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Simple Summary: The moth Loxostege sticticalis (Lepidoptera: Pyralidae) is a typical migrant insect
pest found in North America, Eastern Europe, and Asia. The natural pheromone compounds
of adult moths are involved in courtship and mating behavior. In this article, we examine the
peripheral mechanisms of sex communication, demonstrating that the pheromone receptor (PR)
LstiPR2 responds specifically to the major sex pheromone compound E11-14:OAc, which results in
the activation of the “a” neuron in sensilla trichodea. The other four LstiPRs showed no response
to any sex pheromone compounds. This study will contribute to a new, environmentally friendly
strategy for integrated pest management of L. sticticalis.

Abstract: Lepidopteran insects mainly rely on sex pheromones to complete sexual communications.
Pheromone receptors (PRs) are expressed on the olfactory receptor neurons (ORNs) of the sensilla
trichodea and play an essential role in sexual communication. Despite extensive investigations into
the mechanisms of peripheral recognition of sex pheromones in Lepidoptera, knowledge about these
mechanisms in L. sticticalis remains limited. In this study, five candidate LstiPRs were analyzed in
a phylogenetic tree with those of other Lepidopteran insects. Electroantennography (EAG) assays
showed that the major sex pheromone component E11-14:OAc elicited a stronger antennal response
than other compounds in male moths. Moreover, two types of neurons in sensilla trichodea were clas-
sified by single sensillum recordings, of which the “a” neuron specifically responded to E11-14:OAc.
Five candidate PRs were functionally assayed by the heterologous expression system of Xenopus
oocytes, and LstiPR2 responded to the major sex pheromone E11-14:OAc. Our findings suggest that
LstiPR2 is a PR sensitive to L. sticticalis’s major sex pheromone compound, E11-14:OAc. Furthermore,
this study offers valuable insights into the sexual communication behavior of L. sticticalis, forming a
foundation for further analysis of the species’ central nervous system.

Keywords: Loxostege sticticalis; pheromone receptors; electroantennography; signal sensillum record-
ings; Xenopus oocytes

1. Introduction

Insects have a sophisticated olfactory system to detect and distinguish a wide range
of environmental odorants with high sensitivity and specificity [1,2]. Insects rely on
the olfactory system to locate habitats and identify mating partners. Sex pheromones
emitted from conspecifics are crucial for courtship and mating [3,4]. The sex pheromones
of Lepidoptera species, composed of two or more components, are biosynthesized and
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released by the female sex gland to attract male moths [5]. Since the first insect sex
pheromone ((Z,E)-10,12-hexadecadienol) was identified in Bombyx mori [6], increasing
numbers of insect sex pheromone compounds have been identified and introduced into
agriculture to replace conventional pest control agents [7–12].

In Lepidoptera, the primary olfactory organs for recognizing sex pheromones are the
antennae. The surface of the antennae is covered with hair-like protrusions called sensilla.
Many types of sensilla have been identified, such as trichodea, basiconica, coeloconica,
chaetica, squamiformia, styloconica, and Böhm’s bristles [13,14]. The functions of different
types of sensilla are diverse, including chemosensation, hygrosensation, theromosensa-
tion, and mechanosensation [15,16]. Among these sensilla types, the sensilla trichodea is
associated with pheromone detection [17–21]. A typical feature of the sensilla trichodea is
the presence of pores on the surface [20,22]. In male antennae, the hairs participating in
pheromone sense are common in most moths, such as B. mori, Manduca sexta, Agrotis ipsilon,
and Helicoverpa armigera [23].

Sexual communication involves several olfactory proteins that detect, recognize, and
degrade peripheral sex pheromones. Odorant binding proteins (OBPs), chemosensory pro-
teins (CSPs), odorant receptors (ORs), ionotropic receptors (IRs), sensory neuron membrane
proteins (SNMPs), and odorant degrading enzymes (ODEs) play individual and cooperative
roles in these processes [17,24]. Each OR is generally co-expressed with the OR co-receptor
(Orco), facilitating chemical signal recognition. This process transforms the chemical signals
into electrical signals, regulating chemical communication in insects [4,25]. Pheromone
receptors (PRs) are the main ligand gated-ion channels used to bind to pheromones, which
are members of the ORs superfamily [24].

Recent studies have reported the functions of insect PRs using Xenopus oocytes [26,27].
For instance, the AdisOR1 from Athetis dissimilis exhibited a strong response to the sex
pheromone compounds (Z)-9-tetradecenol (Z9-14:OH) and (Z,E)-9,12-tetradecadien-1-ol
(Z9, E12-14:OH) [28]. Similarly, AlepOR3 from Athetis lepigone demonstrated high sensi-
tivity to the sex pheromone (Z)-7-dodecenyl acetate (Z7-12:OAc) [29]. DpunPR45 from
Dendrolimus punctatus showed a broad response to sex pheromone compounds [30]. The
response profile of olfactory receptor neurons (ORNs) housed in the sensilla, which is
determined by expressed PRs, is an essential molecular element in the peripheral olfactory
process in insects [27,31]. PRs mainly participate in the sexual communication process of
moths [32]. Therefore, PRs play a crucial role in detecting pheromone compounds, and it is
necessary to research the functions of PRs in depth.

Loxostege sticticalis (Lepidoptera: Pyralidae), commonly known as the beet webworm,
is a devastating pest causing substantial ecological and economic damage to numer-
ous crops across North America, Eastern Europe, and Asia [33–35]. L. sticticalis was
added to the National Class I list of crop insect pests in 2020 by the Chinese Ministry
of Agriculture and Rural Affairs. Like most moths, the male moth of L. sticticalis en-
gages in courtship and mating by detecting the sex pheromone components emitted
by female moths [36,37]. Sex pheromones in Lepidoptera are primarily classified into
three types—Type 0, Type I, and Type II—based on their chemical structures [38]. The
sex pheromone components of L. sticticalis belong to Type I pheromones, consisting of
straight-chain alcohols, aldehydes, and acetates with 10–18 carbon atoms. The compounds
11€-tetradecenyl acetate (E11-14:OAc), 11(E)-tetradecenal (E11-14:Ald), E-11-tetradecenol
(E11-14:OH), 1-tetradecanol (14:OH), tetradecyl acetate (14:OAc), and 1-dodecanol (12:OH) are
the sex pheromone components of L. sticticalis [38–40]. A mixture of (E11-14:OAc):(E11-14:Ald)
and (E11-14:OAc):(E11-14:Ald):(E11-14:OH) at a ratio of 1:1 and 5:3:12, respectively, was
found to be optimal lure rations for L. sticticalis male moths in wind tunnel assays and field
assays [39].



Insects 2023, 14, 584 3 of 12

While the technique of RNA-Seq [34] has identified the five candidate LstiPRs involved
in pheromone detection in L. sticticalis, the function of these genes remains unknown. In
this study, we cloned the full-length sequences of five candidate LstiPRs and LstiORco from
the antennae of male specimens. The functions of the candidate LstiPRs were characterized
using heterologous expression in the Xenopus oocyte system with a two-electrode voltage
clamp, and single sensillum recordings (SSRs) were performed to analyze the function of
olfactory receptor neurons in response to sex pheromone compounds.

2. Materials and Methods
2.1. Insects

In June 2021, over a thousand larvae of L. sticticalis, ranging from two to five instars,
were collected from Hohhot, Inner Mongolia, China (40◦82′17′′ N, 111◦71′58′′ E). The
larvae were reared with fresh Chenopodium album at a constant temperature of 22 ± 1 ◦C, a
photoperiod of 16 h of light and 8 h of darkness, and a relative humidity of 75 ± 5%. The
last-instar larvae were transferred to a box containing clean, sandy soil at 15% humidity to
facilitate pupation. Newly emerged moths were immediately separated by sex and kept in
500 mL beakers with a 5% honey solution.

2.2. RNA Extraction and cDNA Synthesis

The antennae were isolated from three-day-old male adults, immediately snap-frozen
in liquid nitrogen, and stored at −80 ◦C for subsequent use. The total RNA of male
antennae (30 pairs) was extracted using TRIZOL® Reagent (Invitrogen) according to the
manufacturer’s instructions. The quality and quantity of the RNA were assessed by agarose
gel electrophoresis (AGE) and NANODROP 2000 (ThermoFisher, Waltham, MA, USA),
respectively. The first-strand cDNA was synthesized using the RevertAid First Strand
cDNA Synthesis Kit (ThermoFisher, Waltham, MA, USA).

2.3. Phylogenetic Analysis

Phylogenetic trees were constructed using amino acid sequences of candidate genes
from LstiPRs, LstiORco, from Lepidoptera species, including B. mori [41], Cnaphalocrocis
medinalis [42], Ostrinia furnacalis [43], and L. sticticalis [34]. The amino acid sequences were
aligned using Multiple Alignments using Fast Fourier Transform (MAFFT;
https://www.ebi.ac.uk/Tools/msa/mafft/ (accessed on 20 April 2022)) with default pa-
rameters, and the phylogenetic tree was constructed using the Jones Taylor Thornton (JTT)
method in RAxML version 8 with 1000 bootstrap tests [44].

2.4. Cloning Full-Length Sequence of LstiPRs

Following transcriptome analysis and polymerase chain reaction (PCR), the full-length
cDNA sequences of five candidate LstiPRs were obtained. The LstiPR-specific primer pairs
were designed using Primer Premier 5.0 software (PRIMER Biosoft, Palo Alto, CA, USA)
(Table 1). The volumes of the amplification reaction were 50 µL, including 2 µL male
antennal cDNA (1 µg µL−1), 2 µL (each) of the primer pairs (10 µM), 19 µL ddH2O, and
25 µL 2 × PrimerSTAR® HS DNA Polymerase (TaKaRa, Japan). PCR conditions were:
pre-denaturation at 98 ◦C for 45 s, followed by 36 cycles of 98 ◦C for 10 s, 60 ◦C for 15 s,
and 72 ◦C for 2 min. The final extension was at 72 ◦C for 10 min. Each LstiPR was initially
ligated into the blunt cloning vector of the pEASY®-Blunt Simple Cloning Kit (TransGen
Biotech, China) according to the manufacturer’s instructions. Subsequently, the LstiPRs
were cloned into the pT7Ts-vector (Invitrogen, Waltham, MA, USA) by seamless cloning
technology, according to the instructions of the ClonExpress® II One Step Cloning Kit
(Vazyme, Nanjing, China).

https://www.ebi.ac.uk/Tools/msa/mafft/
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Table 1. Primers used in this study.

Gene Name Forward Reverse

LstiORco atcactagtgggcccGCCACCTTCAAGATGATGACCAAAGTGAAA (ApaI) ctagtcagtcgcggccgcTCATCTACTTCAGTTGCACCAACA (NotI)
LstiPR1 atcactagtgggcccGCCACCTGGTTATTTCGGTATGAACTCTCTG (ApaI) ctagtcagtcgcggccgcTTAATTTAAAGTGTTTGTAAGAATGCATA (NotI)
LstiPR2 atcactagtgggcccGCCACCAAATCCCTCAAAATGAAGAATAAATC (ApaI) ctagtcagtcgcggccgcCACTATTCTCCCATCGTTTGCA (NotI)
LstiPR3 atcactagtgggcccGAATCTACGAAAATGTTTAAAATATGCT (ApaI) ctagtcagtcgcggccgcGCGATGTCAATGTTCACTACTTCC (NotI)
LstiPR4 atcactagtgggcccGCCACCTTTATGCATAAACTCAGAATGTTTTTAA (ApaI) ctagtcagtcgcggccgcGTTTAATCTTTAGTTGCGAAAGTTTG (NotI)
LstiPR5 atcactagtgggcccGCCACCTTCCGCGATGTAAATTACCG (ApaI) ctagtcagtcgcggccgcAGTCTCGCTCTGAGTACCGAGAA (NotI)

The lowercase letters represent the homology arm, and the italicized lowercase letters represent restriction sites.
The names of the restriction enzymes used are indicated in parentheses.

2.5. Pheromone Components

Six sex pheromone compounds have been identified from L. sticticalis previously, in-
cluding (E)-11-tetradecenyl acetate (E11-14:OAc), (E)-11-tetradecenal (E11-14:Ald),
(E)-11-tetradecen-1-ol (E11-14:OH), 1-tetradecanol (14:OH), tetradecyl acetate (14:OAc),
and 1-dodecanol (12:OH). The pheromone compounds were purchased from Changzhou
Nimrod Biotech Inc. (Changzhou, China) (Table 2). Stock solutions of the compounds were
prepared in dimethyl sulfoxide at a concentration of 1 M. For the Xenopus oocyte system
experiments, 1 × Ringer’s buffer (96 mM NaCl, 2 mM KCl, 5 mM MgCl2, 0.8 mM CaCl2,
and 5 mM HEPES, pH 7.6) was used to dilute the stock solutions into working solutions.

Table 2. The pheromone compounds used in this study.

Chemicals CAS Number Purity (%)

(E)-11-tetradecenyl acetate (E11-14:OAc) 33189-72-9 >90
(E)-11-tetradecenal (E11-14:Ald) 35746-21-5 >90
(E)-11-tetradecen-1-ol (E11-14:OH) 35153-53-8 >95
1-tetradecanol (14:OH) 112-72-1 >97
tetradecyl acetate (14:OAc) 638-59-5 >97
1-dodecanol (12:OH) 112-53-8 >99

2.6. Electroantennography Responses

Electroantennography (EAG) was used to evaluate the response of the antennae of
three-day-old male adults to six pheromone compounds of females in L. sticticalis. Briefly,
the pheromone compounds were dissolved in paraffin oil and diluted to 10 µg µL–1.
A filter paper (0.5 cm × 5 cm) was loaded with 10 µL pheromone compound using a
Pasteur pipette, and the duration of stimulation was set to 0.8 s with an interval of 3 min.
The negative control was 10 µL paraffin oil only. Fifteen to twenty male antennae were
stimulated with each pheromone compound, and the difference in electric signal values
before and after stimulation was compared. The signals were amplified by a 10 × AC/DC
preamplifier (Syntech) and recorded by Syntech EAG software (EAGPro 2.0). The values
were normalized to the negative control.

2.7. Single Sensillum Recordings

Signal sensillum recordings (SSRs) revealed the peripheral neural coding of L. sticticalis
males detecting pheromones. Three-day-old male antennae of sensilla trichodea were uti-
lized to record responses to pheromone compounds. A single male moth was immobilized
inside a 1 mL plastic pipette with the narrow end trimmed off. The moth was delicately
pushed into the plastic tip, leaving one antenna and head outside, and secured by dental
wax. The tungsten microelectrodes were sharpened with a solution of KNO2 (40%). The
recording electrode was inserted into the antenna’s sensilla, while the reference electrode
was inserted into the opposite eye. Each trial was performed to test the responses to 10 µL
of pheromone compounds at a concentration of 10 µg µL−1 that was dripped onto a piece
of filter paper (0.5 cm × 5 cm) and inserted into a Pasteur pipette. The continuous purified
and humidified air flow stream was set at 1.2 L min−1 with a 0.3 s stimulus air pulse.
A total of eight sensilla trichodea were recorded successfully. The recorded signal was
amplified through a 10×AC/DC preamplifier (Syntech) and recorded by a data acquisition
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controller (10 s, starting 1 s before stimulation) (IDAC-4, Syntech, Kirchzarten, Germany).
The software Autospike (Syntech, Kirchzarten, Germany) was used for digitizing and
displaying action potentials on a computer screen. The response of the sensilla trichodea
was measured by the change in action potential frequency relative to the frequency of
spontaneous action potentials (spikes s−1) before and after stimulation [45].

2.8. Xenopus Oocyte System and Two-Voltage Clamp Recordings

The cDNA sequences of candidate pheromone receptors were cloned, and cRNA was
synthesized according to the mMESSAGE mMACHINETM T7 Kit (Thermo Fisher Scientific)
instructions. A mixture of each candidate LstiPR and LstiORco cRNA (1:1) was injected
into Xenopus laevis oocytes (stageV/VI), which were treated with 2 mg mL−1 collagenase
I in Washing Buffer (96 mM NaCl, 2 mM KCl, 5 mM MgCl2, and 5 mM HEPES, pH 7.6)
for about 1 h at room temperature and then incubated overnight in Barth solution (96 mM
NaCl, 2 mM KCl, 0.8 mM CaCl2, 5 mM MgCl2, 5 mM HEPES, 50 mg/mL tetracycline, 5%
horse serum, 100 mg ml−1 streptomycin, and 550 mg ml−1 sodium pyruvate, pH 7.6). After
incubating for three days at 18 ◦C, the two-electrode voltage clamp system was employed
to measure the cellular current elicited by stimulation with various pheromones at a
concentration of 10−4 M. Dose-response curves were performed using a concentration range
of 10−7 to 5 × 10−3 M for each pheromone compound, testing at least six oocyte replicates.
The electric signal was amplified using an OC-725C oocyte clamp (Warner Instruments,
Hamden, CT, USA) at a holding potential of−80 mV. The data were analyzed with Digidata
1440A and pCLAMP 10.0 software (Axon Instruments Inc., Union City, CA, USA).

2.9. Data Analysis

Data analysis were performed using SPSS 17.0 (IBM Corp., Chicago, IL, USA), and
graphs were created with GraphPad Prism 7.0 (GraphPad Software Inc., Boston, CA,
USA). The electrophysiological values (currents and spikes s−1) were presented as the
mean ± SEM, and the responses of LstiORco/LstiPRx to tested pheromone compounds
and single sensillum recording data were analyzed using a one-way nested analysis of
variance, followed by a Tukey’s post hoc test (p < 0.05) (IBM, Endicott, NY, USA).

3. Results
3.1. Gene Cloning and Phylogenetic Analysis

The full-length coding regions of the five LstiPRs were amplified, and the complete
open reading frames of LstiPR1, LstiPR2, LstiPR3, LstiPR4, and LstiPR5 were found to
contain 978 bp, 1263 bp, 1086 bp, 1308 bp, and 1038 bp, encoding polypeptides of 326, 421,
362, 436, and 346 amino acids, respectively. The pairwise sequence identities among these
five LstiPRs ranged from 29.91% (LstiPR1/LstiPR2) to 60.80% (LstiPR2/LstiPR5) (Table 3).

Table 3. Pairwise sequence identities among five LstiPRs (%).

Gene Name Identity (%)

LstiPR1 LstiPR2 LstiPR3 LstiPR4 LstiPR5
LstiPR1 100.00
LstiPR2 60.80 100.00
LstiPR3 33.75 33.90 100.00
LstiPR4 33.20 30.52 35.96 100.00
LstiPR5 30.01 29.91 37.10 53.87 100.00

A phylogenetic tree was constructed from candidate LstiORs together with other ORs
from B. mori [41], C. medinalis [42], and O. furnacalis [43] based on maximum likelihood
(Figure 1). A clade composed of highly conserved ORco genes from L. sticticalis, and the
three other species was evident. We observed that the LstiORs share high homology with
those of O. furnacalis, and LstiORco is part of the widely expressed and highly conserved
ORco family in insects. The five LstiPRs were clustered into the PR clade, which was easily
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distinguishable from other Lepidopteran species due to their high degree of similarity
(purple shaded region in Figure 1).
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Figure 1. Phylogenetic relationship between odorant receptors (ORs) of L. sticticalis and other species.
The sequences of various ORs were aligned using MAFFT with default parameters, and the tree was
constructed by RAxML 8.0 with a bootstrap of 1000 replicates. The clade of the purple region indicates
pheromone receptors (PRs), and the clade of the orange region indicates OR co-receptors (ORco).

3.2. Electroantennogram Assays of Pheromone Compounds in L. sticticalis Males

The antennal EAG response of L. sticticalis males to six pheromone compounds was
evaluated. The results indicate that E11-14:OAc, at 10 µg µL–1, elicited the strongest
response, which was significantly higher than responses to the other pheromones (p < 0.05,
Figure 2). The pheromone component, 14:OH, elicited a moderate EAG response (Figure 2).
However, the other four pheromone components (12:OH, 14:OAc, E11-14:OH, and E11-
14:Ald) elicited weak EAG responses (Figure 2).
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(B) Tracings of the response of male L. sticticalis to six different pheromone compounds.



Insects 2023, 14, 584 7 of 12

3.3. The Responses of the Sensilla Trichodea ORNs of L. sticticalis Males to Pheromones

We recorded responses of sensilla trichodea to pheromones from various positions
on the antennae of male L. sticticalis. The results revealed that each sensillum housed
two olfactory neurons: one large-spiking and one small-spiking ORN. These were dif-
ferentiated by their spike amplitudes in single sensillum recordings (Figure 3A). Among
the six pheromone components, E11-14:OAc elicited a specific response at a concentra-
tion of 10 µg µL–1 to the “a” ORN (Figure 3B). However, the remaining five pheromone
components did not induce any changes in the number of spikes (Figure 3B,C).
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Figure 3. The responses of sensilla trichodea in the antennae of L. sticticalis males to pheromone
components. (A) Distinct ORNs housed in the sensilla trichodea. The order and color of neurons are
randomly chosen. “a” and “b” represent the large- and small-spiking ORN, respectively. (B) The
response profile of sensilla trichoidea. The error bar represents± SEM (n = 8). (C) The response traces
of signal sensilla recordings of the sensilla trichodea of L. sticticalis males to pheromone components.
The red stub line represents stimulus air pulse. (D) Peristimulus time histogram (PSTH) showing the
responses of ORN “a” (orange) to six odor stimuli and control. The red stub line represents stimulus
air pulse.

3.4. Functional Reconstitution of LstiORco and LstiPRx in Heterologous Cells

The Xenopus oocyte system recorded the responses of the five candidate LstiPRs to six
pheromone compounds. The results show that LstiPR2 was mainly responsive to E11-14:OAc,
the main sex pheromone of L. sticticalis, with a current value of 702.93 ± 100.86 nA (Figure 4A).
In dose-response experiments, LstiPR2/LstiORco was sensitive to E11-14:OAc at a low
threshold of the response ranging from 310.57 ± 26.84 nA (10−7 M) to 561.167 ± 77.56 nA
(5 × 10−4 M), with an EC50 value of 1.249 × 10−5 M (Figure 4B). The other four receptors
(LstiPR1, LstiPR3, LstiPR4, and LstiPR5) showed no response to the pheromone compounds
of L. sticticalis (Figure 4C).
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and stimulation was for 15 s. (A) Response profile of LstiORco/LstiPR2 in the Xenopus oocyte system
stimulated with pheromone compounds. Error bars indicate ± SEM (n = 6–10). (B) Dose-response
curve of LstiORco/LstiPR2 in Xenopus oocytes stimulated with E11-14:OAc. (C) Lack of response of
LstiPR1, LstiPR3, LstiPR4, and LstiPR5 to different pheromone compounds.

4. Discussion

Many studies have shown that PRs are vital in insects’ sexual communication [32]. Pre-
vious studies identified the pheromone compounds and the candidate PRs of L. sticticalis [34,39],
but they provided limited characterization and functional analysis of these LstiPRs. To
further investigate their roles in sexual communication in L. sticticalis, we identified five
candidate LstiPRs based on sequence homology and phylogenetic analysis [26]. According
to the phylogenetic tree, five candidate LstiPRs clustered into the PRs clade due to their high
homology. Therefore, we hypothesized that these five candidate LstiPRs could potentially
detect sex pheromones in L. sticticalis based on the features of PRs in other moths [46,47].

Sexual communication is essential for courtship and mating behaviors in insects, es-
pecially in Lepidoptera [4,37,48]. In general, antennae function as the primary olfactory
organs involved in courtship rituals [1,49]. Thus, the antennal responses of male moths
to these pheromones were measured by EAG assays to identify the active sex pheromone
compounds. Among the six pheromone compounds tested, E11-14:OAc elicited the highest
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EAG responses. Consistent with previous studies, E11-14:OAc had an induction effect on
the entire wind tunnel process, including flight, upwind, approach, and landing [39,40].
However, the other five pheromone components showed weak EAG responses in males,
which may be related to the low numbers of sensilla on the antennae of males [13,15,50].
Many studies have shown that PRs are expressed on the ORNs of dendrites of the sen-
silla trichodea, which primarily sense pheromones [51,52]. Thus, sensilla trichodea were
classified using single sensillum recordings to further characterize the functional types,
interpreting the recognition of olfactory sensory neurons as pheromone compounds in
L. sticticalis. The results show that two neurons, “a” and “b,” were identified in the sensilla
trichodea of L. sticticalis. ORN “a” in sensilla trichodea was activated by E11-14:OAc.
Usually, two or three neurons are housed in the sensilla trichodea in Lepidoptera [53]. For
instance, in Spodoptera frugiperda male’s antennae, two neurons are housed in Type I and
III sensilla trichodea, and three are housed in the Type II sensilla trichodea. In addition,
E11-14:OAc was the main pheromone compound in some moths, such as O. furnacalis and
Mythimna loreyi [46,53]. Our results are consistent with previous studies, namely that the
sensilla primarily detected the pheromone compounds [53]. Interestingly, the large-spiking
ORN in the male L. sticticalis trichoid sensilla was activated by E11-14:OAc, also found in
S. frugiperda and M. loreyi [10,53]. However, the remaining pheromone compounds did
not induce any response in the sensilla trichodea ORNs, leading us to speculate that other
types of antennal sensilla might be responsible for detecting these compounds. Previous
studies have shown that intra-specific pheromone compounds can also be sensed by the
ORNs of sensilla auricillicum [54]. From the above two experimental results, some discrep-
ancies are clear. EAG results showed that all tested pheromones could activate the male’s
antennae response, whereas SSR results indicated that only E11-14:OAc could elicit the
male’s antennae response. The reason for this discrepancy is that EAG tested the response
of the entire moth antennae, whereas SSR assays only tested the sensilla trichodea type.
Thus, we speculated that the 14:OH might be recognized by other types of sensilla [14].

To further advance our understanding of the sexual communication process, it is im-
perative to elucidate the function of PRs, as they play a crucial role in detecting pheromone
components predominantly by olfactory genes [11,36]. Currently, Xenopus oocytes, as a
heterologous expression system in vitro, have been used for studying many species, such as
Epiphyas postvittana [11], Heliothis virescens [55], and O. furnacalis [46]. Therefore, we assayed
the response of five candidate LstiPRs from L. sticticalis to known pheromone compounds
by using the Xenopus oocyte system and found that LstiPR2 was elicited explicitly by
the pheromone component E11-14:OAc, while the other four candidate LstiPRs (LstiPR1,
LstiPR3, LstiPR4, and LstiPR5) were not activated by any test pheromone compounds. The
results show that LstiPRs exhibited a narrow tuning to the sex pheromone chemical signal
from female L. sticticalis, in contrast to the broadly tuned PRs identified in O. furnacalis [46].
These results differ from most studies conducted on other moth species. The possible
reason may be that when the PRs are expressed in vivo, other olfactory elements must
complete the whole process, such as OBPS, CSPs, and SNMPs [56]. Furthermore, the
non-responding candidate LstiPRs (LstiPR1, LstiPR3, LstiPR4, and LstiPR5) might be able
to detect host volatiles or other types of odors, as previously reported for Cydia pomonella,
where CpomOR3 was elicited by a volatile pear ester [57].

5. Conclusions

In conclusion, our results provide robust molecular and electrophysiological evidence
that E11-14:OAc is the major pheromone component in L. sticticalis. Interestingly, the
pheromone component E11-14:OAc exists in the sex pheromone components of many
other species, such as Ostrina spp. [46], Proeulia auraria [58], and Spodoptera litura [12].
Therefore, further investigation into the molecular mechanisms that differentiate between
inter- and intra-specific pheromone components in L. sticticalis is required, which is of great
significance for optimizing the current pheromone lure.
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