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Simple Summary: In this study, we present a compartmental population model for Cx. pipiens/restuans,
incorporating mosquito life cycle parameters, as well as temperature, precipitation, and geographic
latitude. The model was validated against mosquito count data from Cook County (IL, USA).
The model fitted the observation data and was able to reproduce between-year differences in the
abundance of the Cx. pipiens/restuans mosquitoes, as well as the different seasonal trends.

Abstract: Mosquitoes of the genus Culex are important vectors of a variety of arthropod-borne
viral infections. In most of the northern parts of the USA, Cx. pipiens/restuans is the predominant
representative of this genus. As vectors, they play a key role in the spreading of arboviruses and
thus, knowledge of the population dynamic of mosquitoes is important to understand the disease
ecology of these viruses. As poikilotherm animals, the vital rates of mosquitoes are highly dependent
on ambient temperature, and also on precipitation. We present a compartmental model for the
population dynamics of Cx. pipiens/restuans. The model is driven by temperature, precipitation, and
daytime length (which can be calculated from the geographic latitude). For model evaluation, we
used long-term mosquito capture data, which were averaged from multiple sites in Cook County,
Illinois. The model fitted the observation data and was able to reproduce between-year differences
in the abundance of the Cx. pipiens/restuans mosquitoes, as well as the different seasonal trends.
Using this model, we evaluated the effectiveness of targeting different vital rates for mosquito control
strategies. The final model is able to reproduce the weekly mean Cx. pipiens/restuans abundance for
Cook County with a high accuracy, and over a long time period of 20 years.

Keywords: Cx. pipiens; Cx. restuans; modeling; mosquito; weather; population dynamics; vector

1. Introduction

Mosquitoes of the genus Culex (family Culicidae) are important vectors of a variety
of infectious diseases, e.g., Rift Valley fever, St. Louis encephalitis, Japanese encephalitis,
Western equine encephalitis, and West Nile fever [1–4]. As vectors, they play a key role in
virus transmission cycles, and thus in spreading viral infections. Therefore, in order to un-
derstand the epidemiology of mosquito borne arboviruses, knowledge of vector population
dynamics is necessary. The main vectors for West Nile virus (WNV) in North America are
mosquitoes of the genus Culex—especially Cx. pipiens, Cx. tarsalis, Cx. quinquefasciatus, and
Cx. restuans—but other Culicidae have also been shown to transmit WNV [4,5]. According
to their distribution, Cx. pipiens is the main vector in the north, Cx. tarsalis is the main vector
in the west, and Cx. quinquefasciatus is the main vector in the south of North America [5–7].

Being poikilotherm animals, the population dynamics of Culex mosquitoes are highly
influenced by ambient temperature [8–10]. Laboratory studies have shown the influence of
temperature on the development time and survival rates of eggs, larvae, and pupae [11–15].
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In adult mosquitoes, temperature affects their lifespan, length of the gonotrophic cycle, and
virus transmission rate [11,12,14]. Some Culex mosquitoes undergo reproductive diapause,
which is also, along with daytime length, affected by temperature [16,17]. Precipitation
has also been shown to have a strong impact on Culex abundance: a high abundance of
Culex mosquitoes has been found to be associated with high precipitation occurring several
weeks before a capture event [9,10]. The authors of these studies suggested that rainfall
increases the water’s surface area and, therefore, possible oviposition sites. Other factors
which have been shown to influence the abundance of Culex mosquitoes are landscape
patterns and land use [9,18,19].

In general, there are two types of models which have been used to describe Culex
population dynamics: regression models and compartmental models. Regression models
have proven to be useful tools in discovering connections between population densities and
environmental factors [9,20–22]. However, they cannot reveal the biological mechanisms
behind those relationships. Regression models are, therefore, of limited use if we want to
discover the mechanisms of population dynamics, which is necessary knowledge if we
want to manipulate a species population, such as for pest control. Compartmental models,
on the other hand, are aimed to represent the mechanisms behind population dynamics.
This makes compartmental models ideal for testing as to how the population dynamics
of a particular species could be influenced. However, the downside of compartmental
models is their need for detailed information on the vital rates of the investigated species.
Examples for compartmental Culex models are rather rare, requiring detailed information
on the location the model is applied to (e.g., the water volume of the breeding site), and/or
have only been validated for short time periods [23–25]. Therefore, it would be difficult to
apply these models to other locations.

In epidemiology, simplified compartmental Culex models have been integrated in
susceptible, infectious, and/or recovered (SIR) models of mosquito-borne infectious dis-
eases [26–28]. In those studies, however, abundance predictions were not compared to
actual mosquito capture data, and, thus, these models were not validated. Yu et al. [29] de-
veloped a compartmental abundance model for Cx. pipiens/restuans that did validate model
results against actual mosquito abundance data. Besides mosquito life cycle parameters
obtained from field and laboratory studies, this model was, however, solely temperature-
driven. The researchers suggested including other factors impacting mosquito abundance,
such as the precipitation, landscape, and wind, in order to help improve the predictive
power of future models [29].

In this study, we present a compartmental population model for Cx. pipiens/restuans,
incorporating mosquito life cycle parameters, as well as temperature, precipitation, and
geographic latitude. The model was validated against mosquito count data from Cook
County (IL, USA). The aim was not to generate a model for a specific area, but rather to
produce a model which generates mean values for mosquito abundance that are valid
for larger areas (here, we use the county level), which could be used for other areas as
well. Thus, we use only easily accessible input parameters (temperature, precipitation, and
geographic latitude). This model could therefore be simply integrated in SIR models of
Culex-borne infectious diseases. Further, we test how manipulating the vital rates influences
population size, which is important for mosquito control strategies. Control strategies
could be aimed at increasing the mortality rate of certain stages, by using insecticides or
biological pest control measurements [30], or, they could be aimed at decreasing the birth
rate of mosquitoes, e.g., by releasing sterile individuals (Sterile Insect Technique) [31].

2. Materials and Methods
2.1. Cx. pipiens/restuans Population Model

To simulate Cx. pipiens/restuans population dynamics, we developed a dynamic com-
partmental population model in R 4.1.2 [32], consisting of a system of ordinary differential
equations (OED) with daily time steps. The model is based on the models presented by
Laperriere et al. [26] and Rubel et al. [27].
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Our population model consists of four stage variables: E—egg stage, L—larval stage,
including pupal stage, A—active adult mosquitoes, H—adult mosquitoes in diapause
(Figure 1). Furthermore, we only allowed the proportion of surviving individuals of one
stage to have the possibility to change into the next stage.
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Figure 1. Block diagram of the Culex population model, incorporating 4 stages: E—eggs, L—larvae
(inclusive pupal sage), A—active adults; H—hibernating adults. For definition of the parameters, see
Table 1.

Table 1. Definition of the transition parameters used in the Culex population model. Model parame-
ters are per capita rates in units days−1.

Parameter 1 Description

bE (T, P) birth rate eggs—reciprocal value of the length of the gonotrophic cycle
multiplied with the number of female eggs laid per egg raft

mE (T) mortality rate of eggs

bL (T) birth rate larvae—reciprocal value of the length of the egg stag

mL (T, KL) mortality rate of larvae and pupae combined

KL (P) carrying capacity of the larvae

bA (T) birth rate adults—reciprocal value of the length of the larval and pupal
stage combined

mA (T) mortality rate of active adult mosquitoes

h (T, D) diapausing rate—rate of adult mosquito leaving the active stage and
entering the diapause stage

mH mortality rate of adult mosquitoes during winter diapause
1 Information on parameters, depending on environmental factors, is given in parentheses: T—daily mean ambient
temperature (◦C), P—daily sum of precipitation (mm) and D—daytime length (h).

The daily changes of the number of animals within each stage are described by
Equations (1)–(4), where definitions of the parameters used in the equations are described
in Table 1.

d E
d t

= bE A − mEE − bLE(1 − mE) (1)

d L
d t

= bLE(1 − mE)− mL
KL/LL − bAL

(
1 − mL

KL/L
)

(2)

d A
d t

= bAL
(

1 − mL
KL/L

)
− (1 − mA)hA + (1 − mH)(1 − h)H (3)

d H
d t

= −mH H + (1 − mA)hA − (1 − mH)(1 − h)H (4)

The transition parameters used (Table 1) were estimated from literature values and
were influenced only by temperature (T), precipitation (P), and daytime length (D). We
combined data from different sources, giving values at different temperatures, and we also
used data from other Culex species if there was not sufficient data for Cx. pipiens/restuans
available. By visual inspection of the distribution of the data points, we appraised the
form of the function and fitted functions through the data points, using the non-linear
least square approach (nls package in R 4.1.2, [32], see Equations (5)–(14)). Estimates were
rounded to 2 significant digits. Some functions (e.g., mortality rates) would allow for values
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above 1 at certain temperatures, which are, from a biological point of view, not possible.
Thus, if necessary for a function, it was capped at the value of 1. In this case, we calculated
the intersection with a horizontal line at 1. Those interception points represent the lower
and upper temperature threshold for the validity of a specific function. Below and above
those thresholds, the value was set to 1. We arbitrarily set initial values for E, L, and A
to 0.0 and 0.1, for H to have a starting point. To minimize the effects of the chosen initial
values, we started the model one year before the first mosquito capture data was available,
on the date 1 January 1990. For the next sections, the parameters a, b, and c in the function
descriptions do not have a biological meaning, but are necessary to shape the parameter
functions.

2.1.1. Egg Stage—E

The birth rate of eggs (bE) represents the daily egg-laying rate. It can be calculated
as the reciprocal value of the length of the gonotrophic cycle. Madder et al. [11], Vino-
gradova [15] and Elizondo-Quiroga et al. [33] give temperature (T) dependent values for
the gonotrophic cycle in the Cx. pipiens complex, which we used to fit a logistic function:

bE(T) =
a

1 + b exp(c T)
(5)

Various authors have suggested the influence of precipitation on the birth rate [9,10],
however, no quantitative data describing this relationship were available. As the availability
of suitable Cx. pipiens/restuans breeding sites increases with preceding rain events, we
included an additional term in order to increase bE: the mean sum of precipitation (P) of
the k days before egg laying. Further, to obtain the “actual” birth rate, i.e., the number of
female offspring per female per day, we multiplied bE by a value equaling half of the mean
number of eggs found in an egg raft, as it has been shown that there is an equal number of
male and female eggs [34]. For Cx. pipiens, this value was estimated to be ≈100 (calculated
from Madder et al. [11], Oda and Ueda [35], and Oda et al. [36]).

bE(T, P) = 100
a + d ∑k

i=1 Pt−i

1 + b exp(c T)
(6)

Data on the temperature dependence of the egg mortality rate (mE) were given by
Madder et al. [11], Shriver and Bickley [37], and Suman et al. [14]. We assumed a polynomic
function:

mE(T) =
{

a + bT + cT2, if trl(mE)
< T < tru(mE)

1, otherwise
(7)

where trl and tru are lower and upper temperature thresholds for the validity of the function,
respectively, as the mortality rate cannot exceed 1.

2.1.2. Larval Stage—L

In our model, we combined the larval and pupal stages of the mosquitos into one
compartment (hereafter only referred to as the “larval stage”). The larval birth rate (bL)
is the daily hatching rate of eggs into larvae, and is calculated as the reciprocal value of
the duration of the egg stage. The temperature-dependent larval birth rate has been well
documented, and can be described by a logistic function [11,14,15,37–40]:

bL(T) =
1

1 + a exp(b T)
(8)
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The temperature-dependent mortality rate of the larval stage (mL) has been described
for Cx. pipiens by Madder et al. [11], Olejniček and Gelbič [41], and Tamarina [42]). The
data fitted a rational function:

mL(T) =

{
a+b T

(T−Tmin.larv)(T−Tmax.larv)
, if trl(mL)

< T < tru(mL)

1, otherwise
(9)

where trl and tru are lower and upper temperature thresholds for the validity of the function,
respectively, as the mortality rate cannot exceed 1.

This function required information on the minimum and maximum temperature
for larval survival (Tmin.larv and Tmax.larv). Mean values found in the literature were
Tmin.larv = 8.7 ◦C [11,43–45] and Tmax.larv = 36.4 ◦C [43,46]. Mortality rates are likely to be
biased and highly underestimated under lab conditions. For Cx. tarsalis, it has been shown
that only 10% of larval mortality in the field is due to abiotic factors [34]. Thus, we increased
obtained mortality rates under lab conditions for larvae by a factor of 10.

The mortality of larvae has been shown to increase with larval density [11,47,48], which
we incorporated in our model as well. Suitable densities for larval development are likely to
depend on habitat structure, and, thus, the larval carrying capacity KL. Unfortunately, this
parameter, as well as its relation to the number of adult mosquitoes, is unknown. Assuming
a correlation between the number of larval and adult mosquitoes, and, thus, between the
carrying capacity of the two stages, we estimated a scaling factor, which gives KL in relation
to the capture rate of adult females. Using a scaling factor instead of estimating KL directly
makes the results of this study applicable to other areas. We used the mean number of
captured Cx. pipiens/restuans during their peak abundance (i.e., in July), which was found
to be 5.75 individuals per day for our study area. As the volume of larval habitat increases
with preceding rain events, we included an additional term to increase KL: the mean sum
of precipitation of the k preceding days. Please note that k is the same as for Equation (6).

KL(P; t) = a 5.75 + b
1
k ∑k

i=1 Pt−i (10)

2.1.3. Adult Stages—A and H

The birth rate of adult mosquitoes (bA) represents the hatching rate of mosquitoes, from
larvae to imagoes. Analogous to the larval birth rate, the adult birth rate can be calculated as
the reciprocal value of the duration of the larval period. Temperature-dependent durations
of the larval period for the Cx. pipiens complex are given in [13,38,40,46,49]. Again, the data
fitted a logistic function:

bA(T) =
1

1 + a exp(b T)
(11)

Almir’on and Brewer [38], Gunay et al. [50], Oda et al. [51], Reisen et al. [12] and
Suman et al. [14] give data on the temperature dependence of adult mortality rates (mA).
We assumed a polynomic function:

mA(T) =
{

a + bT + cT2, if trl(mA)
< T < tru(mA)

1, otherwise
(12)

where trl and tru are lower and upper temperature thresholds for the validity of the function,
respectively, as the mortality rate cannot exceed 1.

In winter, Cx. pipiens and Cx. restuans undergo reproductive diapause [16,17,48].
This diapause is mainly characterized by the arrest of ovarian development, but also
accompanied by other metabolic and behavioral changes [15]. Ovarian development, which
we will use as a proxy for the occurrence of diapause, is dependent on the temperature
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(T) and daytime length (D), as investigated for Cx. pipiens by Eldridge [52], and a logistic
function can be fitted to the data:

h(T, D) =
1

1 + a exp(b T + c D)
(13)

Therefore, h is the rate at which an adult mosquito changes from the active stage, A,
into the diapausing (hibernating) stage, H, and 1 h is the rate at which adult mosquitoes
terminate diapause. The mosquitoes spend hibernation in natural and artificial shelters,
where they are protected from the harsh climatic conditions during winter [15]. Bailey
et al. [53] reported that for diapausing Cx. pipiens, the proportions of individuals surviving
the winter (14 December—8 March; equates to 84 days) were 0.157, 0.224 and 0.247. Thus,
we can calculate the daily survival rate during diapause in winter, and hence the daily
winter mortality rate:

mH = 1 − exp
(

log(a)
84

)
(14)

2.2. Model Evaluation
2.2.1. Mosquito Count Data

For the evaluation of our model, we used mosquito count data from Cook County
(IL, USA), provided by the Desplaines Valley Mosquito Abatement District (P. Geery, 2011,
pers. comm.). This agency had long-term capture data available, as it has been capturing
mosquitoes with New Jersey light traps at 25 trap sites since 1980.

However, not all trap sites were continuously operated during all years, and, thus,
only those trap sites providing continuous time series for at least 20 years were selected,
resulting in six capture sites (details on the trap location, data preparation and mosquito
data selection are published by Lebl et al. [22]). For this study, the numbers of female
mosquitoes were averaged over these six capture sites. Although the sites are not uniformly
distributed within the county, the resulting average time series was considered to be
representative for Cook County. Of the 81,022 Culex females caught at the trap sites
between 1991 and 2010, 97% were Cx. pipiens/restuans, and the rest were Cx. territans,
Cx. tarsalis, Cx. erraticus, and Cx. salinarius. The catches of the morphologically rather
similar species Cx. pipiens and Cx. restuans were combined, as distinguishing them based
on morphological characteristics is rather imprecise.

2.2.2. Environmental Data

The mean daily temperature (T) and daily sum of precipitation (P) data were taken
from the weather station of the Chicago O’Hare International Airport (WMO No. 72530 [54];
87.900◦ W, 41.983◦ N and altitude 205 m). The daytime length, D (in hours), is a function of
the sun’s declination, E, and the geographic latitude φ, and was calculated using the CBM
model described by Forsythe et al. [55]:

D = 24 − 24
π

acos
(

sin(0.8333) + sin(ϕ) sin(ε)
cos(ϕ) cos(ε)

)
(15)

with the declination of the sun ε calculated as a function of the calendar day d:

ε = asin(0.39795 cos(0.2163108 + 2 atan(0.9671396 tan(0.00860 (d − 186))))) (16)

2.2.3. Model Calibration and Validation

We used function estimates as initial values for our model. For the parameter associ-
ated with precipitation, our initial value was chosen as 0, i.e., precipitation had no effect.
The model results had a temporal resolution of 1 day. Due to the high inter-day variation
in the capture rates [22], we calculated the weekly mean of the capture rates and model
estimates to be used for further analysis. To evaluate model fit, we calculated the root mean
square error (RMSE) between the mosquito capture data and the model estimates for the
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active adult mosquitoes, A, as well as the Spearman’s correlation coefficient, rS (as the
count data followed a non-Gaussian distribution).

The individual function parameters (a, b, and c) for the transition parameters were
estimated based on literature values obtained at laboratory conditions, thus, it is possible
that the parameters of these functions would be different at field conditions. Consequently,
we allowed for the function parameters to vary within the standard error (SE) of their
estimated value (Table 2). To divide the data set into a training and a test set, we distin-
guished between even and odd years. In a previous study, we used a random process to
choose odd years as the test data, and we retained this division in order to make the results
comparable [22].

Table 2. Parameter estimates for Equations (6)–(14) for the Cx. pipiens/restuans mosquito model. The
estimates are the values for a specific function fitted to literature data, and the according lower and
upper margin (estimate ± SE). Values estimated to our best knowledge, i.e., not based on literature
data, are indicated by an asterisk (*). Furthermore, the model calibration with the lowest RMSE (in
bold), as well as the minimum, maximum, mean, standard deviation (SD) and relative standard
deviation (RSD), obtained by the 30 runs of the genetic algorithm (training data set), are shown.

Func. Par. Estimate Lower Upper Calib Min Max Mean SD RSD

bE a 3.9 × 10−1 3.4 × 10−1 4.5 × 10−1 4.5 × 10−1 4.2 × 10−1 4.5 × 10−1 4.4 × 10−1 7.9 × 10−3 1.8 × 10−2

b 9.5 × 101 2.9 × 101 1.6 × 102 3.0 × 101 2.9 × 101 3.2 × 101 3.0 × 101 8.6 × 10−1 2.9 × 10−2

c −2.1 × 10−1 −2.6 × 10−1 −1.7 × 10−1 −2.6 × 10−1 −2.6 × 10−1 −2.4 × 10−1 −2.5 × 10−1 5.3 × 10−3 −2.1 × 10−2

d * 0.0 × 100 0.0 × 100 1.0 × 10−1 1.0 × 10−1 5.0 × 10−2 1.0 × 10−1 9.7 × 10−2 9.1 × 10−3 9.4 × 10−2

bE, KL k * 0.0 × 100 0.0 × 100 2.0 × 101 1.1 × 100 8.4 × 10−1 1.8 × 100 1.2 × 100 2.5 × 10−1 2.1 × 10−1

mE a 2.5 × 100 2.0 × 100 2.9 × 100 2.0 × 100 2.0 × 100 2.5 × 100 2.1 × 100 1.1 × 10−1 5.4 × 10−2

b −2.0 × 10−1 −2.4 × 10−1 −1.6 × 10−1 −2.0 × 10−1 −2.2 × 10−1 −1.8 × 10−1 −2.0 × 10−1 1.1 × 10−2 −5.6 × 10−2

c 4.2 × 10−3 3.3 × 10−3 5.0 × 10−3 5.0 × 10−3 4.1 × 10−3 5.0 × 10−3 4.9 × 10−3 2.4 × 10−4 5.0 × 10−2

bL a 2.7 × 101 1.4 × 101 4.0 × 101 1.4 × 101 1.3 × 101 3.3 × 101 1.6 × 101 4.2 × 100 2.7 × 10−1

b −1.5 × 10−1 −1.7 × 10−1 −1.3 × 10−1 −7.0 × 10−2 −1.7 × 10−1 −5.9 × 10−2 −1.2 × 10−1 3.2 × 10−2 −2.7 × 10−1

mL a 1.9 × 101 −3.6 × 100 4.1 × 101 3.1 × 101 2.5 × 101 3.3 × 101 2.8 × 101 2.3 × 100 8.1 × 10−2

b −2.9 × 100 −3.8 × 100 −2.0 × 100 −3.7 × 100 −3.8 × 100 −3.7 × 100 −3.7 × 100 4.1 × 10−2 −1.1 × 10−2

KL a * 1.0 × 100 1.0 × 100 5.0 × 101 1.0 × 100 1.0 × 100 1.8 × 100 1.2 × 100 2.2 × 10−1 1.8 × 10−1

b * 1.0 × 100 1.0 × 100 7.0 × 101 3.6 × 101 3.6 × 101 3.7 × 101 3.6 × 101 5.7 × 10−1 1.6 × 10−2

bA a 1.1 × 102 7.3 × 101 1.5 × 102 1.0 × 102 7.5 × 101 1.5 × 102 1.1 × 102 2.2 × 101 2.1 × 10−1

b −8.5 × 10−2 −9.8 × 10−2 −7.3 × 10−2 −7.3 × 10−2 −7.4 × 10−2 −7.3 × 10−2 −7.3 × 10−2 3.9 × 10−4 −5.2 × 10−3

mA a 9.2 × 10−2 6.4 × 10−2 1.2 × 10−1 6.4 × 10−2 6.4 × 10−2 8.5 × 10−2 6.8 × 10−2 5.0 × 10−3 7.3 × 10−2

b −7.5 × 10−3 −1.0 × 10−2 −5.0 × 10−3 −5.1 × 10−3 −5.3 × 10−3 −4.9 × 10−3 −5.0 × 10−3 1.0 × 10−4 −2.1 × 10−2

c 2.0 × 10−4 1.5 × 10−4 2.6 × 10−4 2.6 × 10−4 2.6 × 10−4 2.6 × 10−4 2.6 × 10−4 8.7 × 10−7 3.4 × 10−3

mH a 1.8 × 10−2 1.7 × 10−2 2.0 × 10−2 1.7 × 10−2 1.7 × 10−2 2.0 × 10−2 1.8 × 10−2 8.1 × 10−4 4.5 × 10−2

h a 8.4 × 10−6 −6.7 × 10−6 2.4 × 10−5 8.8 × 10−8 8.0 × 10−8 3.2 × 10−7 1.2 × 10−7 5.6 × 10−8 4.6 × 10−1

h b 2.8 × 10−1 2.3 × 10−1 3.3 × 10−1 2.3 × 10−1 2.3 × 10−1 2.4 × 10−1 2.4 × 10−1 1.9 × 10−3 8.0 × 10−3

h c 7.5 × 10−1 6.2 × 10−1 8.7 × 10−1 8.7 × 10−1 7.8 × 10−1 8.7 × 10−1 8.5 × 10−1 2.4 × 10−2 2.9 × 10−2

With the training data set, a genetic algorithm was used, in order to identify the
parameter combination that fitted the data best (i.e., minimizing RMSE). This algorithm is
a search heuristic inspired by natural evolution that is used for optimization problems [56]
where a given number of possible solutions (populations) to a given problem exists. The
values generating the best solutions for the optimization problem (this study: lowest RMSE)
undergo “mutations” and “recombinations” to produce a new population to be tested. This
procedure is continued for a chosen number of iterations. For the calculation of the genetic
algorithm, we used program R 4.1.2 [32], with the package genalg [57].

The genetic algorithm was run 30 times, each with a population size of 500 and
2000 iterations. Validation of the stability of the RMSE were performed depending on
the number of iterations and runs (see Supplementary Material Figure S1). The model
calibration with the lowest RMSE was chosen as the final model, and the model’s fit was
assessed using the test data. To compare variations in estimates between the 30 runs, we
calculated the relative standard deviation (RSD).
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2.2.4. Estimating the Effect of Mosquito Control Strategies

Mosquito control strategies could either be aimed to reduce the birth rate (bE) or
increase the mortality of the different stages (mE, mL, mA, mH). After calibrating the vital
rate functions, we decreased the birth rate and increased the mortality rates by 5%, 10%,
25%, 50%, and 75%, both individually and with some of these changes combined. Mortality
rates greater than one were set to one. To test the effect of the modified vital rates on the
population size, we compared the total number of adult mosquitoes (A) during the study
period 1991–2010, as predicted by our model, with the models in which the altered rates
were used. The total number of mosquitoes in the model after calibration was set to be
100%, and the population size obtained with the altered vital rates was calculated as a
proportion of this size.

3. Results

The initial function parameter estimates using non-linear least-squares can be seen
in Table 2. Using these initial function parameters, without any calibration, produced a
seasonal pattern of mosquito abundance, which fitted the capture data passably. We found
(with the initial estimates) an RMSE = 5.1814 and an rS = 0.832 for the training data, and an
RMSE = 5.1840 and an rS = 0.826 for the test data.

With parameter calibration (parameters are shown in Table 2) the estimated abundance
of active mosquitoes (A), as calculated by the final model, fitted the observations from the
training data well (RMSE = 1.3457, rS = 0.905; Figure 2).
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The results from the test data set showed an equally good fit (RMSE = 1.437, rS = 0.900).
For the whole observation period (1991–2010, training and test data combined), we calcu-
lated the RSME = 1.393 and rS = 0.902.

This final model was able to reproduce inter-year variability in terms of the abundance
of the Cx. pipiens/restuans mosquitoes, as well as in terms of the different yearly trends.
However, it overestimated mosquito abundance in years with very low capture rates,
and, thus, with potentially low abundance (1994, 2005, 2007), while underestimating the
abundance for some years with very high mosquito capture rates (2000, 2009).
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To investigate the importance of including precipitation into the model, we set the
parameters associated with precipitation to zero (KL(b) and bE(d)), while using all other
parameters from the final model. This model without precipitation still resulted in a high
correlation with the capture data from the test data set (rS = 0.899), but with a lower
RMSE = 1.898 (Figure 3).
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The estimates for the calibrated model parameters, from the 30 runs conducted using
the genetic algorithm, were mostly located within a small section of their possible range
(Table 2). The highest relative variation was found for parameter a of the function for h,
which modulates the horizontal position of the inflection point. Parameters a and b of the
KL function, which we had to choose to our best knowledge, also showed a higher variation.
Surprisingly, parameter k, which is part of the bE and KL function and gives the sum of the
days with precipitation, showed only a small variation, despite the large possible range we
allowed for with this parameter, due to missing preliminary information.

The resulting functions for the birth rates used in the final model showed that tem-
perature developmental time for adults (bA) showed little deviation from the literature
(Figure 4), whereas temperature developmental time was lower for larvae (bL) and higher
for eggs (bE) compared to the initial functions obtained from literature. For the mortality
rates, the estimated function parameters for mL were nearly identical to the non-calibrated
function parameters, while the mortality rates for the eggs were lower, allowing the eggs to
survive at temperatures below 10◦; therefore, the optimal temperature for egg survival was
shifted to lower temperatures.
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The highest modification was found for h, the transition rate to and from the diapaus-
ing stage. In the final model, the function for h implied that under short day conditions,
most mosquitoes were in the diapausing stage, which was nearly independent from the
temperature. At long daytime lengths, on the other hand, temperature had a high impact
on the transition between the stages A and H.

When compared to values from literature, the function of the diapausing rate (h) was
skewed to the right, suggesting that, even at higher temperatures, some mosquitoes are
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inactive. To reduce the population of Cx. pipiens/restuans, the vital rates would have to
be influenced considerably (Table 3). The most effective modification is a simultaneous
increase of mL and mA, followed by other combinations, including an increase of mL. The
model simulation showed that the population size is rather robust against decreasing bE or
an increasing mE.

Table 3. Effect of mosquito control strategies, increasing/decreasing different vital rates by a certain
percentage, on the relative population size. The percentage of active mosquitoes during the study
period (1991–2010) was obtained by using the altered rate in relation to the number of mosquitoes
predicted by the model after calibration.

5% 10% 25% 50% 75%

decrease bE 99.6 99.2 97.8 94.2 86.5
increase mE 99.7 99.5 98.6 97.4 96.3
increase mL 96.2 92.6 82.6 68.4 56.5
increase mA 96.2 92.7 83.6 71.9 63.1
increase mH 99.1 98.3 95.9 92.3 89.1

decrease bE + increase mE 99.3 98.7 96.4 91.4 82.2
decrease bE + increase mL 95.8 91.8 80.7 64.2 48.0
decrease bE + increase mA 95.8 92.0 81.6 67.0 52.6
decrease bE + increase mH 98.7 97.5 93.6 85.9 73.8
increase mE + increase mL 95.9 92.1 81.5 66.5 54.2
increase mE + increase mA 95.9 92.2 82.4 69.8 60.4
increase mE + increase mH 98.8 97.7 94.6 89.8 85.6
increase mL + increase mA 92.6 85.8 69.1 49.3 35.8
increase mL + increase mH 95.3 91.0 79.1 62.9 49.7
increase mA + increase mH 95.4 91.1 80.4 66.8 56.8

4. Discussion

The dynamic compartmental model presented in this study is able to reproduce the
weekly mean Cx. pipiens/restuans abundance for Cook County at a high accuracy and over
a long time period of 20 years. It only needs a few, easily accessible input parameters,
namely, temperature, precipitation, and daytime length (as a function of the geographic
latitude). Due to the averaging of values over several trap locations, we were able to
build a model that was independent from trap-site-specific effects on mosquito abundance,
such as small water bodies. Therefore, our model can be an important tool to predict Cx.
pipiens/restuans abundance, and, thus, the spread of diseases transmitted by this vector
species. In a previous study, we used lagged weather data and a Poisson regression model
to generate a predictive model for Cx. pipiens/restuans abundance [22]. The performance of
the Poisson model is directly comparable to the compartmental model presented in this
study, as the same mosquito capture data were used to generate and to evaluate the models.
The fit of both model types is similar (the Poisson model had a slightly poorer performance,
with an RMSE = 1.752 for the test data set), but the Poisson model needed two additional
input parameters, namely, relative humidity and wind speed. A further benefit is that this
compartmental model can easily be included in SIR models for pathogens transmitted by
Cx. pipiens/restuans.

The final model in this study showed that the highest difference in vital rates from
literature values was found for the transition between the active and diapausing adult
stage. This was not surprising, as we had only scarce data available to generate our
initial function, which also did not give the proportion of diapausing females per se,
but instead gave proportion of the females with arrested ovarian development. Further,
studies conducted under laboratory conditions usually work with constant parameters
(e.g., constant temperature, light or dark), while field conditions are characterized by
changing conditions, such as temperature variations during the day or dim light conditions
at dawn and dusk. This variation in the conditions is likely to modify the temperature
and photoperiod dependence observed in the laboratory. This does not only apply for the
diapausing rate, but likely for all included vital rates [58], and could explain other, not so
strongly pronounced, deviations in the vital rates when compared to literature values.

Including precipitation in our model (for estimating the egg-laying rate bE and the
carrying capacity KL) considerably contributed to the fit of the final model to the observed
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mosquito abundances. Interestingly, although our settings would have allowed us to
include accumulated rainfall from up to 20 days prior, only rainfall during the previous
day was selected through the genetic algorithm. Both Cx. pipiens and Cx. restuans use a
wide variety of water bodies as breeding sites, ranging from larger, semi-permanent pools
to small (artificial) containers, such as tin cans [59]. As small, temporal water bodies are
most affected by the most recent rainfall events, our study emphasizes the importance of
those temporal water bodies as breeding sites for Cx. pipiens/restuans. As with the other
environmental factors, the variation in the distribution of rainfall likely modulates the effect
of the total sum of precipitation during a certain period. For example, as shown by Valdez
et al. [60], a high variability increases the production of mosquitoes at a low rainfall regime,
while the opposite behavior takes place in the case of high precipitation.

Importantly, the investigated mosquito population has been subject to mosquito
control measures. However, during the whole study period, the control methods have been
constantly changing, and so have their efficiency. Control measurements have been mainly
targeting the larval stage of mosquito development, but since 2002, there has been also
occasional spraying of an adulticide (P. Geery, pers. comm.). Aberrations in our model’s
results from the observation data could partly be caused by yearly differences in the use or
efficiency of the control strategies. We also need to emphasize that our model represents
a “managed” Cx. pipiens/restuans population. This needs to be taken into account when
applying the model to other areas and regions. However, in many areas (at least in the USA)
where mosquito-borne diseases such as WNV occur, there is some kind of mosquito control,
thus, the model might be highly applicable for such areas. By manipulating the vital rates
in our model, we could show that additional control measures could result in a further
reduction in mosquito abundance when compared to the use of the control measures that
have been already applied in Cook County during 1991–2010. As our results showed, the
resulting effects on the population size are nearly linear, thus, our results would apply to
unmanaged Cx. pipiens/restuans populations as well. Mosquito management strategies
typically consist of a combination of applying larvicide and adulticide, as well as efforts to
reduce breeding sites, but the efficiency of these methods varies [30,61]. The results of our
study suggest that focus should be on increasing the mortality rates of larvae and adults.
However, to obtain a sustainable effect, the mortality rates would have to be strongly
increased.

The Cx. pipiens/restuans abundance model by Yu et al. [29] resembles the model created
in this study, however, it did not include precipitation, which in our model increased model
fit. As with our model, their abundance model showed some restraints regarding predictive
power in some years, but no RMSE or correlation coefficients were given, so we cannot
directly compare our model to their work. However, as Yu et al. [29] suggest, discrepancies
in observed and estimated data could be due to skewness in the surveillance data, caused
by some of the traps capturing a disproportionately large number of mosquitoes relative
to other traps included in the surveillance program. In our study, we aimed to reduce the
bias caused by inhomogeneous traps, by altering the selection process of the data used [22],
however, we cannot avoid this bias completely. Additionally, poor predictive power in
our model for some years could be due to differences in mosquito control measures as
described above, or a combination of unusual weather phenomena, resulting in unusually
low or high mosquito numbers. Whereas control measures can be accounted for in models,
given detailed information, unusual weather phenomena can be very hard to predict and
capture in a model.

Studies evaluating mosquito population models with capturing face the problem
that the capture data does not represent the whole (female) mosquito population size,
as mosquito traps usually target host-seeking females. Further, trap types differ in their
efficiency, which has to be considered when comparing model output with capture data
obtained from other trap types. A further challenge will be to test this model in different
areas and regions [62–64]. As the geographic latitude is already included in this model, it
should be rather straight forward to apply this model to other areas. Further, we intend to
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adapt this model for other Culex species, especially for the other important WNV vectors,
Cx. tarsalis in the west and Cx. quinquefasciatus in the south of the United States. Further
development of this model by implementing the effect of varying environmental conditions
would likely increase the predictive power.

5. Conclusions

The presented dynamic compartmental model was able to reproduce the weekly mean
Cx. pipiens/restuans abundance for Cook County at high precision. As it only needs a few
input parameters, namely, temperature, precipitation, and latitude, it can be adapted to
other regions and easily implemented into SIR models for pathogens transmitted by Cx.
pipiens/restuans mosquitoes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/insects14030293/s1, Figure S1: Validation of the stability of root-
mean-square error (RMSE) depending on the number of iterations and runs.
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