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Simple Summary: Coccoidea (scale insects) are sap-sucking hemipterous insects with a high
diversity of species. They exhibit dramatically variable appearance and sexual dimorphism and are
also closely related to human beings as important economic pests and resource insects. However,
we know very little about the phylogenetic relationship within Coccoidea. We reconstructed that
relationship among five coccoid families (e.g., Aclerdidae, Cerococcidae, Coccidae, Eriococcidae,
and Kerriidae) based on mitogenomes. Aclerdidae and Coccidae were recovered as the sister
group, successively sister to Cerococcidae, Kerriidae, and Eriococcidae. In addition, there were
gene rearrangements occurring in all mitogenomes of coccoid species studied here. The novel
gene rearrangement ND6-trnP and trnI-ND2-trnY supported the monophyly of Coccoidea and the
sister relationship of Aclerdidae and Coccidae.

Abstract: Coccoidea (scale insects) are important plant parasites with high diversity of species. How-
ever, the phylogenetic relationship within Coccoidea has not been fully determined. In this study, we
sequenced mitogenomes of six species belonging to five coccoid families. With the addition of three
previously published mitogenomes, a total of 12 coccoid species were adopted for the phylogenetic re-
construction based on the maximum likelihood and Bayesian inference. The monophyly of Coccoidea
was recovered and Aclerdidae and Coccidae were recovered as the sister group, successively sister to
Cerococcidae, Kerriidae, and Eriococcidae. In addition, there were gene rearrangements occurring
in all mitogenomes of coccoid species studied here. The novel gene rearrangement ND6-trnP and
trnI-ND2-trnY supported the monophyly of Coccoidea and the sister relationship of Aclerdidae and
Coccidae. This implies that data from the mitogenome can provide new insight for clarifying the
deeper level of phylogenetic relationship within Coccoidea.

Keywords: Coccoidea; gene order; molecular phylogeny

1. Introduction

Scale insects (Coccoidea) are small and sap-sucking hemipterans and closely related to
Aphidoidea (aphids), Aleyrodoidea (whiteflies), and Psylloidea (jumping plant lice), belong-
ing to the suborder Sternorrhyncha. Currently, there are more than 8000 species described
in all zoogeographical fauna, belonging to 36 extant families [1]. Interestingly, they are
extremely sexually dimorphic, adult females are paedomorphic and highly reduced while
males have a more “typical” insect appearance and display complete metamorphosis [2,3].

The current classification of Coccoidea is mainly based on the morphology of adult
females. However, the morphological features of adult females of coccoids have undergone
significant reduction, providing very limited phylogenetic information; therefore, little is
known about the relationship among coccoid families and the monophyly of some families
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remains verified, especially Eriococcidae [2]. Subsequently, Cook et al. [4] and Gullan
and Cook [5] adopted a nuclear RNA gene (SSU rRNA or 18S) to infer the phylogenetic
relationship among the coccoid families. These studies verified the monophyly of various
families but Eriococcidae and recovered the sister relationship between Coccidae and
Kerriidae without Aclerdidae involved. The morphology of adult males was believed to
improve our understanding of evolutionary relationships among coccoid families [6–9].
Hodgson and Hardy [10] estimated the phylogeny of Coccoidea based on the morphological
characters of adult males, supporting the sister relationship between Aclerdidae and
Coccidae. Cerococcidae was recovered as a sister group with the clade of Aclerdidae and
Coccidae. Vea and Grimaldi [11] reconstructed the relationship at the family level within
Coccoidea combining the morphology and gene fragments (e.g., 18S, 28S, and EF-1a), also
indicating the closest relationship between Coccidae and Aclerdidae. However, Kerriidae
was found to have a closer affinity with Cerococcidae, inconsistent with previous results
based on either several molecular markers or morphology. Furthermore, Eriococcidae was
consistently found to be paraphyletic by the above studies both based on the molecular and
morphological data [4,5,10,11]. Liu et al. also reconstructed the phylogenetic relationship
based on the ultraconserved element (UCE) [12]. However, Diaspididae was found to be
closer to Eriococcidae, represented by Acanthococcus lagerstroemiae, this was contrary to
the morphology of male adults [10]. Accordingly, the relationship within Coccoidea was
not fully understood using morphological or limited gene fragments [5], therefore further
study is necessary.

The mitogenome is a circular and double-stranded DNA molecule. It has been
widely adopted as a powerful molecular marker for phylogenetic and evolutionary
analysis in various insect groups, especially high taxonomic levels, because of the rela-
tively high evolutionary rate and rare recombination [13–15]. Moreover, there are gene
rearrangements frequently occurring in the mitogenomes of insects. This gene structure
information is also useful in inferring phylogenetic relationships [16–20]. There have
been thirteen coccoid mitogenomes recorded in GenBank [21–25]; however, eight of
which were regarded as unverified data (e.g., Ceroplastes japonicus, C. rubens, Drosicha
corpulenta, Ericerus pela, Nipponaclerda biwakoensis, Planococcus citri, Saissetia coffeae, and
Unaspis yanonensis). Moreover, the putative “P. citri and U. yanonensis” mitogenomes
reported by Liu et al. [23] were lately considered not to originate from Coccoidea but
from parasitic wasps in the Chalcidoidea [26]. Recently, there were gene rearrangements
occurring in six valid coccoid mitogenomes and the phylogenetic results based on the
mitogenomic sequence frequently found the monophyly of Coccoidea [24,25], thus indi-
cating that the mitogenomes may have the potential in determining the phylogenetic
relationship within Coccoidea. In this study, we sequenced four species from Cerococci-
dae, Eriococcidae, and Kerriidae, and re-sequenced two from Aclerdidae and Coccidae
based on the next-generation sequencing method.

2. Materials and Methods
2.1. Sampling and Genomic DNA Extraction

Six species belonging to six families of Coccoidea were collected in China and Australia
and were preserved in 95% ethanol (Tianjin Huihang Chemical Technology Co, Tianjin,
China) under −20 ◦C at the Department of Forestry Protection, Beijing Forestry University
(Table 1). The total genomic DNA was extracted from the whole body using QIAamp DNA
Micro Kit following the manufacturer’s instructions.
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Table 1. Collection information of Coccoidea in this study.

Family Species Locatlity Date Collector Voucher Number

Cerococcidae Antecerococcus theydoni (Hall, 1935) Longlin County, Guangxi, China 5 May 2017 Jiangtao Zhang
& Ming Zhao BFU2017050503

Coccidae Ceroplastes japonicus Green, 1921 Mingguang, Anhui, China 6 October 2015 Hu Li BFU2015100601

Eriococcidae
Apiomorpha munita (Schrader, 1863) Red Rock Gorge, Tuggeranong, Australia 22 January 2012 Xiaobei Wang BFU2012012212
Acanthococcus coriaceus (Maskell, 1893) Dutton Park, Queensland, Australia 19 July 2013 Xiaobei Wang BFU2013071900

Kerriidae Albotachaedina sinensis Zhang, 1992 Tea Horse ancient town, Pu’er,
Yunnan, China 19 June 2017 Xu Wang BFU2017061904

Aclerdidae Nipponaclerda biwakoensis
(Kuwana, 1907) Haidian, Beijing, China 20 January 2018 San-an Wu BFU2018012001

2.2. Mitogenome Sequencing and Assembly

We sequenced six mitogenomes using a high-throughput sequencing platform with
Illumina Hiseq 2500 at Berry Genomics (Beijing, China) with 6× sequencing depth and with
250 bp paired-end sequencing reads. An Illumina TruSeq library with single species was
constructed from total genomic DNA with an average insert size of 450 bp. After removing
adapters and low-quality reads, high-quality reads were used in de novo assembly with
IDBA-UD [27]. Assemblies with IDBA-UD used a similarity threshold of 98% and minimum
and maximum k values of 80 and 240 bp, respectively.

Additionally, COI and srRNA, two molecular fragments from mitogenomes, were
amplified as bait sequences by standard PCR reactions using primers designed with refer-
ence [28], and then were adopted to identify the mitogenome assemblies. The mitogenomic
sequences were identified by Geneious 10.1.3 (http://www.geneious.com/, accessed on
15 March 2019) with a BLASTn search [29] against the reference of bait sequences. Only
hits with a 100% pairwise identity were regarded as successful identification. The iden-
tified mitogenomic sequences were manually checked in Geneious 10.1.3 for identical or
near-identical overlapping terminal regions and were circularized where possible.

2.3. Gene Annotation and Bioinformatic Analysis

The annotation of protein-coding genes (PCGs) was implemented with MITOs
WebServer [30] and, subsequently, the accurate position was further determined in
MEGA v6.06 [31].

The tRNA genes were detected by MITOs WebServer, ARWEN [32], and the manual
method with the reference of other hemipteran species (see the Supplementary Materials
for detailed annotation information). The boundaries of rRNAs were determined by the
upstream and downstream of tRNAs, and by the alignment with the homologous genes
of other hemipteran species. The base composition, codon usages of PCGs, and relative
synonymous codon usage (RSCU) values were calculated by MEGA v6.06. The number
of synonymous substitutions per synonymous site (Ks), the number of nonsynonymous
substitutions per nonsynonymous site (Ka), the effective number of codons (ENC), and the
codon bias index (CBI) for PCGs were calculated by the DnaSP 5.0 software [33].

2.4. Phylogenetic Analysis

There were 40 species included in the phylogenetic analysis, including 12 coccoid
species and 24 species of Sternorrhyncha with other four species of Auchenorrhyn-
cha as outgroups (Table 2). A total of 13 PCGs and two rRNAs were merged into a
dataset. Because of unverified data and incomplete numbers of PCG, five coccoid species
(e.g., Ceroplastes rubens, Drosicha corpulenta, Ericerus pela, Planococcus citri, and Unaspis
yanonensis), were excluded from this study.

http://www.geneious.com/
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Table 2. Species involved in the phylogenetic analysis.

Suborder Superfamily/Family Species GenBank Accession Number

Auchenorrhyncha

Cercopidae Callitettix braconoides NC_025497
Cicadidae Platypleura kaempferi KY039114
Cicadellidae Japanagallia spinosa NC_035685
Membracidae Lycorma delicatula NC_012835

Sternorrhyncha

Aleyrodidea

Aleurocanthus camelliae KU761949
Aleurochiton aceris NC_006160
Aleurodicus dugesii NC_005939
Bemisia afer NC_024056
Neomaskellia andropogonis NC_006159
Tetraleurodes acaciae NC_006292
Trialeurodes vaporariorum NC_006280

Aphidoidea

Acyrthosiphon pisum NC_011594
Aphis craccivora NC_031387
Aphis gossypii NC_024581
Cavariella salicicola NC_022682
Cervaphis quercus NC_024926
Diuraphis noxia NC_022727
Eriosoma lanigerum NC_033352
Hormaphis betulae NC_029495
Melaphis rhois NC_036065
Mindarus keteleerifoliae NC_033410
Myzus persicae NC_029727
Schizaphis graminum NC_006158
Schlechtendalia chinensis NC_032386
Sitobion avenae NC_024683

Coccoidea

Acanthococcus coriaceus OP351525
Aclerda takahashii MW8395575
Albotachaedina sinensis OP351521
Antecerococcus theydoni OP351522
Apiomorpha munita OP351523
Ceroplastes floridensis OK040657
Ceroplastes japonicus OP351524
Didesmococcus koreanus MW302211
Nipponaclerda biwakoensis OP351526
Parasaissetia nigra OK040656
Phenacoccus manihoti MZ958983
Saissetia coffeae MN863803

Psylloidea
Cacopsylla coccinea NC_027087
Diaphorina citri NC_030214
Paratrioza sinica NC_024577

The heterogeneity of sequence divergence within the dataset was evaluated by Ali-
GROOVE with the default settings. In addition, the indels in the dataset were scored by
AliGROOVE as ambiguities.

The workflow of the data matrix and phylogenetic analysis was implemented in PHY-
LOSUITE v1.2.2 [34]. The phylogenetic relationship was reconstructed with the maximum
likelihood (ML) method and Bayesian inference (BI). The sequences of PCGs were aligned
in MAFFT [35] with the codon alignment model and G-INS-i (accurate) strategy. The
nucleotide sequences of rRNAs were aligned in MAFFT with the normal alignment model
and G-INS-i (accurate) strategy. Then, the poorly aligned sites of PCGs and rRNAs were
removed by Gblocks [36] with the default parameter settings. The modified sequences of
PCGs and rRNAs were eventually concatenated in PHYLOSUITE v1.2.2.

The optimal partitioning schemes for ML analysis were calculated by Partition-
Finder 2 [37] with default settings. The best model was automatically determined by
IQ-TREE 1.6.8 [38] and maximum likelihood phylogenies were inferred using IQ-TREE
under the Edge-linked partition model for 8000 ultrafast [39] bootstraps. In addition,
the result from AliGROOVE analysis showed a high degree of compositional hetero-
geneity (Figure S1), which can mislead the reconstruction of the phylogenetic tree [40].
Therefore, the Bayesian tree was reconstructed using Phylobayes MPI 1.4f [41] with the
site-heterogeneous model CAT + GTR and a discrete gamma distribution with four rate
categories [42,43]. Two independent chains were run each with 10,000 generations, and
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a consensus tree was calculated with a burn-in of 7500, taking one every 10 trees, up to
the end of each chain.

2.5. Gene Rearrangement Analysis

The gene rearrangements of coccoid mitogenomes were analyzed by the CREx pro-
gram [44], employing the common interval measurement with that of Drosophila yakuba as
the reference.

3. Results
3.1. General Features and Nucleotide Composition

The length of six mitogenomes of Coccoidea ranged from 15,529 bp in Ceroplastes
japonicus to 17,405 bp in Albotachaedina sinensis (Figure 1). The mitogenomes of Ap. munita,
C. japonicus, and N. biwakoensis contain 37 typical genes. However, only 36 genes were
detected in those of the other three species, of which trnV was not in Antecerococcus theydoni
and Acanthococcus coriaceus, and trnC was not in Al. sinensis. These coccoid mitogenomes all
have high A + T content ranging from 81% in N. biwakoensis to 90% in Al. sinensis, consistent
with the strong bias toward A + T in the findings that Aclerda takahashii, D. koreanus, and S.
coffeae previously published [22,24,25].

Figure 1. Circular maps of the mitogenomes of Coccoidea.
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3.2. Protein-Coding Genes

All 13 PCGs were detected in mitogenomes of Coccoidea newly sequenced here, the
length of which ranged from 10,500 bp in Acanthococcus coriaceus to 10,641 bp in N. biwakoensis.
The A + T content in PCGs in six newly sequenced coccoid species was high, ranging from 81%
in Aclerdidae represented by N. biwakoensis to 89% in Kerriidae represented by Al. sinensis.
In addition, the relative synonymous codon usage (RSCU) of coccoid mitogenomes was
examined and shown in Figure 2. The codon ended with A or T was preferred for each amino
acid in coccoid mitogenomes newly sequenced here, this is consistent with the strong bias
towards A + T content of PCGs in coccoid mitogenomes previously published [22,24]. All
PCGs in mitogenomes of Coccoidea studied here initiate with the typical start codon ATN
and all terminate with the stop codon TAA or TAG, except for the COII in C. japonicus and
ND4 in Acanthococcus coriaceus with a T residue as the stop codon.
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Insects 2023, 14, 257 7 of 14

The correlations among ENC (effective number codon), CBI (codon bias index), GC
content of all codons, and GC content of the 3rd codon positions were analyzed to further
investigate the codon usage bias (Figure 3a–e). A positive correlation was observed between
ENC and GC content of all codons (R2 = 0.7133) (Figure 3a) and GC content of the 3rd codon
positions (R2 = 0.7468) (Figure 3b), whereas a negative correlation was observed between
CBI and GC content of all codons (R2 = 0.9741) (Figure 3c) and GC content of the 3rd codon
positions (R2 = 0.9953) (Figure 3d) and ENC (R2 = 0.7513) (Figure 3e). These results show
that the GC content is significant for the codon usage bias in Coccoidea, consistent with the
neutral mutational theories [45,46].
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Figure 3. Evaluation of codon bias across 12 coccoid mitogenomes. ENC, effective number of codons
(out of a maximum of 61); CBI, codon bias index; G + C, GC content of codons; (G + C)3, GC content
of 3rd codon positions. (a), relevance of GC content of codons to ENC; (b), relevance of GC content
of 3rd codons positions to ENC; (c), relevance of GC content of codons to CBI; (d), relevance of GC
content of 3rd codons positions to CBI; (e), relevance of ENC to CBI.

The rate of non-synonymous substitutions (Ka), the rate of synonymous substitutions
(Ks), and the ratio of Ka/Ks were calculated for PCGs (Figure 4) to diagnose the evolution-
ary rates of protein-coding genes of coccoid mitogenomes [47,48]. All ratios of Ka/Ks for
PCGs of each coccoid species were consistently higher than one (Table S1). The average
ratios of Ka/Ks ranged from 2.11 for Cerococcidae to 2.68 for Eriococcidae were consistently
higher than one (Figure 4), indicating that all PCGs of coccoid mitogenomes are evolving
under positive selection.
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of coccoid families.

3.3. Transfer and Ribosomal RNA Genes

The length of tRNA genes in coccoid mitogenomes ranged from 43 bp to 74 bp. There
are only a few tRNA genes in each coccoid species studied here that can fold into typical
cloverleaf secondary structures (e.g., trnA, trnI, and trnL2 in Al. sinensis, trnK, trnL2, and
trnW in Antecerococcus theydoni, trnK, trnL1, trnL2, trnT, and trnV in Ap. munita, trnK,
trnL1, trnL2, and trnM in C. japonicus, trnF, trnK, and trnM in Acanthococcus coriaceus,
trnK, trnI, trnL2, and trnM in N. biwakoensis), while most of the tRNA genes in these six
mitogenomes of Aclerdidae, Cerococcidae, Eriococcidae, and Kerriidae were truncated.
Similarly, this phenomenon of truncated tRNA genes is also prevalent in mitogenomes of
Coccidae reported before [21,22,24].

The rRNA boundaries were determined by alignment with corresponding sequences
from Sternorrhyncha previously published. As in other insect mitogenomes, both lrRNA
and srRNA in six coccoid species were encoded on the light strand. The length of lrRNA
ranged from 1062 bp in Ap. munita to 1243 bp in N. biwakoensis and that of srRNA ranged
from 723 bp in Antecerococcus theydoni to 792 bp in N. biwakoensis. All lrRNA of six coccoid
species had a high AT content, ranging from 85% in Antecerococcus theydoni to 91% in Ap.
munita and Al. sinensis. Likely, all srRNA of six coccoid species had a strong bias to AT
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content, ranging from 83% in N. biwakoensis to 92% in Ap. munita, Acanthococcus coriaceus,
and Al. sinensis.

3.4. Gene Rearrangements Analysis

There were gene rearrangements occurring in six coccoid species sequenced relative to
the putative ancestral gene order, including the rearrangement of tRNA genes and protein-
coding genes. Based on the result from CREx analysis, the common intervals ranged from
160 in Aclerda takahashii to 872 in Acanthococcus coriaceus (Figure 5). This means that the
highest degree of gene rearrangement relative to ancestral gene order was observed in the
Aclerda takahashii of the Aclerdidae family, while the lowest degree of that was observed in
the Acanthococcus coriaceus of the Eriococcidae family. In addition, C. floridensis, C. japonicus,
D. koreanus, and P. nigra shared the same pattern of gene rearrangement.
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Relative to the putative ancestral gene order, there were two relatively conserved
gene blocks in mitogenomes of Coccoidea (e.g., COI-trnL2-COII-trnK-trnD-ATP8-ATP6-
COIII-trnG-ND3-trnA-trnR-trnN-trnS1-trnE-trnF-ND5-trnH-ND4-ND4l and CYTB-trnS2-
ND1-trnL1-lrRNA-trnV-srRNA). Among the rearranged genes, the trnP-ND6 ancestral gene
block underwent a transposition event to form ND6-trnP, a novel gene boundary. This
novel gene cluster was frequently present in coccoid species but absent in Pseudococcidae,
Kerriidae, and three other sternorrhynchan superfamilies, implying that it may be an
apomorphy in Coccoidea. In addition, except for in Eriococcidae, ND2 was rearranged
between trnI and trnY in Aclerdidae, Coccidae, Cerococcidae, and Kerriidae, forming a
novel gene boundary. Additionally, it is notable that ND2 was translocated between the
ND6 and CytB in both Aclerdidae and Coccidae but not in the other three families.

3.5. Phylogenetic Analysis

The phylogenetic analyses were performed on the nucleotide sequences of 13 PCGs
and two rRNAs from mitogenomes of 40 hemipteran species. The phylogenetic relationship
generated by BI and ML methods was found (Figures 6 and 7). Two topologies are identical
with the exception of the relationship within Aphidoidea and the position of the Aclerdidae
coccoid family in this study. The monophyly of Sternorrhyncha was determined (bootstrap
value = 100%, posterior possibility = 1) and, within Sternorrhyncha, the monophyly of
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Coccoidea was supported and other three sternorrhynchan superfamilies (Aleyrodoidea,
Aphidoidea, and Psylloidea) were also found as monophyletic groups. Psylloidea was
determined to be a sister to Aleyrodoidea with high statistical support. In addition, Coc-
coidea was grouped with Aphidoidea. Within Coccoidea, a phylogenetic relationship of
(Pseudococcidae + (Eriococcidae + (Kerriidae + (Cerococcidae + (Aclerdidae + Coccidae)))))
was found with high statistical support.
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4. Discussion

The relationship within Sternorrhyncha has been controversial. Aleyrodoidea or
Psylloidea was found to be at a basal position of Sternorrhyncha based on molecular
evidence [43,49]. Aleyrodoidea was grouped with Psylloidea and Coccoidea was sister to
Aphidoidea based on morphological characters from both extant and extinct taxa in the
latest study [50]. The topology resulting from mitogenomic sequences agreed with the
result-based morphological characters.
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Within Coccoidea, the Pseudococcidae family has been regarded as a sister to the rest
of the neococcoids [5,10,51]. This family was also sister to other coccoid families studied
here. The monophyly and systematic position of Eriococcidae has been uncertain. It was
believed to be close to Pseudococcidae based on the morphology of adult males [7] and,
subsequently, was frequently recovered to be a paraphyly with Dactylopiidae, Beesoniidae,
and Stictococcidae based on both morphology and molecular markers [4,5,9]. This family
represented by single species Acanthococcus lagerstroemiae, belonging to the acanthococcid
group defined by the study of Gullan and Cook [5], was grouped with Diaspididae based on
the ultraconserved elements (UCEs), excluding the above three families [12]. Two eriococcid
species adopted in phylogenetic analysis (e.g., Acanthococcus coriaceus and Apiomorpha
munita) were also members of the acanthococcid group defined by the study of Gullan
and Cook [5]. However, the Eriococcidae family represented by the two species above was
placed to be sister to other families studied here (e.g., Aclerdidae, Cerococcidae, Coccidae,
and Kerriidae). To some extent, this supported the conclusion based on the morphology
of adult males [7]. Because the samplings in this study were too limited, the relationship
between Eriococcidae with other coccoid families and within this family reflects just a
partial portion of the big picture. The relationship between the morphologically peculiar
Kerriidae and the other three related families (e.g., Aclerdidae, Cerococcidae, and Coccidae)
remains uncertain [52]. It was believed to be closer to Coccidae based on SSU rRNA
without Aclerdidae and Cerococcidae included [4,5] or closer to Cerococcidae based on the
total evidence [11]. Although this family was found to be sister to the clade of Aclerdidae,
Cerococcidae, and Coccidae based on the morphology of adult males, this clade was weakly
supported with just 0.58 posterior possibilities [10]. In the present analysis, Kerriidae was
recovered to be sister to the clade of Aclerdidae, Cerococcidae, and Coccidae in both ML
and Bayesian trees with 99% bootstrapping support and 1 posterior possibility, respectively.
In addition, Cerococcidae was supported by the result based on the mitogenomes as
the sister group to the clade of Aclerdidae and Coccidae. Coccidae was found to be a
sister to Aclerdidae in the ML tree with 100% bootstrapping support (Figure 6), consistent
with the previous conclusion based on the morphology of adult females and males and
DNA sequences [10,11,53,54]. This novel gene boundary trnI-ND2-trnY supported the
phylogenetic result of the grouping of these four families based on the mitogenomic
sequences. In addition, the translocation of ND2 also supported the closest relationship
of Aclerdidae and Coccidae as a synapomorphy, as indicated by the result based on the
mitogenomic sequences above. Although Coccidae was found to be paraphyletic with the
inclusion of Aclerdidae in the Bayesian tree, the closer relationship between both families
than other families were supported with 1 posterior possibility (Figure 7). Within Coccidae,
the topology of ML and the Bayesian tree was largely similar, except for the Aclerdidae
nested in Coccidae in the Bayesian tree. The Ceroplastinae represented by C. floridensis
and C. japonicus had a closer affinity with Coccinae, represented by P. nigra and S. coffeae in
both ML and Bayesian tree, then grouped with Eulecaniinae, represented by D. koreanus,
corresponding with the topology (Eulecaniinae + (Coccinae B + Ceroplastinae)) [55].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/insects14030257/s1, Supplementary File S1: mitogenomic annotations of Acanthococcus
coriaceus; Supplementary File S2: mitogenomic annotations of Albotachaedina sinensis; Supplementary
File S3: mitogenomic annotations of Antecerococcus theydoni; Supplementary File S4: mitogenomic
annotations of Apiomorpha munita; Supplementary File S5: mitogenomic annotations of Ceroplastes
japonicus; Supplementary File S6: mitogenomic annotations of Nipponaclerda biwakoensis. Figure S1.
Heterogeneous sequence divergence within hemipteran mitochondrial genomes in this study. The
obtained mean similarity score between sequences was represented by a colored square. The scores
were ranging from −1, indicating full random similarity, to +1, non-random similarity. The darker
red indicated the higher randomized accordance between pairwise sequence comparisons. Blue
indicated the opposite. All taxa names were listed on top and the right-hand side of the matrix.
Table S1. Evolutionary rates of all protein-coding genes (PCGs) in the mitogenomes of nine coccoid
species with Aphis citricidus as the reference.
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