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Simple Summary: The variable landscape of Illinois creates a patchwork of tickborne disease risk to
humans and domestic animals that can be predicted in part based on climate and landscape features.
We fit individual and mean-weighted ensemble species distribution models for Ixodes scapularis, Am-
blyomma americanum, Dermacentor variabilis, and a newly invading tick species, Amblyomma maculatum
using a variety of landscape and mean climate variables and identified numerous environmental
niche factors that are associated with the presence of these vectors in current and future climate
scenarios within the state. As the environment changes over the coming decades, the distribution
of these tick species will change as they adapt to the increasing temperatures and precipitation
alterations. Knowing where ticks may concentrate will be important to anticipating, preventing, and
treating tickborne disease.

Abstract: The greater U.S. Midwest is on the leading edge of tick and tick-borne disease (TBD)
expansion, with tick and TBD encroachment into Illinois occurring from both the northern and the
southern regions. To assess the historical and future habitat suitability of four ticks of medical concern
within the state, we fit individual and mean-weighted ensemble species distribution models for Ixodes
scapularis, Amblyomma americanum, Dermacentor variabilis, and a newly invading species, Amblyomma
maculatum using a variety of landscape and mean climate variables for the periods of 1970–2000,
2041–2060, and 2061–2080. Ensemble model projections for the historical climate were consistent
with known distributions of each species but predicted the habitat suitability of A. maculatum to
be much greater throughout Illinois than what known distributions demonstrate. The presence of
forests and wetlands were the most important landcover classes predicting the occurrence of all tick
species. As the climate warmed, the expected distribution of all species became strongly responsive
to precipitation and temperature variables, particularly precipitation of the warmest quarter and
mean diurnal range, as well as proximity to forest cover and water sources. The suitable habitat for
I. scapularis, A. americanum, and A. maculatum was predicted to significantly narrow in the 2050 climate
scenario and then increase more broadly statewide in the 2070 scenario but at reduced likelihoods.
Predicting where ticks may invade and concentrate as the climate changes will be important to
anticipate, prevent, and treat TBD in Illinois.

Keywords: ticks; species distribution models; habitat suitability models; Illinois; climate

1. Introduction

Ticks and their associated pathogens present a growing public and veterinary health
threat in the United States. Human-induced climate and landscape alterations are driving
the increased prevalence of emerging tick-borne diseases (TBDs) [1] including bacterial, rick-
ettsial, protozoal, and viral organisms [2,3]. These pathogen emergences are increasingly
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relevant as the ranges [4,5] and activity periods [4] of native and invasive tick species [3,6]
shift, putting these vectors into greater contact with humans, companion animals, and
livestock. Economically, changes in tick and TBD ecology are triggering millions of USD in
healthcare and livestock impacts [7].

Ticks are highly sensitive to and constrained by weather and climate variables [8,9],
as well as landscape features such as vegetation and land-use patterns that impact habitat
fragmentation [1,10,11]. In general, the questing and phenological activity, development,
and survival of common tick species of medical concern are directly correlated with higher
levels of humidity and warmer temperatures [8,12–14]. However, these impacts are species-
specific. Ticks such as Ixodes scapularis are highly susceptible to desiccation, whereas
Amblyomma americanum, Amblyomma maculatum, and Dermacentor variabilis are more tolerant
of drier conditions [9,15]. Greater tick density is often associated with habitats that include
uninterrupted forest cover [16,17], or even specific invasive types of landscape cover [18],
but edge effects and open landscapes can also foster high tick abundance depending on
species [15,19]. These landcover and climate relationships are critical to the landscape
epidemiology of TBD because they generate the microclimatic conditions that facilitate
interactions among ticks and their hosts [1,20].

The greater U.S. Midwest is on the leading edge of tick and TBD expansion. Within the
past decade, studies have documented the continued range movement of four ticks of medi-
cal and veterinary concern in this region including the blacklegged tick (I. scapularis) [21,22],
lone star tick (A. americanum) [23,24], American dog tick (D. variabilis) [25,26], and Gulf
Coast tick (A. maculatum) [19,22,27,28]. These range expansions have corresponded with an
increase in reported TBD cases associated with these species including Lyme disease [29],
ehrlichiosis [30], tidewater fever [27], and the newly documented Heartland virus [31].

Illinois is experiencing tick and TBD expansion in both the northern and the southern
regions [23,32–34]. Concurrently, there has been a 10-fold increase in commonly reported
TBD cases among humans between 1999 and 2017 [35–38], including Lyme disease, Rocky
Mountain spotted fever, ehrlichiosis, and anaplasmosis. Three distinct climate regions exist
longitudinally across the state [39], with clear impacts on tick species abundance [9]. As
climate alterations impact the various bioclimatic factors across these areas, it is important
to predict how the tick distribution and TBD risk will potentially change across the state.

Although there is debate about the specific impacts of extreme climate conditions on
ticks and TBDs in the future [40], climate projection models can predict and assess various
current and future habitat and distribution scenarios. Species distribution models (SDM)
represent a suite of statistical and machine-learning methods for predicting suitable species
habitat ranges and niches based on known occurrence records and various environmental
variables. These strategies range from deterministic (e.g., logistic regression) to stochastic
(e.g., Bayesian regression trees) approaches, and utilize various levels of model validation
techniques. Given the differences in model performance, using the SDM model ensembles
may provide a more complete picture of the possibilities for tick species range variation,
and opportunities for public health and veterinary partners to enact control and prevention
measures where most needed [41,42].

The objective of this study was to fit and evaluate current and future species distri-
bution models for each of the four tick species of major medical and veterinary concern
within Illinois, including I. scapularis, D. variabilis, A. americanum, and A. maculatum, and
to evaluate habitat and climate variables associated with their predicted occurrence. We
expected that as the climate continues to warm, habitats in southern and central Illinois
will become less hospitable for a desiccant-sensitive species such as I. scapularis but more
habitable for the other three more desiccant-tolerant species. This hypothesis would reflect
a greater predicted species range throughout the state for the Dermacentor and Amblyomma
species but would result in a growing absence of suitable I. scapularis habitat, except in the
northernmost part of the state.
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2. Materials and Methods
2.1. Tick Occurrence Data

We sourced presence-only tick occurrence records from several online, publicly ac-
cessible databases and through active tick collections throughout Illinois. The databases
included Walter Reed Biosystematics Unit (WBRU)’s VectorMap [43] (http://vectormap.
si.edu/; with data from WRBU and the Illinois Natural History Survey Insect Collection;
accessed 8 June 2022), Global Biodiversity Information Facility [44] (GBIF; https://www.
gbif.org/; with data from iNaturalist, Canadian Museum of Nature, Chicago Academy of
Sciences, Harold W. Manter Laboratory of Parasitology Collection; accessed 9 June 2022),
and Biodiversity Information Serving Our Nation [45] (BISON; https://bison.usgs.gov/;
with data from BISON, iNaturalist, and the Illinois Natural History Survey Insect Collec-
tion; accessed 9 June 2022). To be included in a model, all tick occurrence data had to meet
the following quality control criteria: be an observation from no earlier than 1950, include
two decimal places or more for at least one coordinate, and have a coordinate inaccuracy
of ≤20,000 m. Duplicate coordinates occurred often due to data being deposited across
multiple databases, so entries were compared and duplicate coordinates were removed.
Geolocations were cross-checked to ensure that records were accurate to the field loca-
tion. The remaining coordinates were then thinned to a 1 km distance using the spThin
package [46] to reduce the effect of sampling bias on model predictions.

2.2. Environmental Covariates

WorldClim 2 bioclimatic variables (1–19) [47] (Table 1) were sourced from the geodata
package [48] and downloaded at a resolution of 0.5 arcminutes (~1 km2). Current climate
models were fit using the historical data representing the average measurements from
1970 to 2000. Future climate models were fit with mean projections of these data at a
~1 km2 resolution using a Coupled Model Intercomparison Project Phase 6 (CMIP6) Earth
Systems Model (EC-Earth3-Veg) [49] under Shared Socioeconomic Pathways (SSP) 585 for
2050 (average from 2041 to 2060) and 2070 (average from 2061 to 2080). Overall, ESMs
such as EC-Earth3-Veg tend to describe the most relevant climate feedback mechanisms
and provide more thorough uncertainty measurements than global circulation models
(GCMs) [50]. Whereas using an ensemble of future climate models is generally employed
when fitting SDMs for larger regions to minimize individual model bias, we chose a single
ESM that is shown to perform best for the small region we are modeling [51]. Using an
ensemble that incorporates numerous GCMs/ESMs over a small region like a single state
can skew predictions [51]. SSP 585 is a future climate scenario that describes the expected
baseline high greenhouse gas impact resulting from a lack of carbon emission mitigation
policies [52], i.e., a “worst case” scenario.

Due to the importance of white-tailed deer (Odocoileus virginianus) as reproductive
hosts for each of these four species, we included a raster of suitable deer habitats within
Illinois [53]. Landcover class (Figure 1) and percent impervious surface from the National
Land Cover Database (NLCD) [54] were also included. The NLCD is a collection of
land cover imagery at 30m resolution that combines information from all years of land
cover change (2001-2019) across 16 classes of cover that include impervious land, cropland,
wetland, and various vegetation types, which were aggregated into seven more general land
cover categories (water, developed, barren, forest, grass/shrub, cropland, and wetland).
An average of these land cover classes was taken every 2–3 years instead of data from a
single year to adjust for the change that occurred from 2001 to 2019. The elevation was
sourced from the raster package [55] derived from Shuttle Radar Topography Mission
(SRTM) National Elevation Dataset digital elevation models (at a resolution of 1 and 1/3
arcseconds) [56].

All covariates were cropped to the extent of Illinois’ state borders (xmin: −91.5◦, xmax:
−87.5◦, ymin: 36.9◦, ymax: 42.5◦) and resampled to a resolution of 1 km (0.5 arcminutes) to
match the bioclimatic datasets for the specific climate projection period. Extracted covariate
values were assessed for collinearity for each species and period by assessing the variance

http://vectormap.si.edu/
http://vectormap.si.edu/
https://www.gbif.org/
https://www.gbif.org/
https://bison.usgs.gov/
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inflation factor. Any variable with a v-step score of 10 or higher was excluded from that
species and climate period model due to collinearity.

Table 1. Descriptions and sources of each of the 19 bioclimatic variables (WorldClim 2.1) and other
environmental predictor variables (n = 29) used in model fitting.

VARIABLE DESCRIPTION Unit Source *

BIO1 Annual Mean Temperature ◦C WorldClim 2.1

BIO2
Mean Diurnal Range

(Mean of monthly (max
temp—min temp))

◦C WorldClim 2.1

BIO3 Isothermality (BIO2/BIO7)
(×100) % WorldClim 2.1

BIO4 Temperature Seasonality
(standard deviation ×100)

◦C WorldClim 2.1

BIO5 Max Temperature of Warmest
Month

◦C WorldClim 2.1

BIO6 Min Temperature of Coldest
Month

◦C WorldClim 2.1

BIO7 Temperature Annual Range
(BIO5-BIO6)

◦C WorldClim 2.1

BIO8 Mean Temperature of Wettest
Quarter

◦C WorldClim 2.1

BIO9 Mean Temperature of Driest
Quarter

◦C WorldClim 2.1

BIO10 Mean Temperature of Warmest
Quarter

◦C WorldClim 2.1

BIO11 Mean Temperature of Coldest
Quarter

◦C WorldClim 2.1

BIO12 Annual Precipitation mm WorldClim 2.1

BIO13 Precipitation of Wettest Month mm WorldClim 2.1

BIO14 Precipitation of Driest Month mm WorldClim 2.1

BIO15 Precipitation Seasonality % WorldClim 2.1

BIO16 Precipitation of Wettest Quarter mm WorldClim 2.1

BIO17 Precipitation of Driest Quarter mm WorldClim 2.1

BIO18 Precipitation of Warmest Quarter mm WorldClim 2.1

BIO19 Precipitation of Coldest Quarter mm WorldClim 2.1

Elevation Height above sea level m USGS SRTM

Deer habitat Suitable white-tailed deer habitat Presence/absence USGS GAP
Analysis

Landcover
CLASS

Water, developed, impervious,
barren, forest, grassland,

cropland, wetland
% NLCD 2019

* WorldClim 2.1 [http://www.worldclim.com (accessed on 1 June 2022)], USGS SRTM [https://www.usgs.
gov/centers/eros/science (accessed on 1 June 2022)], USGS Gap Analysis [https://gapanalysis.usgs.gov/apps/
species-data-download/ (accessed on 23 November 2022)], NLCD [https://www.mrlc.gov/data/nlcd-2019-land-
cover-conus (accessed on 1 June 2022)].

http://www.worldclim.com
https://www.usgs.gov/centers/eros/science
https://www.usgs.gov/centers/eros/science
https://gapanalysis.usgs.gov/apps/species-data-download/
https://gapanalysis.usgs.gov/apps/species-data-download/
https://www.mrlc.gov/data/nlcd-2019-land-cover-conus
https://www.mrlc.gov/data/nlcd-2019-land-cover-conus
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Figure 1. (a) National Land Cover Database [54] aggregated landcover classes for Illinois. Climate
region boundaries are derived from the National Oceanic and Atmospheric Administration U.S.
Climate Divisional Dataset [39]. (b) NLCD aggregated land cover with white-tailed deer habitat
overlay [53].

2.3. Model Fitting and Evaluation

Models were fitted using the sdm package [57] in R version 4.1.3 [58]. Regression
and machine learning models for each species for the current climate were first fitted
using the following individual methods: generalized linear models (GLM), generalized
additive models (GAM), Bayesian regression trees (BRT), classification and regression trees
(CART), MaxEnt, random forest (RF), multivariate adaptive regression splines (MARS),
and support vector machines (SVM). The number of randomly selected pseudo-absence
points was set at approximately the same number of presence points for each species
due to the mixed use of regression and machine learning techniques within the modeling
algorithm [59] and was also thinned to 1 km2 to match the presence points. Cross-validation
and bootstrap data partitioning methods (with a 30% test percentage) were used for each
model type, with five replicates for each method totaling five replicates per algorithm
(30 total replicates per species). Single model algorithms that were not 100% successful
during replicate runs were excluded from ensemble models. Models were evaluated using
several performance scores including threshold-dependent and threshold-independent
methods: area under the curve (AUC), true skill statistic (TSS), model deviance (DEV), and
correlation (COR). Single models demonstrating AUC > 0.75 and TSS > 0.50 were retained
for mean-weighted ensemble models (i.e., a two-step process that incorporates both within-
model averaging and between-model averaging). Cohen’s kappa was not used for single
model evaluation due to its overreliance on prevalence but was consulted to determine
consistency in predictions across models [60]. AUC was not used alone to assess the
prediction accuracy because of its poor ability to reliably assess the presence-background
nature of the tick occurrence data [60,61].



Insects 2023, 14, 213 6 of 24

3. Results
3.1. Ixodes scapularis Models

After duplicate records were removed and presence points thinned there remained
62 known I. scapularis occurrence points across Illinois, and 70 pseudoabsence points were
randomly generated (Table 2). After assessing for multicollinearity amongst environmental
variables for all climate periods, fifteen predictor variables out of the 29 total environmental
covariates were removed from the dataset due to v-step scores greater than 10 (bio1, bio2,
bio3, bio4, bio6, bio10, bio11, bio12, bio14, bio15, bio16, bio17, bio19, percent impervious
surface, percent white-tailed deer habitat). Retained in the historical, 2050, and 2070
climate correlate dataset for I. scapularis were bio5, bio7, bio8, bio9, bio13, bio18, elevation,
percent water body coverage, percent barren land, percent forest, percent grassland, percent
cropland, and percent wetland.

Table 2. Mean best fit single model evaluation metrics for the predicted historic occurrence in Illinois
of the four tick species modeled. Bolded numbers denote the AUC/correlation/true skill statistic
(TSS) score/deviance for the best fit model for that species. To be included in ensemble models, an
individual model must display an AUC of at least 0.75 and a TSS of at least 0.50. A dash indicates
that an algorithm did not display a complete (100%) model run success percentage for that period.
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Number of
occurrence

(presence) points
62 99 290 15 62 99 290 15 62 99 290 15 62 99 290 15

Number of
pseudo-absence

points
70 100 300 20 70 100 300 20 70 100 300 20 70 100 300 20

Evaluation
Metric AUC Correlation TSS Deviance

A
lg

or
it

hm
*

GLM 0.88 0.86 0.84 0.60 0.67 0.64 0.61 0.21 0.71 0.67 0.71 0.45 1.85 1.13 1.02 7.26

BRT 0.89 0.89 0.85 - 0.68 0.68 0.63 - 0.72 0.72 0.63 - 0.99 1.00 1.04 -

CART 0.81 - 0.81 0.70 0.57 - 0.56 0.36 0.59 - 0.57 0.47 1.46 - 1.21 2.68

MaxEnt 0.88 0.87 0.87 0.75 0.66 0.64 0.65 0.43 0.71 0.68 0.65 0.64 0.96 0.97 0.93 1.38

RF 0.89 0.89 0.87 0.76 0.68 0.69 0.65 0.43 0.72 0.71 0.65 0.61 0.87 0.85 0.90 1.29

MARS 0.74 0.81 0.84 0.66 0.44 0.55 0.60 0.28 0.49 0.59 0.59 0.41 13.0 3.32 1.09 21.8

SVM 0.89 0.86 0.86 0.80 0.68 0.64 0.64 0.54 0.72 0.66 0.63 0.71 0.88 0.94 0.94 1.32

* GLM = generalized linear models; BRT = Bayesian regression trees; CART = classification and regression tree;
MaxEnt = maximum entropy; RF = random forest; MARS = multivariate adaptive regression splines; SVM =
support vector machines.

As the algorithm evaluation revealed RF to be the best-fit model for predicting the
historical climate distribution of I. scapularis (Table 2). The landscape variables that most
strongly predicted the occurrence of I. scapularis habitat across this model in the historical
climate were percent forest (16.5% relative contribution), percent wetland (10.8%), and
percent grassland (11.1%). Climate variables all contributed less than 5% each. I. scapularis
was predicted to occur above 80% likelihood in forest landscapes with less than 50%
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coverage and was expected to increasingly occur with greater percentages of wetlands and
grasslands. Predicted I. scapularis occurrence was less likely with increasing maximum
temperatures in the warmest month (bio5), increasing mean temperature of the driest
quarter (bio9), increasing annual temperature range (bio7), and increasing precipitation in
the wettest month (bio13). I. scapularis was more likely to occur with increasing precipitation
in the warmest quarter (bio18), and with increasing temperatures (up to 21 ◦C) in the
wettest quarter.

The best fit single algorithm models for future predictions were RF (2050; AUC = 0.82,
COR = 0.55, TSS = 0.64, DEV = 1.08) and SVM (2070; AUC=0.90, COR = 0.72, TSS = 0.76,
DEV = 0.81). Percent forest coverage became more important in predicting the likelihood of
I. scapularis in the 2050 and 2070 climate scenarios, increasing to 27.2% (2050) and then 28%
(2070) relative contribution (Table 3). By 2070, the wetland percentage rose to 13.6% relative
contribution and was one of the most important variables along with the precipitation of
the warmest quarter (bio18) (Table 3). Overall, I. scapularis displayed the same response to
the landcover and climate variables in the future scenarios as it did in the historical climate.
As the climate changed, the difference that occurred was that the presence of I. scapularis
was increasingly more likely in habitats with greater forest cover (between 50% and 75%
coverage), and the overall greatest predicted probability of I. scapularis for any variables
dropped to approximately 85% likelihood in 2050, and then to 75% in 2070.

Table 3. Relative percent contribution of habitat suitability variables in best fit models for each tick
species across the three climate scenarios. Current climate models were fit using the historical data
representing the average climate measurements from 1970 to 2000 at a 1 km resolution. Future climate
models were fit with mean projections of these data at a 1 km resolution using Coupled Model
Intercomparison Project phase 6 (CMIP6)/ EC-Earth3-Veg Shared Socioeconomic Pathway (SSP) 8.5
for 2050 (average from 2041 to 2060) and 2070 (average from 2061 to 2080). All landscape variables
represent the percentage of that landcover, except for elevation, which is measured in meters. The
top three most important variables in the model prediction are bolded for each period. Variables that
were not included in a model due to collinearity are denoted with a dash.

Environmental
Variable *

Tick Species

Ixodes scapularis Amblyomma americanum Dermacentor variabilis Amblyomma maculatum

Climate Scenario (SSP 8.5)

Hist. 2050 2070 Hist. 2050 2070 Hist. 2050 2070 Hist. 2050 2070

Barren 2.5 1.3 1.5 1.7 2.8 1.4 1.0 1.7 0.5 2.6 2.3 9.8

Cropland 1.0 1.2 1.5 1.9 1.3 4.5 0.7 0.6 0.8 10.0 3.1 8.6

Developed 0.7 1.5 0.9 - - - 1.6 1.2 0.8 10.3 6.2 7.6

Deer Habitat - - - 3.9 2.1 2.4 - - - - - -

Elevation 1.8 2.1 0.6 3.1 3.1 6.2 1.0 3.8 1.2 - - -

Forest 16.5 27.2 28.0 11.8 21.8 11.8 30.4 26.5 30.0 29.1 50.0 45.3

Grass/Shrub 3.9 2.8 1.7 0.5 1.0 0.7 0.8 0.5 0.4 2.3 1.6 7.7

Water 1.0 0.8 0.7 3.6 0.3 0.2 0.5 0.5 0.4 1.7 0.6 0.6

Wetland 10.8 6.3 13.6 17.9 4.1 7.3 12.7 12.3 11.1 10.1 0.9 13.1

BIO2 - - - 1.8 4.2 3.1 2.5 3.4 4.2 - - -

BIO5 1.5 1.7 2.1 - - - - - - -

BIO7 0.7 0.6 2.1 - - - 0.7 1.4 1.7 - - -

BIO8 1.5 0.5 0.9 0.9 1.1 0.4 1.1 1.1 0.6 - - -

BIO9 0.6 1.2 2.5 0.9 0.9 0.8 0.7 0.8 0.5 - - -

BIO10 - - - - - - 0.8 0.7 0.6 - - -
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Table 3. Cont.

Environmental
Variable *

Tick Species

Ixodes scapularis Amblyomma americanum Dermacentor variabilis Amblyomma maculatum

Climate Scenario (SSP 8.5)

Hist. 2050 2070 Hist. 2050 2070 Hist. 2050 2070 Hist. 2050 2070

BIO13 - 1.7 0.9 1.3 0.7 0.8 0.7 0.9 0.3 - - -

BIO15 - - - 2.4 2.9 1.2 - - - 2.8 3.9 6.8

BIO18 3.0 2.0 3.0 0.5 0.3 0.8 0.9 1.2 1.2 2.8 7.8 10.4

* BIO1, BIO3, BIO4, BIO6, BIO11, BIO12, BIO14, BIO16, BIO17, BIO19, and impervious surface were not included
in any models due to multicollinearity issues among variables. BIO2 = mean diurnal range (mean of monthly
(max temp—min temp)), BIO5 = max temperature of warmest month, BIO7 = temperature annual range (BIO5-
BIO6), BIO8 = mean temperature of wettest quarter, BIO9 = mean temperature of driest quarter, BIO10 = mean
temperature of warmest quarter, BIO13 = precipitation of wettest month, BIO15 = precipitation seasonality
(coefficient of variation), BIO18 = precipitation of warmest quarter.

Best fit mean-weighted ensemble models for both historical and future climate scenar-
ios included the following algorithms: GLM, BRT, CART, MaxEnt, RF, and SVM. Within the
historical climate, the best fit ensemble models predicted that I. scapularis would most likely
be found within the Chicago metropolitan statistical area (CMSA) along the northeastern
border of Lake Michigan, along riparian zones in western and central Illinois, and within
the forested regions of east-central and southern Illinois (Figure 2a). The tick species was
also expected to be found scattered throughout forested pockets within the central portion
of the state. As the climate warmed in the 2050 (Figure 2b) and 2070 (Figure 2c) projection
scenarios, the likelihood of I. scapularis presence throughout the central and southern tiers
began to recede and concentrate along rivers and waterbodies (2050), and then shifted to a
greater expectation of occurrence within the heavily forested region of Southern Illinois
(2070) (Figure 3).
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I. scapularis occurrence in Illinois in 2050 projected climate Coupled Model Intercomparison Project
phase 6 (CMIP6)/ EC-Earth3-Veg Shared Socioeconomic Pathway (SSP) 585 (average from 2041 to
2060). (c) Mean-weighted ensemble of future predicted probability of I. scapularis occurrence in Illinois
in 2070 projected climate (CMIP6)/ EC-Earth3-Veg Shared Socioeconomic Pathway (SSP) 585 average
from 2061 to 2080). Darker colors indicate a higher likelihood of tick presence, per the tick occurrence
probability scale. Inset map indicates the location of Illinois within the United States/North America.
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The histograms represent the number of pixels (y−axis) containing the binned percentage likelihood
change (x−axis) of I. scapularis suitable habitat across the map. Inset map indicates the location of
Illinois within the United States/North America.

3.2. Amblyomma americanum Models

After removing duplicate observations and occurrence points were thinned to 1 km,
99 records of Amblyomma americanum were retained for modeling and 100 randomly selected
pseudoabsence points were generated (Table 2). Fifteen variables were removed due to
multicollinearity (bio1, bio3, bio4, bio5, bio6, bio7, bio10, bio11, bio12, bio14, bio16, bio17,
bio19, percent developed land, and percent impervious surface,). Retained for the modeling
of all climate periods were bio2, bio8, bio9, bio13, bio15, bio18, and land cover categories
elevation, white-tailed deer habitat, percent water body coverage, percent barren land,
percent forest coverage, percent grassland, percent cropland, and percent wetland.

Random forest was the best fit single model algorithm for the predicted A. americanum
habitat distribution of the six total included model algorithms across all climate periods
(Table 2; 2050: AUC = 0.89, COR = 0.70, TSS = 0.74, DEV = 0.84; 2070: AUC = 0.92,
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COR = 0.74, TSS = 0.76, DEV = 0.76). The most important variables that predicted the
occurrence of A. americanum habitat across this model for the historical climate were percent
wetland (17.9% variable contribution), percent forest coverage (11.8%), and the presence
of white-tailed deer habitat (3.9%). Climate variables bio2 (1.8%) and bio15 (2.4%) were
the most important contributing climate variables to the historical climate prediction of
A. americanum distribution (Table 2). The presence of A. americanum was between 80 and
90% likely to occur in forest habitats with less than 50% coverage in the historical climate
period. Under these conditions, A. americanum is also positively associated with barren
land, white-tailed deer habitat, and wetland landcover, with occurrence probabilities as
high as 90% with increasing percent class coverage. The likelihood of occurrence declined
slightly with increasing grassland and waterbody coverage. The probability of this species’
occurrence briefly increased and then sharply declined with the increasing percentage of
cropland coverage, precipitation seasonality (bio15), precipitation in the warmest quarter
(bio18), mean diurnal range (bio2), and mean temperature of the wettest quarter (bio8).
The occurrence of A. americanum was negatively associated with increasing precipitation
of the wettest month (bio13) and was positively associated with increasing temperature
of the driest quarter (bio9). In future climate scenarios, A. americanum responded to these
land cover and climate variables in the same way except that this tick was more likely to
occur in higher percents of cropland and forest and was more significantly predicted by
mean diurnal range (bio2) than in the historical climate period. In the 2070 mean climate,
the overall probability of A. americanum occurrence across all variables was lower.

The best fit mean-weighted ensemble models for both current and future climate
scenarios included the following algorithms: GLM, BRT, CART, MaxEnt, RF, MARS, and
SVM. Historical A. americanum distribution was predicted to be greatest in the southern-
most portion of the state where there is more contiguous forest and suitable white-tailed
deer habitat, along riparian zones of the Illinois and Rock River systems, and within the
Chicago metropolitan statistical area (Figure 4a). As the climate scenarios progress to the
2050 mean climate, A. americanum appears to occur with a greater likelihood in Shawnee
National Forest but is less likely to occur in the white-tailed deer habitat between forest
patches in and around Lake Shelbyville and the Kaskaskia River, the Illinois River, the
forest to the west, the Rock River, and within the CMSA (Figures 4b and 5). By 2070, A.
americanum is expected to occur more broadly within croplands across the state, but at
lower probabilities. It is also less likely to occur in the CMSA (Figures 4c and 5).
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Illinois under historical climate conditions. (b) Mean-weighted ensemble of predicted probability of
A. americanum occurrence in Illinois in 2050 projected climate Coupled Model Intercomparison Project
phase 6 (CMIP6)/EC-Earth3-Veg Shared Socioeconomic Pathway (SSP) 585 (average from 2041 to
2060). (c) Mean-weighted ensemble of future predicted probability of A. americanum occurrence in
Illinois in the 2070 projected climate (CMIP6)/EC-Earth3-Veg Shared Socioeconomic Pathway (SSP)
585 (average from 2061 to 2080). Darker colors indicate a higher likelihood of tick presence per
the tick occurrence probability scale. Inset map indicates the location of Illinois within the United
States/North America.
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Figure 5. Percent change in the likelihood of A. americanum occurrence between the historical climate
and 2050 (left) and from 2050 to 2070 (right). Red shades indicate a reduced likelihood of occurrence
(negative change), and blue shades indicate an increased likelihood of occurrence (positive change).
The histograms represent the number of pixels (y−axis) containing the binned percentage likelihood
change (x−axis) of A. americanum suitable habitat across the map. Inset map indicates the location of
Illinois within the United States/North America.

3.3. Dermacentor variabilis Models

After removing duplicate records and thinning observations, 290 records of D. variabilis
were retained for modeling, and 300 randomly generated pseudoabsence points were
generated. Best fit models for all climate conditions for D. variabilis included bio2, bio7,
bio8, bio9, bio10, bio13, bio18, elevation, percent water body coverage, percent barren
land, percent developed land, percent forest, percent grassland, percent cropland, and
percent wetland. Fourteen covariates (bio1, bio3, bio4, bio5, bio6, bio11, bio12, bio14, bio15,
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bio16, bio17, bio19, percent impervious surface, and suitable white-tailed deer habitat)
were removed from consideration in the historical climate model due to collinearity issues.

Random forest was the best fit single-model algorithm for predicting the presence of
D. variabilis within the historical and both future climate periods (Table 2; 2050: AUC = 0.89,
COR = 0.68, TSS = 0.67, DEV = 0.85; 2070: AUC = 0.88, COR = 0.68, TSS = 0.67, DEC = 0.86).
The percent forest coverage was the most important variable in predicting D. variabilis
occurrence (30.4% relative importance) in the historical period, followed by percent wetland
(12.7%) (Table 3). The climate variable that contributed most to the model was mean diurnal
range (bio2; 8.6%) (Table 3). A greater likelihood of D. variabilis presence was predicted
with increasing percentages of barren land and wetland. D. variabilis was 90% likely to
occur in habitats with up to 25% forest coverage, but decline to near 50% occurrence
likelihood as forest percentage increased. Similarly, D. variabilis was less likely to occur
with increasing cropland, developed land, grassland, and water body percentage. The
predicted occurrence of D. variabilis increased to and then remained at 75% likelihood in
response to the mean temperature of the driest quarter (bio9), and its presence declined
with the increasing mean temperatures of the warmest quarter (bio10). In response to
the precipitation of the wettest month (bio13), the precipitation of the warmest quarter
(bio18), the mean diurnal range (bio2), the temperature annual range (bio7), and the mean
temperature of the wettest quarter, D. variabilis’ predicted occurrence initially increased
with the increasing temperature or precipitation, but then declined to near 50% probability.

For the 2050 climate projection, percent forest (30.4% relative contribution) and wet-
land (12.3%) were again the most important variables in predicting the occurrence of
D. variabilis, followed by elevation (3.8%) and mean diurnal range (bio2; 3.4%) (Table 3).
As the percentage of forest increased above 25%, the expected occurrence of D. variabilis
declined from nearly 90% to approximately 60% likelihood. Under the conditions expected
in this period, this species was more likely to be found in areas with water bodies (between
80 and 85% likelihood). The expected occurrence of D. variabilis followed the same increase
followed by decrease trends with climate variables as it did in the historical period, but
the overall percent likelihood of occurrence reduced from the 90-60% range to the 80-50%
range. Similar response patterns are seen in the 2070 projected climate compared to the
2050 climate, but with overall less expected occurrence of D. variabilis, and a more dramatic
response to the changing variables. Increasing the percentage of forest reduces the overall
likelihood of D. variabilis to 40% at 100% forest coverage. Percent barren land continued to
predict D. variabilis presence consistently at 75% probability. The likelihood of D. variabilis
was positively associated with increasing precipitation of the wettest month (bio13) and
precipitation of the warmest quarter (bio18), but only until 300 mm, after which, it declined.
The likelihood of D. variabilis occurrence declined to below 50% when the mean diurnal
range increased above 11 ◦C and declined to a 60% probability of occurrence when the
temperature annual range (bio7) rose above 40 ◦C.

Best fit mean-weighted ensemble models for historical and future climate scenarios
included the following algorithms: GLM, BRT, CART, MaxEnt, RF, MARS, and SVM. The
occurrence of D. variabilis under historical climate conditions was predicted to be distributed
throughout the state, with concentrations of higher probability located within southern
Illinois, the CMSA, and along riparian zones (Figure 6a). All climate scenarios predict
that the probability of D. variabilis occurrence is generally resilient in most habitats except
cropland but is increasingly dependent on a lower temperature and higher precipitation
as the climate shifts into the more extreme 2070 projections (Figure 6b,c). By 2050, the tick
species is less likely to occur along the northern border of the state, as well as along riparian
zones of the Illinois and Kaskaskia Rivers (Figure 7). By 2070, the tick appears to increase in
likelihood within those areas but becomes less likely to occur in the Shawnee Forest region
of southern Illinois and the south-central forested region. (Figure 7).
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3.4. Amblyomma maculatum Models

Fifteen records of A. maculatum were retained for modeling after removing duplicates
and thinning and were combined with 20 randomly selected pseudoabsence points. A
total of twenty environmental correlates were removed due to multicollinearity (bio1,
bio2, bio3, bio4, bio5, bio6, bio7, bio8, bio9, bio10, bio11, bio12, bio13, bio14, bio16, bio17,
bio19, percent white-tailed deer habitat, elevation, and percent impervious surface). The
remaining predictors in each climate model for A. maculatum were bio15, bio18, percent
water bodies, percent barren land, percent developed, percent forest, percent grassland,
percent cropland, and percent wetland.

Support vector machines were the best fit model to predict the historical and 2070 dis-
tribution of A. maculatum (Table 2; 2070: AUC = 0.77; COR = 0.47; TSS = 0.67; DEV = 1.24),
whereas RF was the best algorithm for the 2050 climate period (AUC = 0.75, COR = 0.48,
TSS = 0.65, DEV = 1.23). Percent forest (29.1% relative importance), percent developed
land (10.3%), percent wetland (10.1%), and percent cropland (10.0%) were the most impor-
tant landscape variables in predicting the probable locations of A. maculatum during the
historical and 2050 climate periods (Table 3). In 2070, percent barren land and grassland
also become more important predictors of A. maculatum occurrence (Table 3). Precipita-
tion seasonality (bio15) and precipitation of the warmest quarter (bio18) were the only
significant climate variables included in the models, and these both increased in relative
contribution to the model in the 2050 and 2070 scenarios (Table 3). In the historical climate,
the occurrence of this tick species was expected in open landscapes, and was positively
correlated with increasing percentages of grassland, cropland, and developed land, and
negatively associated with forests. Proximity to waterbodies and wetlands also increased
the probability of A. maculatum occurrence during this period. Variation in precipitation as
well as total precipitation in the warmest quarter initially was associated with an increase in
the likelihood of A. maculatum occurrence (to only a 50-55% likelihood), but then likelihood
decreased as the coefficient rose above 25 and as precipitation in the warmest quarter
reached 330mm.
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D. variabilis occurrence in Illinois in 2050 projected climate Coupled Model Intercomparison Project
phase 6 (CMIP6)/EC-Earth3-Veg Shared Socioeconomic Pathway (SSP) 585 (average from 2041 to
2060). (c) Mean-weighted ensemble of future predicted probability of D. variabilis occurrence in
Illinois in 2070 projected climate (CMIP6)/EC-Earth3-Veg Shared Socioeconomic Pathway (SSP)
585 (average from 2061 to 2080). Darker colors indicate a higher likelihood of tick presence, per
the tick occurrence probability scale. Inset map indicates the location of Illinois within the United
States/North America.
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As the climate warmed in 2050 and 2070, the occurrence probability of A. maculatum
shifted to specific habitats. Percent forest, developed land, and precipitation of the warmest
quarter (bio18) became the most important variables for the model in 2050 (50.0%, 6.2%,
and 7.8% relative importance, respectively). The probability of A. maculatum occurrence
increased in areas with a greater percentage of developed landcover (i.e., CMSA) and
decreased in response to an increasing percentage of forest. Precipitation of the warmest
quarter (bio18) was associated with a sharp increase in the likelihood of A. maculatum
occurrence during this time period, and increasing seasonality of precipitation (bio15) was
associated with an increase in the probability of occurrence to approximately 30mm, and
then a sharp decline in the probability of occurrence. Under the 2070 climate scenario,
percent forest contributed slightly less to the A. maculatum distribution model (45.3%) as
other variables increased in relative contribution. Percent wetland, percent barren land,
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percent cropland, percent grassland, and percent developed land contributed roughly
the same amount to the model (13.1%, 9.8%, 8.6%, 7.7%, and 7.6% relative importance,
respectively; Table 3). Precipitation of the warmest quarter (bio18) was also a driving
climate variable in the prediction of A. maculatum distribution (10.4% relative variable
importance). Within these future conditions, A. maculatum was predicted (between 40
and 70% likelihood) to be associated with open landscapes like increasing barren land,
cropland, developed land, and grasslands. The occurrence of this tick species was also
expected at a 40-50% probability in areas with 10-20% water bodies and wetlands. As the
variation in precipitation across seasons (bio15) increased above 15 mm, the likelihood
of A. maculatum occurrence decreased from a 45% likelihood to a below 35% probability.
Increasing precipitation of the warmest quarter (bio18) was associated with a strong increase
in A. maculatum occurrence probability from 30% to 60% as precipitation reached 340 mm.

These model predictions suggest that A. maculatum has wide distribution potential
throughout Illinois in the historical climate scenario. It is most likely to be able to survive
in open barren landscapes that are close to water sources and wetlands, placing the most
probable distribution predictions along the Illinois and Rock rivers, and around the CMSA
on the banks of Lake Michigan. Scattered pockets of higher probability throughout the state
correspond with areas that are devoid of dense forest (greater than 50% coverage) or areas
that are more than 50% cropland (Figure 8a). The 2050 (Figure 8b) and 2070 (Figure 8c)
climate prediction ensemble models projected that A. maculatum distribution would reduce
overall, with covariates only predicting the likelihood of tick occurrence as high as 70%.
During these scenarios, A. maculatum was generally more prevalent in areas with less than
50% forest cover. In 2050, the distribution of A. maculatum was predicted to be more highly
concentrated in open habitats near rivers and the floodplains of water bodies, as well as
an increased probability of occurrence in the CMSA (Figure 8b). The predictions for A.
maculatum distribution in the 2070 scenario appear to change drastically, with a higher
likelihood of occurrence throughout the central portion of the state—particularly in areas
with a high percentage of cropland—and less strongly associated with wetlands (Figure 8c).
Change over time shows a south-to-north shift in suitable habitats across the state (Figure 9).
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Illinois under historical climate conditions. (b) Mean-weighted ensemble of predicted probability
of A. maculatum occurrence in Illinois in 2050 projected climate Coupled Model Intercomparison
Project phase 6 (CMIP6)/EC-Earth3-Veg Shared Socioeconomic Pathway (SSP) 585 (average from
2041 to 2060). (c) Mean-weighted ensemble of future predicted probability of A. maculatum occurrence
in Illinois in 2070 projected climate (CMIP6)/EC-Earth3-Veg Shared Socioeconomic Pathway (SSP)
585 (average from 2061 to 2080). Darker colors indicate a higher likelihood of tick presence per
the tick occurrence probability scale. Inset map indicates the location of Illinois within the United
States/North America.
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within the United States/North America.

4. Discussion

This investigation applied numerous species distribution modeling techniques to
examine the historically predicted distribution of four ticks of medical concern in Illinois,
and the estimated future habitat suitability based on two climate scenarios. With the
exception of A. maculatum, our results support known [33,62–64] and predicted [19,65–67]
habitat ranges for these species within the state and attempt to identify environmental
factors that will contribute to continued or altered suitability distributions in potential
future climate conditions.
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The best fit individual models to describe these historical and future habitat suitability
scenarios were random forest and support vector machines. Random forest is a specific
type of classification/regression tree (CART) ensemble and recursive partitioning method
that can handle highly dimensional data with accuracy and is resistant to overfitting
due to its randomized splitting and sampling procedure of training data [68]. However,
Valavi et al. [69] note that RF prediction can be negatively impacted when using presence-
background data such as the tick data used in this investigation due to class imbalance
and overlap. This occurs when there is a small sample of presence points, and the back-
ground points are sampled in a way that does not allow for enough discrimination in the
predictors of presence and background location [69]. Support vector machines are another
machine learning algorithm that utilizes kernel function for mapping presences amidst
complex correlational data, and they are useful because they do not require data to be
independent [70,71]. To prevent biasing the outcomes as best as we could, we applied mean
weights and approximate equal sampling of the presence and the background data and
used down-sampling by way of cross-validation [69]. The best-performing models were
consistently the mean-weighted ensembles, which is an outcome supported by previous
research [71].

Our models support and expand upon previous work on habitat suitability for ticks in
Illinois. Records of county-level establishment, passive surveillance, and ecological niche
modeling demonstrate the expansion of I. scapularis across the state [34,67,72–74]; however,
our expectation that as the climate continues to warm, regions in southern and central
Illinois will become less hospitable for a desiccant-sensitive species such as I. scapularis was
not supported. We found that the occurrence of these species is still driven strongly by
precipitation and temperature variables as previous work in the state has demonstrated [9]
but in ways we did not expect. Our models predicted that I. scapularis will initially be
confined to more northern regions in the state, and within habitats that provide more
protective cover (e.g., upland forest) and moisture availability, e.g., along riparian zones of
the Sangamon, Rock, and Illinois Rivers, as well as in forested areas and edge surrounding
Lake Shelbyville and Upper Peoria Lake. However, Shawnee National Forest becomes
highly likely to be suitable refugia in the 2070 climate scenarios.

We observed the potential continued future suitability of habitat for I. scapularis located
in high population centers such as Cook, DuPage, McHenry, and Lake Counties outside
Chicago. Borrelia burgdorferi-infected I. scapularis has been collected from high-access areas
within these locations going back decades [62,63]. Guerra et al. [65] identified positive
associations of I. scapularis with various soil types (e.g., fertile alfisols, sand, and loam),
deciduous and dry forests, and negative associations with grasslands, acidic soils, conifer,
and wet forests. At that time, highly likely (>0.50) habitat suitability for I. scapularis was
largely limited to areas within Shawnee National Forest, along the Illinois and Mississippi
Rivers, and very few areas of higher probability of presence (0.50-0.75) in the counties
surrounding Chicago [65]. We predicted greater suitability for I. scapularis throughout
the central and southern portions of the state than what was previously predicted or
currently reported by Illinois Department of Public Health records [75]. It is suspected
that I. scapularis is not currently occupying a larger distribution within Illinois due to its
complex ecology [1,76,77]. Although our results could suggest that the tick simply has not
yet invaded these areas, they may also reflect sampling limitations. Lyons et al. [38] found
few I. scapularis ticks during active surveillance in southern Illinois, but the timing of this
surveillance was not optimized to the phenology of I. scapularis, and passive surveillance
efforts lacked coverage in many areas of interest.

Levi et al. [78] examined activity patterns of I. scapularis over 19 years and found that
years with warmer temperatures in the summer and fall were associated with a three-
week acceleration in the phenology of nymphal and larval ticks as compared to years
with lower temperatures. Model predictions suggest up to a two-week average earlier
activity period for larvae and nymphs if 2050 warming predictions hold [78], which provide
additional opportunity for overlap with humans and domestic animals. Given that the risk
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of acquiring a tickborne illness such as Lyme disease is heavily dependent on not only the
enzootic cycle of disease but also on human behavior, our predictions can help identify
areas of Illinois to concentrate additional surveillance efforts to more accurately quantify
that acarological risk.

The predicted A. americanum habitat for the historical climate closely matches reported
occurrences within Illinois [23,34,75]. Currently, this species is most abundant in the south-
ern portion of the state but is becoming increasingly more common in the north [24,79,80].
A. americanum’s aggressive host-seeking and non-specific host preferences create an optimal
dispersal scenario which allows this tick to travel long distances on meso-mammals and
deer, as well as birds [81]. Despite all of the modeled tick species relying on white-tailed
deer for at least part of their lifecycle, A. americanum was the only species distribution
significantly predicted by suitable white-tailed deer habitat. We suspect that this is be-
cause white-tailed deer (Odocoileus virginianus) are the preferred hosts for all life stages
of A. americanum [82], and their distribution has historically been intricately tied to the
presence of white-tailed deer throughout their eastern U.S. range [79,83].

However, D. variabilis and A. americanum were also found to be constrained by the
2070 climate scenarios in similar habitats but were more likely to occur throughout more of
the forested southern portion of the state, like previous research [84]. A. maculatum was
the only tick predicted to continue to expand throughout the state as the temperatures
rose more extremely into the 2070 climate. Of greatest concern for public health is the
increasing likelihood of these additional vector tick species near the higher population
centers along the Illinois River and surrounding Chicago. We have found that few medical
professionals in northern areas of Illinois were familiar with the risk of ehrlichiosis within
the state [85], despite 422 cases between 2011 and 2021 [75]. This is likely due to the current
abundance of A. americanum being higher in the southern portion of the state and is likely to
delay the diagnosis and treatment of pathogens vectored by these less-studied tick species.
Both Bayles et al. [86] and Soucy and de Urioste-Stone [87] also found that the adoption of
effective tick prevention measures, such as tick checks, was associated with the perceived
risk of tick bites. As the actual risk of tick exposure changes due to shifting tick habitats
and abundance, public and professional awareness must be addressed through dynamic
communication efforts.

We focused on more extreme expectations for future climate scenarios to capture a
likely “worst case scenario” for future tickborne disease risk, mainly because the entirety of
Illinois is expected to be within a projected “extreme heat belt” with heat index tempera-
tures exceeding 125 degrees Fahrenheit for at least one day by 2053 [88]. Broader studies
that have examined potential tick niche expansion and retraction under future scenarios
have found similar results for these species regardless of the global circulation model cho-
sen. Ma et al. [79] explored the impact of several shared socioeconomic pathways through
2100 and predicted all of Illinois to be highly suitable for A. americanum during all scenarios
ranging from least impactful to most impactful. These projections combine climate model
data with policy to best capture a likely outcome for climate change. Employing ecologi-
cal niche models with future greenhouse gas emission scenarios such as Representative
Concentration Pathway (RCP) 4.5 (moderate warming) and RCP 8.5 (severe warming)
predicted a similar suitability outcome for A. americanum in North America [89,90], as did a
study by Boorgula et al. [25], which predicted moderate to high suitability for D. variabilis
throughout the state continued through both RCP 4.5 and RCP 8.5 scenarios. Although
Flenniken et al. [19] did not examine future projections of A. maculatum, they found that
under current climate conditions, the expected ecological niche for this species is much
greater than its current distribution, suggesting the potential for expansion north and east.
By focusing on Illinois alone, we were able to apply a more fine-scale environmental niche
prediction for each of these four tick species within the SSP 585 scenario.

We recognize several limitations in our investigation. It is important to note that
species distribution modeling is often subject to confounding due to the phenomenological
approach to predicting tick distributions. Spurious correlations can be assumed without
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an additional mechanistic understanding of the relationships between ticks and these
environmental predictors at a smaller scale [14]. We attempted to control for this, in part,
by including known white-tailed deer habitats, but this variable was removed due to
collinearity issues with other environmental correlations for all tick species except for A.
americanum. Previous work also demonstrated that for certain species, such as I. scapularis,
tick presence varied despite host availability, suggesting a more influential role of abiotic
variables [65]. Whereas the inclusion of other forest-level habitat variables likely replaced
the need for specific deer habitat for three of the four ticks, we consider it a limitation given
the need for and importance of considering reproductive host species in habitat models.
However, in the case of the Lyme disease bacteria (Borrelia burgdorferi), recent evidence may
suggest that the overall tickborne disease hazard risk posed by the positive association
between deer density and nymphal tick density is canceled out through opposing forces of
both amplification and dilution since deer are not a competent reservoir for the bacteria [91].

Our environmental correlates included climate variables that change according to
proposed scenarios, but the landcover predictors did not include estimates of variability.
As landcover predictors did not change over time, our model results, therefore, assume
that the changes in climate do not change the percentage of cropland or other landcover
types throughout the state. ESRI landscape change predictions for 2050 in Illinois in-
cluded an expected gain of over 821,000 acres of cropland throughout the state, a gain
of over 503,000 acres of developed or impervious surface, and losses of deciduous forest
(743,000 acres), grassland (380,000 acres), and wetland (39,224 acres) [92]. Future modeling
work should include these predictions to improve upon static landscape assumptions.
Further, the historical climate and landscape variables were slightly mismatched (climate
was a mean from 1970 to 2000, whereas the landscape mean ranged from 2001 to 2019).
These differences could potentially impact the model’s accuracy. We did not incorporate
soil types or profiles [65] into the models which also may have impacted the predictions
due to their ability to harbor and control microclimates and habitats that can impact tick
survival. However, since only certain vegetation is expected to grow according to various
soil profiles [65], we assumed that vegetation was enough of a proxy for these models.

Booth [93] reported that certain combined temperature and precipitation bioclimatic
variables can be unreliable in species distribution modeling depending on proximity to the
equator due to discontinuities in interpolation and can result in extreme differences over
short distances. In the United States, specifically, the mean temperature of the warmest
quarter (bio8) and the mean temperature of the driest quarter (bio9) demonstrated anoma-
lies in the south and southeastern regions of the country [93]. These discontinuities were
like others that occurred globally near the equator. These anomalies should not have im-
pacted our results because of Illinois’ distance from the equator, but mention is warranted
since these variables were important in our models.

Sampling bias consideration is important with occurrence data and may have influence
potentially seen in the response curves of I. scapularis in the historical climate. Previous
research [1] showed an increasing likelihood of the presence of I. scapularis in uninterrupted
forests, whereas our results demonstrate a large decline in the likelihood of I. scapularis
occurrence with an increasing percentage of forest cover. This could reflect a lack of data
points collected from deeper within forests (i.e., collections were intentionally performed in
easily accessible places because this is where the disease transmission risk is), or that this
species spends more time in edge environments within Illinois. The sampling method (drag
versus CO2 trap versus small animal capture) is also important to consider when assessing
bias. Rynkiewicz and Clay [15] reported that I. scapularis was mainly found collected
from small mammals, whereas A. americanum and D. variabilis were able to be collected
using cloth drag and CO2 protocols. Records of I. scapularis in Illinois may therefore be
underrepresented, as most sampling in the state has used the cloth drag approach.

The very small dataset for A. maculatum may have contributed to the projected future
results suggesting a lack of A. maculatum in landscapes that it is known to thrive in, such
as grasslands, or future projections associating the tick with croplands. Specifically, the
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sample size may have impacted the accuracy of the random forest/CART predictions per
class overlap as previously stated [69]. The reevaluation of this tick’s expected distribution
as more data become available is necessary.

5. Conclusions

The variable landscape of Illinois creates a patchwork of risk to humans and domestic
animals that can be predicted based on climate and landscape features. As the climate
changes over the coming decades, the distribution of these tick species will change as
it adapts to the increasing temperatures. Knowing where ticks may concentrate will be
important to anticipating, preventing, and treating tickborne disease.
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