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Simple Summary: Trehalose plays crucial roles in the cold tolerance of insects. Trehalose-6-phosphate
synthase (TPS) is an important enzyme involved in trehalose synthesis. TPS genes have been
demonstrated to be involved in cold-resistant physiological processes. Lissorhoptrus oryzophilus
is an important invasive pest of rice in China. To gain insight into the function of TPS in rapid
cold hardening (RCH), we cloned and characterized the TPS gene of L. oryzophilus (LoTPS). Next,
we examined changes in gene expression and trehalose levels under low temperature after RCH
treatment. We found that LoTPS was a fused gene with conserved TPS and trehalose-6-phosphate
phosphatase (TPP) domains. As expected, RCH increased the survival rate of L. oryzophilus adults
under low temperature. Furthermore, it led to an increase in TPS gene expression and trehalose
content. However, RCH efficiency disappeared when the LoTPS gene was RNA-interfered, causing
no significant increase in the survival rate, TPS gene expression or trehalose level. This study
demonstrates the importance of TPS in enhancing cold tolerance through RCH. The TPS gene
regulates trehalose synthesis and accumulation in adults, thus improving their survival under low
temperatures. Our findings contribute to a better understanding of the cold tolerance mechanisms
and invasiveness of L. oryzophilus.

Abstract: Rapid cold hardening (RCH) is known to rapidly enhance the cold tolerance of insects.
Trehalose has been demonstrated to be a cryoprotectant in Lissorhoptrus oryzophilus, an important
invasive pest of rice in China. Trehalose synthesis mainly occurs through the Trehalose-6-phosphate
synthase (TPS)/trehalose-6-phosphate phosphatase (TPP) pathway in insects. In this study, the TPS
gene from L. oryzophilus (LoTPS) was cloned and characterized for the first time. Its expression and
trehalose content changes elicited by RCH were investigated. Our results revealed that RCH not
only increased the survival rate of adults but also upregulated the expression level of LoTPS and
increased the trehalose content under low temperature. We hypothesized that upregulated LoTPS
promoted trehalose synthesis and accumulation to protect adults from low-temperature damage. To
further verify the function of the LoTPS gene, we employed RNA interference (RNAi) technology.
Our findings showed that RCH efficiency disappeared and the survival rate did not increase when
the adults were fed dsRNA of LoTPS. Additionally, inhibiting LoTPS expression resulted in no
significant difference in trehalose content between the RCH and non-RCH treatments. Furthermore,
the expression patterns of trehalose transporter (TRET) and trehalase (TRE) were also affected.
Collectively, these results indicate the critical role of LoTPS in L. oryzophilus cold resistance after RCH
induction. LoTPS can enhance survival ability by regulating trehalose metabolism. These findings
contribute to further understanding the role of TPS in insect cold resistance and the invasiveness of
L. oryzophilus. Moreover, RNAi of LoTPS opens up possibilities for novel control strategies against
L. oryzophilus in the future.

Insects 2023, 14, 903. https://doi.org/10.3390/insects14120903 https://www.mdpi.com/journal/insects

https://doi.org/10.3390/insects14120903
https://doi.org/10.3390/insects14120903
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/insects
https://www.mdpi.com
https://orcid.org/0000-0002-6735-1177
https://orcid.org/0000-0001-7706-7391
https://doi.org/10.3390/insects14120903
https://www.mdpi.com/journal/insects
https://www.mdpi.com/article/10.3390/insects14120903?type=check_update&version=1


Insects 2023, 14, 903 2 of 15

Keywords: trehalose-6-phosphate synthase; rapid cold hardening; trehalose metabolism; cold
resistance; rice water weevil

1. Introduction

Insects have developed various physiological mechanisms to cope with the detri-
mental effects of low temperatures. Among these, rapid cold hardening (RCH) is one of
the adaptive responses in insects [1]. RCH is a type of phenotypic plasticity that allows
ectotherms to quickly enhance cold tolerance in response to brief chilling (lasting minutes
to hours). RCH protects against nonlethal cold injury by preserving essential functions
following cold stress, such as locomotion, reproduction, and energy balance. RCH occurs
following a brief exposure to milder cold temperatures and provides rapid protection
against sudden drops in temperature [2]. During spring and autumn, RCH can significantly
enhance the survival rates of insects, particularly when temperatures are prone to fluctua-
tions or sharp declines. Previous studies have demonstrated increased survival rates under
low temperatures following RCH in different insect species, including Agasicles hygrophila,
Helicoverpa assulta, Solenopsis invicta, and Chilo suppressalis [3–6].

Recent advances in metabolomics have confirmed the significance of low-molecular-
weight sugars and polyols as crucial metabolites produced during RCH in many insect
species. Although different insects accumulate different types of cryoprotectants such
as subitol, glucose, glycerol, and trehalose [7–10], trehalose has been implicated in RCH.
Several studies have provided evidence linking increased trehalose levels to enhanced
cold tolerance through RCH [9–13]. Specifically, trehalose accumulation in the hemolymph
stabilizes proteins and maintains cell membrane integrity during RCH [2,8,14].

Trehalose is predominantly synthesized in the fat body in insects [15]. It is then trans-
ported to the hemolymph and further to other tissues by trehalose transporters (TRET) [16].
Eventually, trehalose is broken down into two glucose moieties by the trehalase enzyme
(TRE). Among the reported trehalose biosynthesis pathways in insects, trehalose is mainly
synthesized by the trehalose-6-phosphate synthase (TPS)/trehalose-6-phosphate phos-
phatase (TPP) pathway or TPS pathway [16]. In the TPS/TPP pathway, TPS transfers
glucose from UDP-glucose to glucose-6-phosphate, yielding trehalose-6-phosphate and
UDP. TPP converts trehalose-6-phosphate to trehalose. In the TPS pathway, the TPS gene
is a fused gene encoding proteins with both TPS and TPP domains and exhibits both
TPS and TPP enzyme activities [17,18]. TPS genes have been identified from different
insect species [19–24]. However, TPP genes have only been found in certain insect species,
predominantly in dipteran insects [25–27]. Three categories of TPS genes (TPS1, TPS2,
and TPS3) have been discovered in insects to date [28,29]. Some insects have a single TPS
gene [18,24,28,30], while others have two [31,32] or three TPS genes [29,33]. Interestingly,
certain insects such as Drosophila melanogaster, Delia antiqua, and Plutella xylostella also have
distinct TPS and TPP genes [34–37]. However, the mode and functioning of TPS genes in
Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae) have not been reported.

The rice water weevil (RWW) is the most important invasive pest of rice (Oryza sativa L.)
in China. It was initially introduced from Korea in 1988 and has since expanded its distri-
bution to twenty-five provinces, with a continuing trend towards both the northern and
southern regions of China. Due to its significant impact on agriculture, it has been desig-
nated a national agricultural plant quarantine pest. The adult weevils feed on mesophyll,
leading to distinctive longitudinal scars along the leaf blade [20,38]. However, the larvae
cause more severe damage by feeding on the roots. Rice water weevils cause yield losses of
up to 25% in the absence of prevention [39,40]. In Northeast China, L. oryzophilus completes
only one generation per year, with adult weevils entering diapause and overwintering at
the base of perennial grasses on field bunds, levees, field margins, and other uncultivated
areas. Studies on the diapause biology of rice water weevils have revealed significant
mechanisms of cold hardiness, enabling their survival under relatively cold temperatures
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during winter. Trehalose has been identified as a major cryoprotectant in overwintering rice
water weevils, contributing to their cold tolerance through increased trehalose content [41].
In regions such as Changchun city in northeast China, where temperature fluctuations are
common during early spring and autumn, adult weevils may experience sudden tempera-
ture drops without prior exposure to acclimation conditions. In such cases, RCH may play
a crucial role. However, our understanding of the physiological mechanisms underlying
RCH in rice water weevils remains limited.

In this study, we aimed to investigate the role of the TPS gene in the cold resistance of
L. oryzophilus. First, we cloned the TPS gene from L. oryzophilus adults using transcriptome
data and characterized its properties. Next, we examined the potential of the rice water
weevil to induce RCH during the adult stage. We analyzed changes in trehalose content and
TPS gene expression profile in adult weevils after RCH to assess the role of TPS in the cold
resistance response elicited by RCH. In order to further understand the function of the TPS
gene in cold resistance, we employed RNAi technology to inhibit its expression in rice water
weevil adults. These RNAi-treated weevils were subsequently exposed to low temperatures
to evaluate the effectiveness of RCH, and trehalose content and the expression of genes
involved in trehalose metabolism were analyzed. These results will provide insight into
the regulatory effect of TPS on trehalose metabolism in the cold resistance of L. oryzophilus
and lead to a new potential target for further control of L. oryzophilus.

2. Materials and Methods
2.1. Insects

Adults of L. oryzophilus were collected from rice fields near Changchun city, Jilin
Province, Northeast China (43◦88′ N, 125◦35′ E). The collection took place in late May,
when the rice seedlings had just been transplanted for approximately one week and the
weevils had started their spring feeding. Then, these weevils were transferred to rice
seedlings of approximately 20 cm in a plastic box in the laboratory. The conditions for
feeding L. oryzophilus were as follows: temperature 25 ± 1 ◦C, photoperiod 16 h/8 h, and
relative humidity of 70%.

2.2. Low-Temperature Tolerance and Discriminating Temperature Determination

Following the method of Yang et al. (2018) [42], we measured the discriminating
temperature to assess the survival of adult L. oryzophilus after various pretreatments.
The adults were directly transferred from their rearing conditions to a range of subzero
temperatures between −2 ◦C and −12 ◦C for 2 h in a refrigerator. This was achieved by
placing the adults in Petri dishes with a diameter of 10 cm, with each dish containing twenty
adults. The control group was exposed to 25 ◦C for 2 h. To ensure accurate temperature
control, a thermometer was placed inside the refrigerator to monitor the temperature, and
adjustments were made as necessary prior to each cold-shock treatment. The adults were
exposed to subzero temperatures for a duration of 2 h. After the 2 h exposure, the adults
were returned to their rearing conditions, and their survival was assessed 2 h later. Adult
weevils were considered dead if their legs did not move when lightly touched with a brush.

2.3. Induction and Detection of RCH

To assess the efficiency of RCH and determine the conditions for its induction, we
followed a modified version of the method described previously [42]. Adult L. oryzophilus
were placed in Petri dishes with a diameter of 10 cm. We divided the weevils into different
groups and subjected them to various temperature treatments. First, the weevils were trans-
ferred from their rearing conditions at 25 ◦C to either 0 ◦C or 5 ◦C for different durations (1,
2, 3, or 4 h). Subsequently, they were exposed to the discriminating temperature of −8 ◦C
for 2 h. After this exposure, the weevils were returned to their original rearing conditions at
25 ◦C, and their survival was assessed after a 2 h recovery period. We considered weevils
that were able to move as having survived. For the control group, weevils were directly
transferred from room temperature to the discriminating temperature of −8 ◦C for 2 h.
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Each treatment group consisted of 20 individuals, and we replicated the experiment five
times to ensure reliable results. To further analyze trehalose content and gene expression,
all surviving adult weevils were immediately transferred to liquid nitrogen and preserved
at −80 ◦C until further analysis.

2.4. Measurement of Trehalose Content

To determine the trehalose content in the samples, we utilized the Trehalose Content
Kit from Solarbio, Beijing, China. Following the instructions provided in the kit, ten adults
of L. oryzophilus were collected from both the control group and the RCH group. The
collected weevils were weighed and transferred into a grinder for grinding. Each group
was homogenized with 50 µL of extraction solution and left at room temperature for
45 min to allow for complete extraction. Then, the samples were centrifuged at 8000 rpm
for 5 min and cooled to room temperature. Next, 250 µL of the supernatant was mixed with
500 µL of the reaction reagent from the kit. This mixture was incubated in a 95 ◦C water
bath for 10 min to react and release the trehalose. Following incubation, the solution was
cooled to room temperature. Finally, the trehalose content was estimated by measuring the
absorbance at 620 nm using a spectrophotometer. Three separate biological replicates were
performed to ensure the accuracy and reliability of the results.

2.5. Sequence Determination and Bioinformatics Analysis of TPS Gene

For the total RNA extraction and cDNA synthesis, we followed the same method
as described in a previous study [43]. Total RNA was extracted from the whole bodies
of three L. oryzophilus adults using RNAiso Plus (Takara, Dalian, China), following the
manufacturer’s instructions. The RNA concentration was measured using NanoDrop 2000
(Wilmington, DE, USA) and the integrity was assessed using the RNA Nano 6000 Assay
Kit of the Agilent Bio-analyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA).
Purified RNA was stored at −80 ◦C for future experiments. First-strand cDNA synthesis
was performed using the PrimeScript® RT reagent kit with gDNA Eraser (TaKaRa, Dalian,
China) following the manufacturer’s protocol.

The sequence of LoTPS was identified by searching the sequences in our unpublished
transcriptome database and annotations for keywords (trehalose-6-phosphatesynthase).
The amino acid sequence of putative LoTPS was deduced using DNAMAN software.
TPS conserved domains of the putative LoTPS genes were further analyzed using the
Pfam database (http://pfam.xfam.org/, accessed on 6 June 2023). Subsequently, the
sequence of putative LoTPS was verified by PCR amplification reaction and sequencing
again. Additionally, we calculated the molecular weight and isoelectric points of the
protein using the Compute pI/Mw tool (http://web.expasy.org/compute_pi/, accessed
on 6 June 2023). The open reading frames (ORFs) were predicted using the ORF finder
(https://www.ncbi.nlm.nih.gov/orffinder/, accessed on 6 June 2023). Furthermore, we
predicted signal peptides and transmembrane domains of the putative protein using the
SignalP 5.0 server (http://www.cbs.dtu.dk/services/signalP, accessed on 6 June 2023).
For multiple sequence alignments of TPS proteins, we employed DNAMAN 6.0 software
(Lynnon Corporation, Pointe-Claire, QC, Canada). We compared the deduced amino acid
sequence of TPS from L. oryzophilus with other insect TPS sequences. Finally, we constructed
a neighbor-joining phylogenetic tree using MEGA-X 10.0.5 software. This analysis was
performed to understand the evolutionary relationships between the TPS proteins from
different insect species.

2.6. RNAi of TPS

The dsRNA of LoTPS was synthesized according to the manufacturer’s recommenda-
tions for the T7 RioMAX Express RNAi System (Promega, San Luis Obispo, CA, USA). As
a control, green fluorescent protein (GFP) dsRNA was also synthesized. Specific primers
for the LoTPS dsRNA fragments were designed and synthesized. The primer sequences
can be found in Table 1. The synthesized dsRNA was stored at −80 ◦C.

http://pfam.xfam.org/
http://web.expasy.org/compute_pi/
https://www.ncbi.nlm.nih.gov/orffinder/
http://www.cbs.dtu.dk/services/signalP
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Table 1. Primer sequences used in this study.

Primer Name Primer Sequence (5′-3′) Purpose

LoTPS GCGTTTGGTGTGGATTGG/ATACGCTGACATCACCCC ORF cloning
LoTPS GCGTTTGGTGTGGATTGG/GATGATGTGCGAGGAGGT RT-qPCR
TRET ACCACGACTCAGGAAAAT/ACCAACGCATAAGATAGC
TRE AACCTGTGATTGTCCCTG/TCCTTTGGCTGTTTCGTG
RpS18 GTAATGTTTGCCTTGACTG/TTTCTACTTCCTCTTCGG
dsTPS-F TAATACGACTCACTATAGGGGACAAAAAGCTTCCTCAGCG RNAi
dsTPS-R
dsGFP-F

TAATACGACTCACTATAGGGAGTGGAACGTTAACAACGCC
TAATACGACTCACTATAGGGTGTTCTGCTGGTAGTGGTCG

dsGFP-R TAATACGACTCACTATAGGGTGTTCTGCTGGTAGTGGTCG

To prepare the rice leaves for dsRNA feeding experiments, leaves at the jointing stage
were selected and cut into strips measuring 5.0 cm × 0.4 cm in size. The two ends of
the strips were fixed with clamps and dried in a 40 ◦C oven for 20 s. The dsRNA was
thawed on ice and diluted with RNase-free water to 500 ng/ML. Two hundred microliters
of diluted dsRNA solution was packed into 10 mL Eppendorf tubes (Eppendorf, Hamburg,
Germany). The dried leaf strips were transferred into the Eppendorf tubes after the leaf
surface was daubed with dsRNA. The base of the leaf was immersed in dsRNA solution to
suck it up. After the leaf strips absorbed the dsRNA for 24 h, they were used to feed the
adults of the rice water weevils. The weevils were starved for 48 h before being transferred
to the dsRNA-treated leaves. The EP tubes were sealed with gauze, and fresh rice leaves
coated with dsRNA were replaced every 24 h. Live adult weevils that had fed for 24 h, 48 h,
and 72 h were collected and stored at −80 ◦C for gene expression analysis. Each treatment
contained 20 adults and was repeated 3 times. The adults fed on normal leaves and treated
with ds-GFP solution were used as the control.

2.7. Expression Analysis Using RT-qPCR

In this experiment, the effect of RCH and RNAi of LoTPS on the transcript expression
of the genes in trehalose metabolism including the TPS, TRET, and TRE genes was analyzed
using qRT-PCR. Total RNA and first-strand cDNA synthesis were performed as described
in Section 2.5. Primer pairs for qPCR were designed using Primer 5 software, as shown
in Table 1. RPS18 was used as a reference gene for normalization. For each qPCR, a total
volume of 25 µL was prepared. This included 1 µL of template cDNA, 5 µL of SGExcel
Fast SYBR Mixture (TransGen, Beijing, China), 0.4 µL of forward primer (10 µm/L), 0.4 µL
of reverse primer (10 µm/L), and 18.2 µL of RNase-free water. Quantitative PCR (qPCR)
analysis was performed using an ABI 7500 Real-Time PCR System (Applied Biosystems,
Carlsbad, CA, USA). The conditions were 95 ◦C for 3 min, 40 cycles of 95 ◦C for 10 s,
60 ◦C for 30 s, and the melt curve construction at 65–95 ◦C with a 0.5 ◦C rise per cycle. Every
data point was calculated based on three biological replicates and three corresponding
technical replicates. RPS18 was used as the reference gene, and the 2−∆∆Ct method was
used to determine the relative expression values.

2.8. Rapid Cold Hardening Assay after LoTPS Knockdown by RNAi

To evaluate the effect of knockdown of the LoTPS gene on RCH efficiency, test adults
were divided into four groups: control with non-RCH (directly transferred to −8 ◦C for
2 h), control with RCH (exposed to 0 ◦C for 4 h prior to −8 ◦C for 2 h), dsTPS with non-
RCH (directly transferred to −8 ◦C for 2 h after knockdown of TPS), and dsTPS with
RCH (exposed to 0 ◦C for 4 h prior to −8 ◦C for 2 h after knockdown of TPS). In the RCH
bioassay, test adults were transferred to Petri dishes and placed in the refrigerator at the
corresponding temperature. After the treatment period, the survival rates of the adults
were determined following a 2 h recovery period at 25 ◦C. The adults were considered
alive if they were able to move. Each treatment was replicated five times with 20 adults per
treatment. All live adults were transferred directly to liquid nitrogen and placed at −80 ◦C
until trehalose content and gene expression analysis.
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2.9. Data Analysis

All bioassays were performed with three independent replicates. All statistical tests
were carried out with GraphPad Prism 9 software using analysis of variance (ANOVA).
Brown–Forsythe and Shapiro–Wilk tests were applied to determine error variance and
normality. Survival of L. oryzophilus at different temperatures, content of trehalose, and
expression level of LoTPS after RCH was tested in a one-way ANOVA and Tukey’s post hoc
tests. Two-way ANOVA and Tukey’s post hoc tests, with RNAi and treatment as factors,
were carried out to assess the effect of gene expression level and content of trehalose after
RCH and RNAi. Two-way ANOVA and Tukey’s post hoc tests, with temperature and time
as factors, were carried out to assess the effect of RCH on the survival of L. oryzophilus. Data
are presented as the mean ± standard deviation and differences are considered significant
at the p < 0.05 level.

3. Results
3.1. Identification and Characterization of LoTPS

The sequence of LoTPS was identified by searching the sequences in our unpublished
transcriptome database and annotations for keywords (trehalose-6-phosphatesynthase).
The nucleotide sequence of LoTPS is 2499 bp long and encodes a putative protein consisting
of 833 amino acids. The cDNA sequence has a theoretical isoelectric point of 6.31. LoTPS is
a fusion gene that contains two conserved domains: the TPS domain (located at positions
24–474) and the TPP domain (located at positions 539–764). Within the TPS domain, two
conserved motifs, HDYHL and DGMNLV, were identified in the LoTPS sequence (Figure 1).
No signal peptide or transmembrane regions were found in LoTPS. There are two potential
N-glycosylation sites at positions 122 and 571 (Figure 1).
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shaded in red.

The deduced amino acid sequence of LoTPS was compared to that of TPSs from
other species through sequence alignment. The highest similarity was observed with a
TPS from the Coleoptera species Rhynchophorus ferrugineus, with a sequence identity of
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93.23%. LoTPS also exhibited similarity to TPSs from Dendroctonus ponderosae (91.45%
identity) and Sitophilus oryzae (91.08% identity) (Figure 2). The phylogenetic tree analysis
further supported the homology among TPS genes and their evolutionary relationships
with different species. LoTPS was found to cluster with other Coleoptera TPS genes in the
phylogenetic analysis (Figure 3). This suggests that LoTPS shares a closer evolutionary
relationship with TPS genes from other Coleoptera species than with other insect species.
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Dendroctonus ponderosae (XP_019761749.1); Rf, Rhynchophorus ferrugineus (KAF7280304.1); Ld,
Leptinotarsa decemlineata (XP_023020816.1); Aa, Anoplophora glabripennis (XP_023311886.1); Dv,
Diabrotica virgifera (XP_028127759.1).
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3.2. Induction of RCH in L. oryzophilus Adults

To determine the discriminating temperature, L. oryzophilus adults were directly ex-
posed to sub-zero temperatures for 2 h from the rearing temperature (25 ◦C). The survival
rates of the adults after exposure to temperatures ranging from −2 to −12 ◦C for 2 h are
shown in Figure 4. The results indicated that the survival of adults exposed to temperatures
from −2 to −6 ◦C for 2 h was similar to that of the control (25 ◦C), at over 90%. However,
the survival rates decreased significantly (F = 220.6, p < 0.0001), dropping to about 20% at
−8 ◦C and −10 ◦C, and nearly all adults died after 2 h at −12 ◦C (Figure 4A). Based on
these results, 2 h at −8 ◦C was chosen as the discriminating temperature.

Then, the RCH response and the optimal conditions for inducing RCH in L. oryzophilus
adults were determined. The results indicated that pre-exposure to 0 ◦C or 5 ◦C over 1 to
4 h (RCH) significantly elevated cold tolerance of adults against −8 ◦C for 2 h (F = 26.44,
p < 0.0001). The survival rates at the discriminating temperature were approximately twice
as high for the groups pre-treated at 5 ◦C or 0 ◦C for 1 to 4 h compared to those with
no pre-treatment. Additionally, we found a significantly higher survival rate for the 4 h
duration at 0 ◦C compared to 5 ◦C (Figure 4B). Based on these findings, an exposure of 4 h
at 0 ◦C was selected as the condition for inducing RCH in the subsequent experiments.
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3.3. Roles of LoTPS in Trehalose Biosynthesis during RCH

To investigate the role of LoTPS during RCH, we first fed adult L. oryzophilus indi-
viduals with rice leaves containing dsLoTPS, aiming to suppress the expression of LoTPS.
Quantitative real-time PCR was used to measure the expression of LoTPS 24, 48, or 72 h
after exposure to LoTPS dsRNA. The results showed that the expression of LoTPS was
significantly down-regulated compared to that in the control and GFP treatment (F = 247.3,
p < 0.0001). The interference efficiency did not show a significant difference among the
three durations (F = 3.477, p = 0.0529) (Figure 5A). Therefore, we have chosen the duration
of 24 h as the optimal time for dsLoTPS treatment.
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Figure 5. Suppression of LoTPS via RNA interference (A) and the effect of LoTPS RNAi on survival
rate after RCH treatment (B). (A) The relative expression level of LoTPS in adults was examined via
quantitative qRT-PCR. Control represents the adults feeding on normal leaves without dsRNA. Error
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control measured at the same time (p < 0.05). (B) The survival rates after suppression of LoTPS genes
via RNAi and RCH induction at low temperature. RT indicates room temperature. Each treatment
was replicated three times with 20 adults per replication. Different letters indicate a significant
difference (p < 0.05).
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Then, the effect of LoTPS suppression on RCH efficiency was examined; RNAi-treated
adults were exposed to RCH conditions followed by the discriminating temperatures. The
survival rate of the control with RCH induction was over 60%, while less than 40% of
the control group with non-RCH individuals survived when adults were exposed to the
discriminating temperatures. RCH induction significantly increased the survival rate in
the RCH group (F = 12.68, p < 0.0001). However, there was no RCH effect observed in the
adults fed with dsLoTPS. Even when the adults were pre-exposed to RCH (dsLoTPS with
RCH), the survival rate at the discriminating temperatures did not increase significantly
compared to that of the non-RCH group (F = 2.639, p = 0.4457) (Figure 5B).

Next, the trehalose content and the relative expression level of the LoTPS gene were
determined to understand the mechanism by which TPS regulates trehalose levels after
RCH induction, as shown in Figure 6A,B. It was observed that the suppression of LoTPS
expression through RNAi significantly inhibited RCH and trehalose accumulation (F = 334.7,
p < 0.0001) (Figure 6A). There was no significant difference in trehalose content between the
non-RCH and RCH treatments in adults fed on dsLoTPS (F = 4.106, p = 0.074). In contrast,
effective RCH in L. oryzophilus was accompanied by trehalose accumulation in the control
group. Under low temperatures, the amount of trehalose was altered significantly, with
an increase observed after exposure to −8 ◦C for 2 h, both in the treatment pre-exposed to
0 ◦C for 4 h (RCH) and that with no pre-exposure (non-RCH) (F = 320.2, p < 0.0001). The
RCH treatment exhibited the highest trehalose content level compared to non-RCH and
control treatments.
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Gene expression analysis showed that the expression of LoTPS at discriminating
temperature significantly increased in the RCH treatment group (F = 41.37, p < 0.0001).
There was no significant difference in expression between the non-RCH and control groups
(Figure 6B). However, the relative expression level did not increase in the RCH and non-
RCH group adults when the LoTPS expression was reduced by specific dsRNA. This
indicates that the LoTPS gene is upregulated and involved in regulating trehalose synthesis
after RCH to enhance the cold resistance of weevil adults.

Finally, the expression levels of the other two key genes associated with trehalose
mechanism, TRE and TRET, were measured with qRT-PCR. Compared to non-RCH treat-
ment, the expression of the TRET gene was found to be upregulated in L. oryzophilus
adults under low temperatures after RCH induction in both control and dsTPS treatments.
It showed a significant decrease in TRET gene expression in non-RCH and RCH group
after LoTPS dsRNA treatment (F = 288.4, p < 0.0001) (Figure 6C). On the other hand, the
expression of the TRE gene was significantly decreased after RCH in the control group
(F = 51.64, p < 0.001), but there was no significant difference between the RCH and non-RCH
adults when LoTPS was suppressed (F = 0.940, p = 0.1157) (Figure 6D).

4. Discussion

In the TPP/TPS pathway of trehalose synthesis of insects, the two key enzymes
involved are TPS and TPP [21]. In our study, the TPS gene was identified from the transcrip-
tome of L. oryzophilus adults and designated as LoTPS. Similar to other known TPS genes
in insects [28,34,44], the LoTPS gene is also a fused gene. The deduced LoTPS amino acid
sequence encodes two functional domains, an N-terminal TPS domain and a C-terminal
TPP domain (one Glyco_transf_20 domain and one Trehalose_Ppase domain), and contains
two signature motifs (HDYHL and DGMNLV). Through multiple sequence alignment, we
found that the deduced amino acid sequence of LoTPS exhibits a high level of identity with
homologous proteins reported in other Coleoptera insects, specifically R. ferrugineus and
D. ponderosae, with a sequence identity of over 91%. Furthermore, the phylogenetic tree
clearly indicates that TPS from different insects can be grouped into four major clades. As
expected, LoTPS clusters together with TPS proteins from Coleoptera species, indicating a
close evolutionary relationship between LoTPS and its homologues in Coleoptera insects.

RCH can offer protection in insects against acute cold stress [45]. In our study, we
found that RCH treatment for 4 h at 0 ◦C significantly increased the cold tolerance ca-
pabilities of L. oryzophilus adults. This was evident by the increased survival rate when
they were exposed to a discriminating temperature of −8 ◦C. In addition to L. oryzophilus,
RCH response has been observed in many insects such as H. assulta, Trogoderma granarium,
Spodoptera frugiperda, and Liriomyza sativae, and prevents chilling injury by pre-exposing
insects to nonlethal low temperatures [5,8,46,47]. Therefore, the ability of RCH is beneficial
and essential for L. oryzophilus to cope with thermally variable environments.

Cold tolerance in insects is a complex adaptive response that involves significant
changes in biochemistry, gene expression, cell function, and the endocrinological system.
These adaptations allow for increased cell function and viability at low temperatures [2].
In our study, a high level of trehalose was observed in the RCH group. As a major
cryoprotectant, the accumulation of trehalose plays a physiological role in the capacity of
insects to survive freezing [44,48,49]. Trehalose is reported to play a role in the stabilization
of phospholipids in the plasma membrane, which is a target for cold-induced injury [7].
Increased trehalose content in response to cold acclimation has also been reported in
diapausing L. oryzophilus populations [41]. These results suggest that L. oryzophilus can use
trehalose as a cryoprotectant to resist cold shock under low temperatures. Similarly, RCH
also induced the accumulation of trehalose in Thrips palmi and Drosophila melanogaster [11,50].
However, Overgaard et al. (2014) and Mohammadzadeh (2018) found that RCH had no
significant effects on trehalose [8,51]. This suggests that insects may become cold-hardy
due to RCH if RCH participates in the accumulation of cryoprotectants.
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We hypothesized that changes in trehalose concentrations may be accompanied by
alterations in the expression of genes associated with trehalose metabolism. In insects, tre-
halose synthesis is triggered by TPS [52]. In our study, the LoTPS gene showed upregulated
expression during RCH, which may be relevant to the accumulation of trehalose. Trehalose
biosynthesis genes have been observed to be upregulated following RCH induction in
various insect species. Earlier studies on Maruca vitrata and P. xylostella showed that RCH
increased the expression of TPS and trehalose concentration [5,13,53]. These findings sup-
port the idea that TPS is an essential factor contributing to RCH-induced cold tolerance. We
found that trehalose levels were elevated in the non-RCH samples, although the relative
expression level of LoTPS was not increased compared to the control. We hypothesized
that the possible reasons for this observation was that only one LoTPS gene was cloned
and determined, and that there are other TPS genes in rice water weevil that regulate
trehalose synthesis at low temperatures. On the other hand, the trehalose content may be
affected by trehalose transporter and trehalase. In insects, the trehalose transporter TRET1
was found to be involved in transporting trehalose synthesized in the fat body into the
hemolymph and regulating the trehalose content in different tissues [54]. In our study,
RCH treatment increased the expression level of TRET in L. oryzophilus adults, which may
regulate the distribution and balance of trehalose in different tissues in order to improve
the cold resistance of adults, but this requires further study. It has been demonstrated
that TRET1a is highly expressed in the fat bodies of diapause-destined Colaphellus bowringi
and regulates trehalose out of the fat body [55]. Trehalase is the only enzyme currently
known to be capable of breaking down trehalose. In L. oryzophilus, we have cloned one
soluble trehalase, LoTRE1 [43]. In contrast, TRE expression is significantly down-regulated
in response to RCH, indicating that the TRE of L. oryzophilus is most likely responsible for
regulating trehalose degradation, contributing to trehalose accumulation.

Furthermore, we confirmed the importance of LoTPS in low temperature tolerance after
RCH through RNA interference. The results showed that LoTPS expression was effectively
suppressed by RNAi at 24 h post-feeding specific dsRNA against LoTPS. Accordingly, the
survival rates of the dsRNA-treated group were not improved at low temperature after
RCH induction compared to those of the control group. This suggests that the suppression
of LoTPS expression had a negative impact on the ability of L. oryzophilus adults to survive
at low temperatures after RCH induction. Similar findings were observed in P. xylostella,
the suppression of PxTPS via RNA interference decreased survival rate under RCH [52].
These results have further verified the importance of TPS genes. Their involvement in
cold resistance has been well defined [45,56]. In addition, the trehalose content in the
adults decreased significantly after RNAi. These findings confirm that the suppression
of LoTPS by RNAi inhibits trehalose biosynthesis and disrupts the protective effect of
RCH. The silencing of LoTPS genes not only reduced the expression level of the target
gene, but also affected that of the TRET and TRE genes. Specifically, the expression
of the TRET gene did not increase under low temperature after TPS gene interference
compared to RT treatment. But its expression of RCH treatment was significantly higher
than that of non-RCH treatment in both the control and dsTPS groups. For TRE, RCH
significantly reduced its expression at low temperatures, but there was no significant
difference between the RT, non-RCH and RCH groups after RNA interference. These
results suggest that the coordination of trehalose synthesis, transportation, and degradation
pathways is responsible for trehalose accumulation with RCH. We speculate that RNAi can
effectively suppress the expression of LoTPS, thus disrupting trehalose metabolism and
affecting the cold tolerance of L. oryzophilus adults. However, the molecular mechanisms
underlying trehalose accumulation in this context require further study.

5. Conclusions

In conclusion, our study has demonstrated that rapid cold hardening (RCH) enhances
the survival of L. oryzophilus adults at low temperatures. This improvement in survival
is attributed to the upregulation of LoTPS expression, which leads to increased trehalose
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biosynthesis. However, when LoTPS was suppressed through RNAi, the efficiency of
RCH at low temperatures disappeared, indicating the essential role of LoTPS in trehalose
biosynthesis. These findings highlight the significance of trehalose as a cryoprotectant
for acquiring cold hardiness in L. oryzophilus, with LoTPS serving as a critical regulator of
trehalose biosynthesis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects14120903/s1, Table S1: GeneBank accession number of
species and gene sequences to construct LoTPS phylogenetic tree.
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