that are approved for vector control [26], including bendiocarb, carbamates, neonicoti-
noids, organophosphates, pyrethroids, pyrroles, and fipronil [27–30]. Furthermore, other
chemicals, such as boric acids [31–33], dinotefuran [27], eugenol [34], ivermectin [35], and
spinosad [36], as well as several others [7], have been utilized. Chemical insecticides have
been shown to be highly potent and cause significant mortality in Aedes, Anopheles, and
Culex mosquitoes [7,28,37]. Unfortunately, chemical insecticides can be toxic to mammals
and non-target insects [38], hence, efforts to optimize ATSBs with other active ingredi-
ents were accelerated [7]. The use of bacterial and fungal spores as active ingredients in
ATSBs was evaluated using spores from Bacillus sphaericus and B. thuringiensis israelensis
(Bti) [39–41], Pseudomonas species [42] and the fungal strain Metarhizium anisopliae [43],
which successfully killed adults and larvae of Anopheles, Aedes, and Culex mosquitoes, as
well as the sand fly [44]. Furthermore, ATSB, boric acid or eugenol sugar baits formulated
with pyriproxyfen, an insect growth regulator, significantly inhibited adult Aedes albopictus
emergence in a simulated rain-wash experiment. Treatments containing pyriproxyfen
applied to plants were transferred by adults to larval habitats, in which the insecticide
induced up to 100% adult emergence inhibition [45,46].

ATSBs prepared with naturally derived active ingredients, which were expected to
be environmentally friendly and safe, have also been explored. These include plant-based
products, such as eugenol, garlic oil (microencapsulated), and sodium ascorbate. When
incorporated into sugar baits, these active ingredients have been shown to kill mosquitoes
and are non-toxic to non-target insects [47–49]. It was suggested that the use of plant-based
ATSBs be prioritized to minimize the toxic effects of ATSBs on non-target insects [38].
Nonetheless, the use of these ingredients is limited by their relatively short half-life, which
is reduced with respect to chemical insecticides. These insecticides are often relatively more
expensive and challenging to synthesize [50].

RNA interference (RNAi) technology has advanced as a useful research tool that
could potentially be applied in operational vector control strategies [51,52]. Interfering
RNA insecticides utilize the innate RNAi mechanism in mosquitoes for the species-specific
RNAi-mediated silencing of essential mosquito genes, resulting in mortality. Several
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siRNAs targeting essential mosquito genes have been screened and tested as larvicides
and adulticides. Short hairpin RNAs (shRNAs) corresponding to the siRNA sequences
can be produced and delivered using modified yeast (Saccharomyces cerevisiae) [53] to
target Aedes, Anopheles, and Culex mosquitoes [54–57]. The bioengineered yeasts, which
are heat-inactivated prior to deployment, have been incorporated as toxicants in ATSBs
targeting adult mosquitoes [54–57]. These were shown to effectively kill mosquitoes in the
laboratory [54–57] (Figure 1). Moreover, double-stranded (ds) RNAs matching essential
An. gambiae genes were successfully expressed in Escherichia coli. The heat-inactivated
bacteria can also be delivered orally to adult mosquitoes, resulting in defects in salivary
gland morphology [58].
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female feeding on the ATSB suspension is shown in (c).

Significant efforts are underway to further evaluate yeast interfering RNA-based
ATSBs under semi-field conditions, and these studies should be followed by large-scale
field trials to assess the entomological endpoints. Yeast RNAi technology allows for the de-
velopment of safe and effective mosquito control insecticides as an addition to the existing
mosquito control toolbox. S. cerevisiae, commonly known as baker’s yeast, a delivery system
for interfering RNA insecticides, is non-toxic to humans and is used globally in the food
and beverage industry. Yeast has a strong odor and is highly attractive to both larvae and
adult mosquitoes, and the insecticidal properties of yeast are preserved when inactivated,
permitting the use of dead microbes for mosquito control [59]. Additionally, S. cerevisiae is
genetically tractable, enabling the generation of unique yeast RNAi insecticide strains that
target different essential genes in mosquitoes, providing an avenue for insecticide resistance
management through interfering RNA insecticide rotation [59,60]. The propagation of inter-
fering RNAs through yeast culturing allows for scaled insecticide production, reducing the
cost of mosquito control products. The species-specific yeast interfering RNA insecticides
are designed to only match mosquito genes and do not affect non-targeted arthropods
including Apis mellifera (honeybees), Drosophila melanogaster (fruit flies), Tribolium castaneum
(red flour beetle), and Oncopeltus fasciatus (milkweed bugs) [54–57]. Moreover, the potential
for delivering yeast interfering RNA insecticide-based ATSBs through a porous black plastic
membrane [30] could serve to protect the sugar bait from non-target organisms and adverse
environmental conditions, preserving its shelf life. In addition to combating insecticide
resistance, yeast interfering RNA-based ATSBs are promising candidates for integrated
mosquito management both indoors and outdoors.
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In summary, although a variety of different broad-based toxins have historically been
deployed as ATSBs, recent efforts have focused on the identification of more selective
toxins, including RNAi-based insecticides, that selectively kill mosquitoes. Such efforts aim
to increase the environmental safety of this intervention.

3. Attractants Incorporated into TSBs

The discovery of attractive aromatic compounds engineered to lure insect pests away
from their natural food sources [8] has increased the efficacy of TSBs. Plant-based attractants
are the oldest form of aromatic compounds to be incorporated into baits for the control of
insects that damage crops. At the end of the 19th century, attractants were mixed with baits
to prevent insect pests from attacking crops. In 1910, plant-based attractants were used to
dissuade cabbage butterfly larvae from visiting mustard plants [8]. By the 1920s, dozens of
attractive aromatic compounds were used to dissuade orchard insects from visiting plant
food sources [8].

Initial studies evaluating ATSBs for mosquito control used local plants as attractants by
spraying the vegetation with a colored sugar bait [19]. The application of TSBs on flowering
plants was, however, not practical because non-target arthropods were also attracted and
killed. To address this, the ATSB studies explored overripe fruits as attractants, adding
sucrose as a feeding stimulant in the bait. This allowed for the application of fruit-based
ATSB solutions on non-flowering plants to discourage non-target organisms from feeding
on the baits [7]. Since 2008, several fruit-based sugar sources have been explored in various
mosquito species both in the laboratory and field studies, with the addition of attractants in
ATSBs resulting in up to 97% mosquito mortality [7,61]. Aside from plant-based attractants,
CO2 presented with TSBs was found to be effective against A. aegypti and A. taeniorhynchus
in semi-field and field studies [62]. However, an attempt to incorporate human host
kairomones L-lactic and 1-octen-3-ol, which are known to attract mosquitoes to fruit-based
sugar baits, did not enhance mosquito attraction and efficacy of ATSBs in laboratory or
semi-field studies [63].

The use of flowering plants, fruits and sugar sources as attractants in ATSBs is chal-
lenging for the long term, given the lack of residual activity and potential negative impacts
on non-target organisms. This limitation paves the way for the development of more stable
commercial attractant formulations that could be delivered in a manner that is less toxic
to non-targets. The commercial ATSB attractant developed by Westham Co., Dallas, TX,
USA has been evaluated with multiple active ingredients including dinotefuran, eugenol,
and garlic oil, yielding varying levels of mosquito mortality ranging from 62 to 98% in
Anopheles, Aedes, and Culex mosquitoes [34,47,49,64].

In summary, the use of attractants that can effectively lure mosquitoes away from
feeding on natural sugar sources is key to the successful deployment of ATSBs. However,
the field is evolving away from the combined deployment of broad-based attractants
with broad-based toxins, which could have negative impacts on non-target species. The
identification and use of selective attractants will limit the impacts of broad-based toxins
on non-targets; thereby, making ATSBs a more environmentally friendly mosquito control
intervention.

4. Methods of ATSB Deployment

Laboratory and field trials have successfully tested ATSB effectiveness by spraying
the toxic bait on vegetation or by delivering it in mounted bait stations [27,29,30,55,64].
Vegetation spraying is mainly performed to target exophilic vectors outdoors [19,49];
however, several studies have also applied sprays to indoor vegetation [7,31]. Trials
using the vegetation spraying method on flowering (attractive) and non-flowering plants
(non-attractive) have recorded similar mosquito mortality rates [34,47,63]. A drawback
associated with this method is the indirect impact on non-target insects [49]. Studies [49,65]
have suggested that spraying ATSBs on flowering vegetation could attract more non-target
insects compared to non-flowering vegetation. In addition, the use of low-risk active
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ingredients minimized the impact on non-target insects [47,65]. Nonetheless, research
efforts to identify safe, environmentally friendly ATSBs should be intensified.

Bait stations are deployable both indoors and outdoors, offering the potential for
broader impacts on endophilic and exophilic vectors [30,64]. Several prototypes and de-
signs of ATSB bait stations have been developed to achieve a functional platform that can
be positioned indoors and/or outdoors, and which is effectively accessible to vectors to
feed and rest, while also preventing access to non-target insects. Some of these designs
have used movable frames on which ATSB-impregnated cotton balls, cotton towels, cot-
ton wicks, membranes, and tubes were mounted, and all have been effective for ATSB
delivery [27,33,58,65]. The bait station manufactured by Westham Innovations LTD (Israel)
has been extensively evaluated in field studies in Africa [27,66,67]. It is made of a rect-
angular plastic frame for mounting ATSB solutions and covered with a protective black
porous plastic membrane that selectively permits mosquito probing [28,31], protecting
the sugar bait from non-target organisms and adverse environmental conditions while
also preserving shelf life. Such efforts to protect non-targeted organisms led to re-naming
this intervention attractive targeted, rather than toxic, sugar baits [67], as current efforts
prioritize targeting mosquitoes while minimizing impacts on non-targets. Likewise, such
terminology is appropriate for RNAi-based ATSB applications [50,51] and any similar
efforts that prioritize limiting the impacts of sugar bait technology to the intended pests.

5. ATSB Efficacy Studies

The potential for ATSBs to reduce mosquito densities has been demonstrated through
efficacy studies [27,47,64]. To assess the impacts of the differences in spatial and envi-
ronmental conditions, as well as the genetic diversity of the vector populations on ATSB
efficacy, studies have been conducted in Africa, the Middle East (Israel), and the United
States (Florida) [7,27,34]. The studies in Africa evaluated ATSB efficacy on the A. gambiae
complex in a tropical environment abundant in alternative sugar sources that can distract
vectors from feeding on ATSBs [30,68,69]. Similar studies in Israel assessed ATSB efficacy
in an arid and sub-arid setting with poor alternative sugar sources, evaluating several
vector species including Anopheles claviger, A. gambiae, Anopheles sergentii, Aedes caspius,
and Culex pipiens [17,41]. The trials conducted in Florida enabled the assessment of ATSB
efficacy in sub-tropical ecosystems with intermediate sugar source availability in which
Aedes and Culex are predominantly found [7,34]. The observed variations in the efficacy and
responses in the available ATSB studies are attributed to weather and environmental factors
that include humidity and temperature [29,65], plant species and flowering state [36,37,39],
and the type of species and physiological states of the mosquitoes [33,70,71]. All studies
demonstrated good ATSB efficacy regardless of the ecological settings and vector genetic
diversity, validating the potential for ATSBs as a novel vector control tool [7].

As ATSBs are currently under development (Figure 2), most efficacy studies have
measured the efficiency of this intervention using key entomological indices that evaluate
toxicity to mosquitoes. For laboratory-based studies, direct mosquito mortality and feeding
rates are measured as primary endpoints [31,35,55]. The feeding rate can be assessed when a
food dye marker is incorporated into ATSB suspensions. A few studies [7,31] also compared
the feeding rates between male and female mosquitoes to determine ATSB efficacy in both
mosquito populations. Semi-field and field trials that measure entomological outcomes
have included the mortality rate, feeding rate, vector density (vector abundance), vector
composition, vector parity, human biting rate (HBR), sporozoite infection rates, the density
of older female vectors, vector longevity, entomological inoculation rates (EIR), and several
other factors [27,29,30,65,66]. Most of these studies collect baseline data to compare with
the data post-ATSB intervention.

Measuring the epidemiological outcomes is critical to assessing ATSB efficacy (Figure 2).
This involves measuring the impact of the strategy to reduce disease morbidity and mortal-
ity. A Phase 3 clinical trial [67] is currently underway in three African countries and aims to
determine the ATSB impact on malaria when combined with long-lasting insecticidal nets
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(LLINs) and indoor residual spraying (IRS). The primary endpoint to be measured is the
reduction in clinical malaria incidence and parasite prevalence by at least 30%. Moreover,
recently, a modeling study [37] measured the vectorial capacity and vectorial competence of
A. albopictus as epidemiological indices to predict the potential for ATSBs to reduce dengue
virus transmission; however, this has not yet been assessed in the field. Demonstrations
of the ability of ATSBs to reduce the incidences of mosquito-borne diseases, combined
with the detection of significant impacts on entomological endpoints, will support future
registry applications.
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6. Incorporating ATSBs in Integrated Vector Management (IVM)

The WHO IVM strategy encourages the discovery and application of additional vector
control interventions parallel to existing strategies for reducing the transmission of vector-
borne diseases [72,73]. Combining several approaches may allow for the control and
prevention of several vectors and diseases simultaneously while helping to ensure vector
control sustainability. Integrated approaches become necessary because of the adaptability
of mosquitoes to commonly used control methods. Integrating ATSBs, a strategy that
manipulates and exploits mosquito sugar feeding behavior, would present a beneficial
addition to current vector control interventions.

The majority of competent vectors of key mosquito-transmitted pathogens are strongly
associated with humans and are commonly encountered in the home environment, both
indoors and outdoors [74]; this includes malaria, dengue, Zika, and lymphatic filariasis
mosquito vectors. Several vector control interventions are employed in the peri-domestic
environment to prevent biting by the disease vectors. These include conventional LLINs
and IRS that utilize pyrethroids and larval source reduction to reduce malaria parasite and
arbovirus transmission [75]. Other commonly used approaches to prevent mosquito bites in
the home environment include lethal baited traps, mosquito-proof housing, and the use of
topical or spatial repellents [76]. Although conventional LLINs and IRS interventions have
been effective in malaria prevention, additional approaches are needed in the home envi-
ronment to address changes in mosquito behavior (from indoor to outdoor biting) [77,78]
and widespread resistance to commonly used pyrethroids by mosquito populations [3], as
well as human activities that are primarily outdoors, increasing bite exposure.

Beyond lab and field studies, there has been a significant enhancement of ATSB utility
for mosquito control in the field. The current ongoing large-scale community-based ATSB
trials in multiple locations in sub-Saharan Africa [67], the hotbed of malaria transmission,
could prove the efficacy of ATSBs as effective and innovative interventions for mosquito
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control both indoors and outdoors. Apart from larval source reduction, an approach that has
not widely been used to prevent malaria [75], current mosquito control methods are focused
indoors using LLINs and IRS interventions to reduce the spread of malaria. Both male and
female mosquitoes resting indoors and outdoors in the home environment acquire sugar
meals from natural plant sources [79]. ATSBs have the potential to control both indoor and
outdoor populations, and this is particularly important to reduce the residual transmission
that results from outdoor biting, a new behavior exhibited by mosquitoes which renders
traditional methods, such as LLINs and IRS, less effective [77,78]. Targeting the control of
malaria in Africa, studies have assessed ATSB efficacy when deployed as an indoor and/or
outdoor strategy, in combination with existing vector control strategies. A previous study
in Mali [34] tested ATSBs placed indoors along with existing indoor-based LLINs. The
study first recorded high vector feeding rates from ASB bait stations marked with food
dye. Subsequently, the investigators observed a significant reduction in the house entry of
both male and female vectors and reduced densities of older female mosquitoes. Another
study in Mali [31] tested ATSBs positioned outdoors in study villages where LLINs were
implemented indoors. The study observed similar results of high vector feeding rates, a
reduction in vector density, and decreased malaria transmission indices. Research studies
assessing the utility of ATSBs for the control of arboviral vectors that breed in both natural
and artificial containers are limited [80], and this calls for renewed efforts to evaluate the
vector control potential of this intervention.

With regard to insecticide resistance management, ATSB insecticides have proven effec-
tive in multiple settings. Studies with indoor ATSBs in Tanzania [29] and Cote d’Ivoire [68]
observed high efficacy against pyrethroid-resistant malaria vectors, indicating an added
potential for ATSBs to control resistant malaria vectors. Evidence for the control of arboviral
diseases was also documented [29,47,49], with dramatic decreases in the population of
Aedes and Culex arboviral vectors following the ingestion of ATSBs. The ability to control
resistant arboviral vectors was also demonstrated in a study conducted in Tanzania [29].
Using data from ATSB efficacy trials, modeling studies [80,81] substantiated the evidence
that ATSBs will be effective in preventing malaria, particularly if integrated with existing
control strategies. These models further suggested that ATSBs could help address residual
malaria transmission. Another study [81] indicated that the efficacy of ATSBs will not be
affected by the availability of alternative sugar sources, as previously suggested [82]. Such
modeling studies suggest that the pursuit of field trials to assess the entomological and
epidemiological impacts of ATSBs deployed as components of integrated mosquito and
disease control programs will be beneficial.

7. Challenges and Future Directions

Addressing widespread insecticide resistance by mosquito populations in conjunction
with vector species’ invasions into new territories will require new means of mosquito
control. For example, the recent invasion of Anopheles stephensi in Africa calls for heightened
surveillance efforts and the discovery of novel and suitable mosquito control interventions.
Numerous research efforts provide evidence that ATSBs have the potential to reduce
mosquito populations. Further to this development, ATSBs offer significant promise as
innovative tools for integrative mosquito management in the home environment, which
is in line with IVM, a WHO strategy [72,73] for maximizing vector control to reduce the
transmission of vector-borne diseases. Although conventional LLINs and IRS have been
effective for the control of malaria vectors indoors, a large gap exists in settings with
high disease endemicity for the control of mosquitoes that bite outside of homes [73].
ATSBs provide a perfect addition to existing interventions for the control of outdoor
biting mosquitoes. Recent developments provide evidence that innovative tools have
the potential to significantly reduce mosquito densities and clinical malaria incidence in
multiple locations in sub-Saharan Africa [30,67], and studies at additional geographical
locations should be performed, as this will facilitate the optimization of ATSB strategies
in a variety of different environments. Furthermore, the combined control of arboviral
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vectors through larval control in combination with other interventions targeting adults will
facilitate sustained arboviral disease control. Most large-scale evaluations of ATSB utility
have focused on malaria vectors. Very few ATSB studies on Aedes and Culex vectors have
been conducted in the field to date, and this calls for large-scale trials to be focused on key
arboviral vectors in tropical regions that are endemic to arboviral infections. To date, ATSB
studies on Aedes vectors have mostly been based in the state of Florida, USA [17,34,63,64,71],
and a recent trial was also conducted in rural areas of Mali [83]. Given that these studies
demonstrate that ATSBs can be applied for arboviral mosquito control, there is a need to
identify the most effective ATSB attractants for these species and to reproduce these studies
in urban settings that harbor abundant human hosts, particularly given that A. aegypti
and A. albopictus females are known to blood feed several times in a single gonotrophic
cycle [84], which increases the risk of disease transmission.

Current ATSB trials are evaluating the deployment of ATSB insecticides in bait stations
that deliver the bait through a porous black plastic membrane [31], which protects it from
non-target organisms and adverse environmental conditions, preserving the shelf life of the
bait. These bait stations are easy to install outside human dwellings, making the technology
easy to adopt and use in targeted communities. Furthermore, the ATSB formulations
target multiple mosquito species and have extended residual activities [67], which may
make them cost-effective. To maximize the effectiveness of ATSBs for integrated mosquito
management, several improvements are recommended. Since the ATSBs must outcompete
natural plant sugar sources, there is a need to maximize the behavioral responses of various
mosquitoes through the identification of baits that are optimally attractive to each mosquito
species. This will maximize mosquito attraction toward the sugar baits, improving their
effectiveness. To prevent incidences of ATSB insecticide resistance, researchers should
explore combining active ingredients with multiple modes of action against the mosquito
vectors. On matters pertaining to the environmental safety of ATSB insecticides, developers
should explore innovative insecticidal ingredients that are safe and non-toxic to non-target
organisms. The novel yeast RNAi-ATSBs [54–57], for example, were designed to specifically
target disease vector species and fit these requirements. Moreover, the yeast is highly
attractive to mosquitoes, which may permit the development of highly attractive baits with
a toxin that selectively targets mosquitoes. Ongoing semi-field trials are evaluating yeast
that has been suspended in sugar bait and delivered to mosquitoes in sachet bait stations.
These trials will examine the residual activity of the interfering RNA when deployed
using sugar baits in the field, a key component of evaluating the overall efficacy of this
new technology.

Furthermore, although ATSB insecticides target adult mosquitoes, attempts to simul-
taneously kill immature stages of Anopheles, Aedes, and Culex mosquitoes using ATSBs
formulated with biopesticides [39–43] and pyriproxyfen [45,46] have been successful in
the laboratory; thus, more effort should be focused on field studies to better assess the
efficacy of this ATSB-deployed technology for targeting container breeding mosquitoes.
Modeling studies have also shown that optimizing the deployment of ATSB bait stations
to target resting sites, sugar sources, and larval habitats, could significantly improve the
effectiveness of these mosquito control interventions [81].

Additionally, to promote the adoption of ATSBs for commercial use, the developers
and mosquito control programs should continuously pursue community engagement
regarding the use of ATSBs for mosquito control in the home environment (Figure 2). This
will help to ensure acceptance and adoption of the technology by the targeted end-users.
Although developments concerning the commercial use of sugar baiting for mosquito
control have taken several decades to be realized, significant strides toward the registry
and adoption of ATSBs for mosquito control are occurring, as evidenced by the recently
completed large-scale ATSB trial in Mali [30] and the ongoing Phase 3 trials in Mali, Zambia,
and Kenya [67]. These significant developments have secured ATSBs a place on the list of
mosquito vector control interventions that are currently under review by the vector control
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advisory group (VCAG) of the WHO, which will determine their public health significance
for vector control [85].

8. Conclusions

ATSBs are a promising mosquito control intervention that can be designed to have
minimal impacts on the environment. Continuing efforts to identify the most effective
and stakeholder-accepted combinations of baits, toxins, and deployment strategies for
the selective targeting of Aedes, Anopheles, and Culex mosquitoes are expected to further
enhance existing ATSB strategies. It is anticipated that this promising new mosquito control
intervention will seamlessly combine with existing mosquito management strategies to
facilitate the advancement toward sustainable mosquito-borne disease elimination.
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