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Simple Summary: Fatty acids play essential roles in insect growth and development. The key fatty
acid synthesis reaction is catalyzed by fatty acid synthase (FAS). As a cofactor of fatty acid synthesis,
however, little is known about the functions of acyl carrier protein (ACP) in insects and how it
modulates the composition of fatty acids. We isolated an ACP from the black soldier fly Hermetia
illucens (Diptera: Stratiomyidae) and investigated the expression patterns as well as functions in
fatty acid synthesis and growth of insects. HiACP has a classical conserved region of DSLD. Based
on the RNAi approach, we found that HiACP could regulate the fatty acid synthesis, in particular,
reducing the composition of saturated fatty acids. Meanwhile, HiACP could also affect the growth
and mortality of H. illucens.

Abstract: Acyl carrier protein (ACP) is an acyl carrier in fatty acid synthesis and is an important
cofactor of fatty acid synthetase. Little is known about ACP in insects and how this protein may
modulate the composition and storage of fatty acids. We used an RNAi-assisted strategy to study
the potential function of ACP in Hermetia illucens (Diptera: Stratiomyidae). We identified a HiACP
gene with a cDNA length of 501 bp and a classical conserved region of DSLD. This gene was highly
expressed in the egg and late larval instars and was most abundant in the midgut and fat bodies of
larvae. Injection of dsACP significantly inhibited the expression level of HiACP and further regulated
the fatty acid synthesis in treated H. illucens larvae. The composition of saturated fatty acids was
reduced, and the percentage of unsaturated fatty acids (UFAs) was increased. After interfering with
HiACP, the cumulative mortality of H. illucens increased to 68.00% (p < 0.05). H. illucens growth was
greatly influenced. The development duration increased to 5.5 days, the average final body weights
of larvae and pupae were decreased by 44.85 mg and 14.59 mg, respectively, and the average body
lengths of larvae and pupae were significantly shortened by 3.09 mm and 3.82 mm, respectively. The
adult eclosion rate and the oviposition of adult females were also severely influenced. These results
demonstrated that HiACP regulates fatty acid content and influences multiple biological processes of
H. illucens.

Keywords: Hermetia illucens; acyl carrier protein; fatty acid; growth and development; RNAi

1. Introduction

Fatty acids play essential roles in animal health and development [1]. They can be
esterified by glycerol and serve as energy sources (triglycerides) within adipose tissue.
Fatty acids are also present in cell membrane phospholipids involved in cell structure and
membrane fluidity. They stimulate signaling processes, including immune response or
metabolic functions [2,3]. In insects, fatty acids are crucial for embryonic development,
metamorphosis, and reproductive processes [4–6]. To obtain fatty acids, insects have
evolved a system for their de novo synthesis.
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De novo synthesis of fatty acids in insects begins with the transformation of acetyl-
CoA to malonyl-ACP [7]. This compound further reacts with acetyl-ACP by a chain-
extending reaction. Then, a series of reaction steps, including reduction, dehydration, and
desaturation, occurs [8]. Repetition of this reaction cycle results in fatty acids with different
carbon chain lengths. This key reaction cycle is catalyzed by fatty acid synthase (FAS),
which contains multiple catalytic domains. During the chain-extending reaction, nearly
all acyl substrates and intermediates are attached to an acyl carrier protein (ACP) and
shuttled to different catalytic sites of FAS [7,9–11]. With the help of a phosphopantetheinyl
transferase, ACPs can bind to the 4′-phosphopantetheine arm of coenzyme A (CoA) and
transfer to the “active form” for delivery of acyl substituents to distinct FAS domains [12,13].
ACP is the central element of FAS and fatty acid metabolism [14]. ACP deficiency in animals
can cause visible damage. For example, mutations in ACP-related genes in animal lungs can
impair FAS function, reduce the number of long-chain fatty acids, and delay growth [15].
Downregulation of the active form of ACP can impair the lipoylation function and lead
to the decreased activity of lipoylated proteins [16]. ACP is also a key player in insect
development and lipid metabolism. The mitochondrial ACP gene of Drosophila melanogaster
is most highly expressed in late embryonic development, and mutations in its ACP isoform
can increase mortality [17,18]. However, little is known about the impact of ACPs on the
biosynthesis, storage, and composition of the fatty acids of other insect species. Research is
needed to evaluate the influence of ACP deficiency on insect growth and development.

Hermetia illucens (Diptera: Stratiomyidae) is a saprophagous species widely used for
the bioconversion of organic wastes [19–23]. Similar to other edible insects such as meal-
worms, silkworms, and crickets, H. illucens larvae can utilize carbon and nitrate sources
in waste and produce high-quality protein, fatty acid, and mineral nutrients [24–26]. The
fatty acids in H. illucens larvae are mainly saturated fatty acids (SFAs), which account for
50% of the total fat [27,28]. Among these, C12:0 has the highest yield, which generally
accounts for 40–60% of the crude fat [29]. The SFAs in H. illucens larvae are present at
a higher level, which is distinctive compared with other insects such as the mealworm
(Tenebrio molitor) [30]. This composition can be altered by the larval diet [31]. Thus, the
H. illucens larva is a good source of lauric acid (C12:0), palmitic acid (C16:0), oleic acid
(C18:1), linoleic acid (C18:2), and linolenic acid (C18:3) [32,33]. Therefore, uncovering the
mechanisms of fatty acid synthesis and storage is required for this beneficial decomposer
insect and its associated industry. The conversion efficiency of fatty acids and their compo-
sition in H. illucens is mainly governed by FAS, highlighting the need to understand the
mechanism of this enzyme and its possible use in the waste disposal and recycling industry.

To investigate the impact of FAS on the fatty acid metabolism of H. illucens, we focused
on the functions of ACP, a key cofactor serving as the intermediate carrier during fatty acid
biosynthesis. We developed an RNAi system to investigate the influence of downregulating
the ACP gene in 3rd instar H. illucens larvae. We also used gas chromatography to assess
changes in fatty acid composition in ACP-inhibited individuals. By determining the effect
of the downregulation on larval, pupal, and adult biomass, survival rate, and development
duration, we could further estimate the functions of HiACP on the survival and growth of
H. illucens and explore the possibility of enhancing the fatty acid quality of this economic
insect species.

2. Materials and Methods
2.1. Insect Rearing and Sample Collection

Hermetia illucens were reared in an artificial incubator. The temperature was set as
28 ± 1 ◦C; the relative humidity was 70 ± 5%; the light-dark cycle was 8:16 (L:D) [34], and
the light intensity was 4800 lx. Wheat bran was used as the main feed, supplemented with
fruits and water. Chicken manure was used to stimulate adults for laying eggs. Larvae
of six instar (6th instar larvae are also called pre-pupae) [35,36], pupae, adults (male and
female, respectively), and eggs were sampled and stored at −80 ◦C before use. The head,
hemolymph, fat body, cuticle layer, and midgut of the 5th instar larvae were thereafter
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dissected for RNA isolation. RNA was extracted using the Trizol method following the
manufacturer’s instructions. Three biological replicates and three technical replicates were
prepared for each test [37].

2.2. Cloning of HiACP cDNAs

The concentration and A260/A280 value of the extracted RNA were measured by a
UV/VIS spectrophotometer (biodrop µ Lite, Cambridge, UK). The integrity of RNA was
verified by agarose gel electrophoresis. The cDNA synthesis reaction was carried out by
hiscript II 1st strand cDNA synthesis Kit (Vazyme, Nanjing, China). The synthesized cDNA
was used as the template for PCR reaction as follows: pre-denaturation at 95 ◦C for 3 min;
denaturation at 95 ◦C for 15 s; annealing at 60 ◦C for 15 s; extending at 72 ◦C for 60 s;
extending at 72 ◦C for 2 min; 35 cycles; holding at 12 ◦C [38]. Primer sets used for the
amplification of HiACP are shown in Table 1. The sequences of PCR products were carried
out in Tianke High-tech Development Co., Ltd. (Hangzhou, China).

Table 1. Sequences of primers for DNA cloning, dsRNA synthesis, and qRT-PCR.

Primer Forward Primer Reverse Primer Product Length (bp) Purpose

HiACP AAAAATGTCGCTGTCACAGGGT CAACAAAACGATGAACCCGC 501 cDNA
dsACP T7-CGCTGTTTATTGAGCCGTGC T7-TTCTCGGCATCTGAATCGGG 395

RNAidsGFP T7-AGATCCGCCACAACATCGAG T7-GTCCATGCCGAGAGTGATCC 204
qHiACP GATGCTCCATCGACAATGCG GGACGCGTTCACGAATTTCT 137 qRT-PCR
β-actin AGGAGACGAAGCACAAAGCA AGTCCAAAGCGACGTAGCAG 150

T7: GATCACTAATACGACTCACTATAGGG.

2.3. Sequence Analysis and Quantification of the HiACP Gene

The nucleotide sequence of cDNA was transformed into an amino acid sequence by
the Translate tool implicated in Expasy. HiACP gene sequences of other insect species
were downloaded by the NCBI protein database [39]. The physicochemical properties of
protein were predicted by Expasy [40]. The signal peptide was predicted using SignalP [41].
Protein transmembrane structure was predicted by TMHMM [42]. Subcellular localization
was performed by Euk-multi-2 [43]. Prediction of phosphorylation sites was performed
by NetPhos [44]. Protein secondary structure was predicted by Cgi-bin. Multi-sequence
alignment was obtained by DNAMAN software [45].

Quantification of the HiACP gene was performed by Real-time PCR method. The
cDNA was diluted to 100 ng/µL. PCR reactions were prepared by TB GREENTM premix
ex taq (Takara). The reaction conditions were set as follows: pre-denaturation at 95 ◦C for
30 s; 95 ◦C, 10 s; 60 ◦C, 30 s, 39 cycles; 95 ◦C, 15 s; 65 ◦C, 5 s; 95 ◦C, 5 s. We used β-actin as
a housekeeping gene [46]. Table 1 shows the primers used for qRT-PCR. Three biological
repeats were prepared in total, and each was repeated three times (technical repeats). The
relative transcription level was analyzed using the 2−∆∆Ct method [47].

2.4. RNAi Treatment

The DNA of HiACP was amplified from the cDNA of H. illucens larvae using the
primer set “HiACP” (Table 1). PCR products were purified by the gel extraction kit (Vazyme,
Nanjing, China). The concentration of the final DNA product was greater than 60 ng/µL,
and the A260/A280 value ranged from 1.8 to 2.0 [48]. The DNA fragments were further
used for dsRNA synthesis. Synthesis of dsRNA was performed using T7 high-yield RNA
transcription Kit (Vazyme Biotech Co., Ltd.). Primers used in this step were shown in
Table 1 (dsACP and dsGFP). For dsRNA injection, the 3rd-instar larvae were starved for
24 h, then washed, dried, and settled on the ice. Before injection, 75% alcohol was used
to disinfect the 10 µL microinjector. Subsequently, the tip of the injector was burned by a
burner, and the injection was preceded after the needle was cooled down [49]. A total of
1.5 µL of dsRNA was injected into the membrane of the 7–8th segments of the larvae. The
treated insects were reared in an incubator for further tests. Daily cumulative mortality
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(Daily cumulative mortality (%) = cumulative number of dead worms per day/total number
of worms × 100%) [50] of RNAi-treated larvae was noted every day. Body weight was
measured daily, and larval body length was measured by Leica M165 C stereo microscope.
The eclosion rate was calculated as follows: Adult eclosion rate (%) = adult number/total
pupae number × 100%. Oviposition rate (%) = the number of eggs/the number of female
adults × 100% [51].

2.5. Fatty Acid Contents in H. illucens

Larvae were ground to powder with liquid nitrogen. Totally 0.2 g of larvae powder
was collected into a glass tube, and 1 µg/mL of C17:0 was added as the internal standard.
Total Fatty Acids were extracted by chloroform and dried by N2. Methyl esterification
was carried out with the methanol-H2SO4 method; n-hexane was used to extract fatty
methyl esters (FAME) [52]. The FAME products were measured by an Agilent 6890N Gas
Chromatography gas phase analyzer with a DB-23 column (60 m × 250 m × 0.25 m). The
sampling parameter was set as follows: detector temperature, 260 ◦C; inlet temperature,
270 ◦C. The heating program was started initially at 100 ◦C for 13 min, then 10 ◦C/min to
180 ◦C for 5 min, 1 ◦C/min to 200 ◦C for 20 min, and finally heated at 4 ◦C/min to 240 ◦C
for 10 min [53]. Helium was used as the carrier gas. The C4–C24 FAME mixture (Supelco
37 F. A. M. E. Mix, Sigma-Aldrich, St. Louis, MO, USA) was used as the standard solution.

2.6. Statistical Analysis

All statistical analysis was performed by Prism 9.0. Variations of test groups were
calculated by Student’s t-test (for two groups) and One-Way ANOVA followed by Tukey’s
post-hoc test (pair-wise analysis of multi-groups).

3. Results
3.1. Sequence Analysis of HiACP

Physicochemical properties and structure analysis of HiACP by NCBI [39] showed
that the full-length open reading frame of HiACP (GenBank accession# OP659030) was
501 bp, and it encoded 165 amino acids. The molecular weight was 18.4 kDa. The negatively
charged residue (Asp + Glu) was 20. The positively charged residue (Arg + Lys) was 20. The
instability index was 43.38. The fat coefficient was 89.34. The total hydrophobic coefficient
was −0.156. A blast of the amino acid sequence of HiACP with homologous genes of
other species by NCBI showed that it contains a conserved region of DSLD (Figure 1).
The cloned HiACP genes were blasted by the NCBI database, where species with high
similarity ranking and small e-value included Drosophila innubila (XP-034481180.1) with
61% similarity and an e-value of 5 × 10−55, Scaptodrosophila lebanonensis (XP-030385635.1)
with 60% similarity and an e-value of 8 × 10−52 and Rhagoletis zephyria (XP-017477199.1)
with 60% similarity and an e-value of 2 × 10−52. The physical and chemical properties of
the protein were analyzed by ExPASY [40]. TMHMM2.0 [42] predicted that HiACP had no
transmembrane structure. SignalP 5.0 predicted HiACP signal-free peptides. Euk-m PLoc
2.0 [41] predicted that HiACP was localized in the mitochondria. SOMPA [43] predicted
that HiACP had 68.07% alpha helix, 3.61% extended chain, 4.82% beta-turn, and 23.49%
irregular curl. NetPhos3.1 Server [44] predicted that HiACP had 11 serine phosphorylation
sites (10, 12, 20, 37, 41, 59, 81, 87, 112, 122, 143), 10 threonine phosphorylation sites (24,
25, 39, 69, 76, 82, 104, 109, 150, 153), and five tyrosine phosphorylation sites (66, 80, 100,
157, 165).
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Figure 1. Multiple sequence alignment of HiACP with Drosophila innubila DiACP (GenBank accession
no: XP-034481180.1), Rhagoletis zephyria RzACP (GenBank accession no: XP-017477199.1), Scapto-
drosophila lebanonensis SlACP (GenBank accession no: XP-030385635.1), Apis cerana cerana AcACP
(GenBank accession no: PBC33684.1), Mus musculus MmACP (GenBank accession no: XP-036009503.1),
Lactobacillus reuteri LrACP (GenBank accession no: CUU12525.1), and Brassica rapa BrACP (GenBank
accession no: NP-001288921.1). Characters shaded in different colors indicate amino acids with
distinct similarity (deep blue, 100%; pink, 75–99%; light blue, 50–74%). The red box indicates strictly
conserved motifs in ACPs.
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3.2. Expression at Growth Stages and Tissues

The relative expression levels of HiACP in different developmental stages and tissues
of H. illucens were determined by qRT-PCR. The midgut, integument, hemolymph, fat body,
head of 5th instar larvae, and the egg, 1st, 2nd, 3rd, 4th, 5th, and 6th instar larvae, pupae,
female, and male adults were tested. The relative expression levels of HiACP in the different
developmental stages of H. illucens were as follows: The relative transcription level in the
egg stage was significantly greater than that in other developmental stages (p < 0.05). The
relative transcript levels of HiACP increased as the larval instar increased, but it decreased
from the pupal stage to the period after adult eclosion (Figure 2A). The results showed the
relative transcript level of HiACP in different tissues. The highest expression level was in
the midgut (p < 0.05), followed by the expression in the fat body (p < 0.05) (Figure 2B).
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Figure 2. Relative transcript levels of HiACP at different developmental stages and in different tissues.
(A): Relative transcript level of HiACP at different developmental stages. Lowercase letters (a–d)
represent significant differences (p < 0.05) according to Tukey’s multiple range test. (B): Relative
transcript levels of HiACP in different tissues. Lowercase letters (a–e) represent significant differences
(p < 0.05) using Tukey’s multiple range test. The relative transcript levels of HiACP in different
developmental stages and different tissues were detected by qRT-PCR (Using β-actin as the reference
housekeeping gene). The Y-axis values are mean ± SE of relative expression levels. Different
lowercase letters on the bars indicate a significant difference between the treatments.

3.3. Effects of RNAi of HiACP

We injected dsRNA into one-day-old 3rd instar larvae to determine the optimal con-
centration and repression time. When the concentration of dsACP was 2000 µg·mL−1, the
silencing efficiency was greatest at 61.5% (p < 0.05). There was no significant difference
when the concentration of dsACP was 500 µg·mL−1 (Figure 3A). The relative expression
of the HiACP gene on different days following the dsACP injection was also analyzed.
Silencing efficiency was best on the 3rd day (1.5 µL, 2000 µg·mL−1)) and reached 81.9%
(p < 0.05) (Figure 3B).

The changes in fatty acid content in dsACP-injected 3rd instar larvae on the 3rd day
after interference were studied using the RNAi method (Table 2). After interference, the
total fatty acid content decreased by 13.13% (p < 0.05), and lauric acid (C12:0) decreased by
20.22% (p < 0.05). After interference with dsACP, the percentage of SFA in total fatty acid
decreased by 2.44% (p < 0.05), while the percentage of UFA in total fatty acid increased by
4.94% (p < 0.05).
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Table 2. Fatty acid composition (g/100 g) of 3rd instar larvae after dsACP injection.

Fatty Acid dsGFP dsACP

C10:0 0.21 ± 0.00 0.17 ± 0.01 *
C12:0 9.94 ± 0.08 7.93 ± 0.06 **
C14:0 2.31 ± 0.02 1.91 ± 0.01 **
C15:0 0.11 ± 0.01 0.06 ± 0.02
C16:0 5.24 ± 0.23 4.94 ± 0.23
C16:1 1.03 ± 0.04 0.82 ± 0.01 **
C18:0 0.94 ± 0.06 0.88 ± 0.03
C18:1 5.09 ± 0.04 4.6 ± 0.14 *
C18:2 2.84 ± 0.18 2.76 ± 0.28
C18:3 0.31 ± 0.03 0.27 ± 0.05
SFA 18.75 ± 0.15 15.89 ± 0.25 **

MUFA 6.12 ± 0.07 5.42 ± 0.12 **
PUFA 3.15 ± 0.21 3.03 ± 0.32

Total FA 28.02 ± 0.17 24.34 ± 0.24 **
Mean ± SE was calculated from three biological replicates and four technology replicates; each biological replicate
contained 15 one-day-old 3rd instar larvae. The larvae injected 1.5 µL (2000 µg·mL−1) dsACP were collected on
the 3rd day. *: 0.01 < p < 0.05, **: p < 0.01.

We studied the influence of HiACP interference on the growth of 3rd instar larvae of
H. illucens. After injecting dsACP, the 3rd instar larvae were continuously observed for
30 d. The 3rd instar larvae injected with dsACP grew to 5th instar larvae. Compared to the
control 5th instar larvae, the treated larvae had an average body weight that was 44.85 mg
less and an average body length that was 3.09 mm shorter (Figure 4A). These values were
significantly different from the control group (p < 0.05). When the 3rd instar larvae grew to
pre-pupae, we observed that the weight of the average pre-pupa was 14.59 mg less, and the
average pre-pupa length was 3.82 mm less than the control (Figure 4B). These reductions
were significantly less than the control (p < 0.05).
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length of pupa with time. The 6th instar larva is also called larval in the pre-pupa stage, so it is
also classified as a pupal stage. The left y-axis values are the mean of the average weight of larvae
and the right y-axis indicates the length of H. illucnens larvae. (C): Appearance changes of larva
and pupa of different instars. The photos of larva and pupa were collected at the 3rd day of the
corresponding instar. Mean ± SE was calculated from three biological replicates, and each biological
replicate contained 50 3rd instar larvae.

After the 3rd instar larvae interference treatment, individuals grew to the adult stage,
the adult male weight was reduced by 34.06 mg, and the adult female weight was reduced
by 33.05 mg compared to the control. These changes were significantly different from the
control group (p < 0.05) (Figure 5A). The experimental group’s adult male body length
was reduced by 5.9 mm, and the adult female body length was reduced by 5.8 mm. These
reductions were significantly different from the control group (p < 0.01) (Figure 5B). The
adult eclosion rate was reduced by 8.86%, and adult female oviposition was reduced by
18.52% (Figure 5C). These values were significantly less than those in the control (p < 0.05).
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Figure 5. Changes in the body weight, length, eclosion, oviposition, and appearance in adults after
the one-day-old 3rd instar larvae of H. illucen injected with 1.5 µL dsACP (2000 µg·mL−1) grew to
adults. (A): Changes in the weight of female and male adults. Y-axis values are the means of the
average weight of adults. (B): Changes in the length of female and male adults. Y-axis values are
the mean of the average length of adults. (C): Changes in the proportion of eclosion of adults and
oviposition of female adults. Y-axis values are the means of the proportion of eclosion and oviposition.
(D): Appearance changes of female and male adults. The pictures of adults were collected on the
first day after molting. Every adult grew from a one-day-old 3rd instar larva of H. illucen injected
with 1.5 µL dsACP (2000 µg·mL−1). Mean ± SE was calculated from three biological replicates, and
each biological replicate contained 50 one-day-old 3rd first instar larvae that grew to the adult stage.
Bars marked with different letters indicate significant differences between treatment and control
(Student’s t-test, p < 0.05).

On day 40, after injecting dsACP, the treated 3rd instar larvae had developed into
adults. The cumulative mortality of the experimental group was 68.00%, which was
significantly greater than the control group (p < 0.01) (Figure 6A). We also found that after
injecting dsACP into the 3rd larvae, there was a significant increase in instar duration. The
duration of 4th instar larvae, pupae, and adults was significantly longer than the control
group. The duration of 4th instar larvae increased by 1.3 d, pupal duration increased by
1.5 d, and the adult stage increased by 2.7 d. These increases were significantly different
from the control group (p < 0.01) (Figure 6B).
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Figure 6. Cumulative mortality and instar duration of one-day-old 3rd instar larvae of H. illucen
after dsACP (2000 µg·mL−1) injection of 1.5 µL. (A): Cumulative mortality in different instars of 3rd
instar larvae injected with dsACP. Y-axis values are the means of cumulative mortality in the different
instars. (B): The duration of 3rd, 4th, 5th, 6th instar larvae, pupae, and adults. Y-axis values are the
means of duration at different instars. Mean ± SE was calculated from three biological replicates,
and each biological replicate contained 50 one-day-old 3rd instar larvae grown to different instars.
Bars marked with different letters indicate significant differences between treatment and control
(Student’s t-test, p < 0.05).

4. Discussion

Fatty acid synthase plays a crucial role in the fatty acid metabolism of insects, and
ACP is an important functional cofactor that directs the production of various fatty acids
in insect tissues. We studied ACP deficient H. illucens to determine the potential function
of this key FAS cofactor. Inhibition of ACP expression during the larva stage directly
down-regulated the content of common fatty acids stored in the tissues. This effectively
reduced the growth of H. illucens. The effects included a reduced survival rate, reduced
body size and mass, increased development duration, and reduced female reproduction.
These results indicated that ACP could have a great impact on fat storage and the growth
of H. illucens. Advance editing of this gene might help improve fatty acid production and
conversion efficiency of organic waste by H. illucens.

The development of H. illucens larvae can be affected by various extrinsic factors
such as temperature, gut microbes, food nutrition, and xenobiotics [23,54,55]. Intrinsic
factors, such as the expression level of metabolic genes, also perform vital roles during
the developmental process. Our result exhibited that HiACP was expressed at the highest
level during the egg stage of H. illucens (Figure 2A). During embryogenesis, a large amount
of energy is needed to complete the transformation from egg to 1st instar larva. Lipids,
consisting of glycerol and fatty acids, are the major fuel source during this development
stage [56]. Similar to H. illucens, a large number of fatty acids occur in the oocytes of
mosquitos. These have been termed maternal fatty acids [57]. Fatty acid deficiency can
reduce the egg lifespan of insects and hence impair the fitness of eggs [57,58]. These results
confirm that, in H. illucens, HiACP regulates the biosynthesis of intra-egg fatty acids and
is involved in the development of the embryo to larval stages. After the egg hatched, the
expression level of the HiACP gene increased during the H. illucens growth. This indicated
a gradually increased storage of fatty acids in the gut and fat body of larvae (Figure 2B).
This energy source could be used for pupation and subsequent adult eclosion. In adult
female Bombyx mori, the ACP gene was highly expressed in the unfertilized egg, flight
muscle, and fat body tissues. The adult B. mori midgut had a relatively lower expression
level than those found in other tissues [59], which is inconsistent with our results. This
could be caused by the degenerated gut tract of the silkworm, which does not participate
in food digestion and fatty acid metabolism.
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In mammals, fatty acid synthase mainly produces C16 fatty acids, whereas insect fatty
acid products are evenly distributed in carbon chain lengths, reaching C18 [60]. Large
amounts of C18 fatty acids, such as stearic acid (C18:0), oleic acid (C18:1), linoleic acid
(C18:2), and linolenic acid (C18:3), have been identified in many insects, including crickets,
grasshoppers, mealworms, and houseflies [61–63]. H. illucens larvae contain a large amount
of lauric acid (C12:0), palmitic acid (C16:0), and oleic acid. Our results demonstrated that
SFAs are dominant in the H. illucens larva, which is consistent with previous studies of this
species [33,64]. Lauric acid (C12:0) was the most abundant fatty acid in H. illucens larvae,
a result that differs from previous data. H. illucens contains high levels of lauric acid and
serves as a useful SFA supplier for the food, cosmetics, and poultry industries [65]. Using
the H. illucens RNAi system, we found that lauric acid content decreased by 20.22% in the
3rd instar larva after silencing of HiACP. However, other C16 and C18 SFA and MUFA
compounds were also simultaneously down-regulated. No fatty acid was observed to
decrease significantly compared with its other analogs. This result implies that HiACP
mainly participates in the elongation step of fatty acid biosynthesis in H. illucens and
might not be involved in the decoration and termination reaction of the hydrocarbon chain.
Functional genes that contribute to the composition of specific fatty acid types (e.g., lauric
acid) may be uncovered by future RNAi studies.

RNAi treatment had significant effects on the growth and development of 3rd instar
H. illucens larvae. Inhibition of HiACP decreased fatty acid storage in tissues and impaired
triglyceride synthesis in RNAi-treated individuals. When the energy storage ability of
insects was compromised, their body size, duration of development, and fertility were
also affected. This result indicated that HiACP is essential for the nutrient digestibility and
energy storage of H. illucens. ACPs have exhibited similar functions in other animals. For
example, the downregulation of genes related to fatty acid synthesis can induce dysfunc-
tions in adipose tissue and lead to fat loss and weight loss in rats [66]. Similarly, RNAi
treatment of the FAS gene disturbed the rate of midgut digestion and caused reduced lipid
synthesis in Aedes aegypti [67]. The fatty acid synthesis pathway is a basic biological process,
the products of which are widely involved in the physiology of the immune and other cell
signaling systems [68]. For example, lauric acid has bactericidal activity [69], so a decrease
in lauric acid content triggered by ACP interference, as observed here, might suppress
the immune function of H. illucens against bacterial pathogens. The chain extension re-
action of the fatty acid synthesis process is also used by the insect hormone biosynthesis
process [70–72], which indicates that the ACP downregulated induced disturbance of the
fatty acid elongation reaction might diminish the hormone homeostasis of H. illucens. We
assume that this hormone dysfunction might have a wider influence on insect physiology
and ecology.

RNAi treatment of H. illucens demonstrated that HiACP is a core gene involved in the
fatty acid synthesis process. This gene cannot precisely govern the production of specific
fatty acid content and the composition of fatty acids stored in H. illucens tissues. It appears
to act as a “general controller” of the fatty acids that regulate fatty acid composition and
storage in H. illucens. This knowledge could be used for expanding the fatty acids produced
by the H. illucens rearing industry.

5. Conclusions

We demonstrated that the HiACP gene regulates the biosynthesis of fatty acids. This
gene affects the growth of H. illucen larvae, adult eclosion rate, and adult oviposition. These
effects helped reveal the molecular mechanism and function of the HiACP gene and the
process of fatty acid regulation. Future research should focus on the optimization of the
fatty acid regulatory mechanisms and the expression of high-quality fatty acids in vitro.
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