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Simple Summary: Supratidal rockpools stand out as some of the most extreme environments on the
planet. These pools are exposed to the wave’s action, fluctuations in sea level, dramatic shifts in water
temperature, high salinity levels, desiccation, and intense sunshine. As a result, only a handful of
species can survive there, with aquatic beetles of the genus Ochthebius being the insects that dominate
this kind of habitat on the Mediterranean coast. In this work, we genetically analysed four species (O.
lejolisii, O. subinteger, O. celatus, and O. quadricollis) found along the Mediterranean coasts of Spain
and Malta to develop microsatellite markers, which are repetitive DNA motifs, for the first time for
this genus. Additionally, we obtained the complete mitochondrial genome of three species (O. lejolisii,
O. subinteger, and O. quadricollis). These newly developed microsatellite markers and mitochondrial
genomes for Ochthebius will be valuable in future studies for evolutionary and ecological research on
the diversity of this genus: identification, genetic structure, population connectivity, etc.

Abstract: Here we focus on designing, for the first time, microsatellite markers for evolutionary and
ecological research on aquatic beetles from the genus Ochthebius (Coleoptera, Hydraenidae). Some of
these non-model species, with high cryptic diversity, exclusively inhabit supratidal rockpools, extreme
and highly dynamic habitats with important anthropogenic threats. We analysed 15 individuals
of four species (O. lejolisii, O. subinteger, O. celatus, and O. quadricollis) across 10 localities from the
Mediterranean coasts of Spain and Malta. Using next-generation sequencing technology, two libraries
were constructed to interpret the species of the two subgenera present consistently (Ochthebius s. str.,
O. quadricollis; and Cobalius, the rest of the species). Finally, 20 markers (10 for each subgenus) were
obtained and successfully tested by cross-validation in the four species under study. As a by-catch,
we could retrieve the complete mitochondrial genomes of O. lejolisii, O. quadricollis, and O. subinteger.
Interestingly, the mitochondrial genome of O. quadricollis exhibited high genetic variability compared
to already published data. The novel SSR panels and mitochondrial genomes for Ochthebius will
be valuable in future research on species identification, diversity, genetic structure, and population
connectivity in highly dynamic and threatened habitats such as supratidal coastal rockpools.

Keywords: water beetles; microsatellite markers; next-generation sequencing; cross-species validation;
insect conservation

1. Introduction

Understanding population structure and genetic diversity is of crucial concern for ef-
fective biodiversity conservation, as a population’s genetic makeup influences its responses
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to both natural and artificial selection. Thus, comprehending genetic patterns and the
underlying genetic mechanisms driving variability is essential for determining the most
suitable strategies for biodiversity management [1–3]. This information helps in identifying
distinct genetic populations, establishing spatial boundaries, mapping genetic variability,
and assessing dispersal capabilities and gene flow. It is particularly relevant in cases of
increased susceptibility to extinction [4], such as populations or species with low genetic
variability [2,5], narrow distribution [6], habitat loss, and/or fragmentation [7] or limited
dispersal ability [8]. Consequently, conservation and restoration programs must consider
genetic diversity to enhance species survival and successful long-term restoration [3]. How-
ever, these programs frequently prioritize vertebrates and plants, leaving invertebrates out
of their scope, regardless of their greater diversity [9]. Invertebrates, particularly insects,
confront threats and consequences that are currently a hot topic among conservation biolo-
gists because of the intensity of their decline [10], although it is an issue that is not without
controversy and requires rigorous, balanced, and numerical analyses [11]. To effectively
assess invertebrate biodiversity for conservation, it is crucial to identify species and dif-
ferentiate them from other closely related and morphologically very similar ones [12,13].
Overlapping distribution ranges [14,15] and coexistence [16] further complicate species
identification, especially when morphological convergence (but also morphological stasis,
see [17]) obscure species identification by either external or internal characters (i.e., cryp-
tic species). In such cases, molecular techniques are indispensable [18–20], even though
this approach evidences additional challenges when working with non-model organisms.
Moreover, molecular ecologists are increasingly in need of universal markers to study the
mechanisms involved in patterns of diversity at the genetic and community levels [21], to
test hypotheses relating to fine-scale spatiotemporal segregation, and for the estimation of
demographic parameters [22].

To overcome the knowledge gap in non-model organisms’ conservation, such as
invertebrates, there is an interesting approach involving a combination of affordable next-
generation high-throughput sequencing (NGS) and advanced bioinformatics tools. This
approach can be used to identify various potential molecular markers [23] that can effec-
tively reveal genetic structure at both inter- and intrapopulation levels [3]. NGS techniques
have demonstrated their usefulness in designing and characterizing sequence data for
developing molecular markers. Among these markers, microsatellites, also known as
short simple repeats, or SSRs, stand out as versatile and cost-effective options that do not
require substantial investment in specialized equipment [24,25]. Microsatellites consist
of polymorphic markers with tandem repeats of 1–6 nucleotides found throughout the
genomes of both eukaryotic and prokaryotic species [26], which together with codominance
and Mendelian inheritance, make them ideally suited for population genetics studies [23].
Typically, an SSR locus varies in length ranging from 5 to 40 repeats, with dinucleotide,
trinucleotide, and tetranucleotide repeats being the most chosen options for molecular
genetic studies [24]. The ongoing advances in NGS techniques are democratizing the
discovery of SSR markers, making them accessible to an increasing number of research
laboratories. Consequently, the development of custom SSR marker panels has become
commonplace. SSR designs may be targeted to closely related species [27], making them
potentially valuable tools for elucidating interspecific genetic relationships among recently
diverged taxa. Furthermore, at smaller spatial scales and in more recent timeframes charac-
terized by climate change and anthropogenic disturbances, SSR markers enable the study
of range shifts and increased contact zones, especially in complex or dynamic habitats such
as ecotones where hybridization processes between ecologically distinct species may occur.

At the boundary between marine and terrestrial realms, supralittoral coastal rock-
pools, above the high tide line, represent some of the most dynamic and extreme habitats
on the planet. Supralittoral rockpools are characterized by extreme salinity concentrat-
ions [28,29], high daily thermal fluctuations [30], changes in sea level and wave action [31],
and desiccation [32,33], among other stressors. These adverse conditions are so challenging
that only adapted species can thrive there [34,35]. In this context, the very small (1–2 mm)
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aquatic beetles of the worldwide distributed genus Ochthebius Leach, 1815 (Coleoptera:
Hydraenidae) are capable of inhabiting these extreme environments, with some of them
exhibiting cryptic diversity [36] and even partial sympatry with overlapping niches [16].
However, Ochthebius species are absent in the intertidal zone, where the area is regularly
covered by water with periods of circadian, circatidal, or circalunadian rhythms, and its
organisms have a series of adaptations to it (in addition to physiological ones, they can also
present avoidance mechanisms, fixation structures, and mechanical resistance) [37,38].

Mapping distribution ranges and population boundaries in insects is a difficult
task [39,40], particularly within cryptic species groups like the mentioned Mediterranean
supralittoral species of the genus Ochthebius [35,36,41–43]. In addition, many of these
habitats face serious threats due to land use changes, such as coastal development [44],
resulting in fragmentation and/or habitat loss that negatively impacts population con-
nectivity and viability. Recent studies have used a combination of mitochondrial and
nuclear markers to identify morphologically cryptic lineages within recognized taxa in the
eastern Atlantic and western Mediterranean [36,42]. However, achieving finer resolution is
essential to validate potential lineages and to fully understand their connectivity patterns
among populations [40].

While recent studies have significantly improved our knowledge of genetic diversity
within the genus Ochthebius [36,42,45], there are still gaps in our understanding of gene
flow, hybridization, and population structure. Here, we used NGS technology to screen
the Ochthebius genome with a primary focus on developing and characterizing SSR loci
for population identification and genetic structure studies. Additionally, we applied
bioinformatic tools to assemble genomic data and detect the mitochondrial genome of the
studied species. This mitochondrial data offers complementary information to address
the causes shaping population structure at larger time scales. Furthermore, it serves as a
valuable resource for the identification of cryptic species, a subject of particular relevance
within the genus Ochthebius. We tested these novel SSR loci for cross-species amplification
in four Ochthebius species, three within the subgenera Cobalius (O. lejolisii Mulsant & Rey,
1861, O. subinteger Mulsant & Rey, 1861, and O. celatus Jäch, 1989) and one within Ochthebius
s.str. (O. quadricollis Mulsant, 1844).

2. Materials and Methods
2.1. Microsatellite Design

Thirty-five adult individuals from four species of the Ochthebius genus (Ochthebius
lejolisii, O. subinteger, and O. quadricollis from the Iberian Mediterranean coast, and Ochthe-
bius celatus from Malta) were analysed (see Table S1 for site location information). Total
genomic DNA was extracted using a DNeasy Blood & Tissue kit (Qiagen, Hildesheim, Ger-
many), following the manufacturer’s protocol. DNA quantity and quality were determined
by UV spectrophotometry using a NanoDrop 1000 Spectrophotometer, and all samples
were standardized to a final concentration of 10 ng/µL.

To identify sequences containing a simple sequence repeat (SSR) motif, fifteen indi-
viduals (see Table S1) and their extracted DNA were sent to Ecogenics Gmbh (Balgach,
Switzerland) for microsatellite (SRR) development following an SRR enrichment protocol,
SRR testing, and design of the multiplex Polymerase Chain Reactions (PCRs) for geno-
typing. For the search, design, and test of the SSR markers, we worked as follows: an
Illumina TruSeq Nano library was built and sequenced for O. lejolisii on the Illumina MiSeq
platform (Illumina, San Diego, CA, USA) using a nano v2 500 cycles sequencing chip.
The resulting paired-end reads that passed Illumina’s chastity filter were subject to de-
multiplexing and trimming of Illumina adaptor residuals. Then, FastQC v0.117 (Babraham
Institute, Cambridge, UK) [46] was used as a quality-control tool. The paired-end reads
were subsequently merged with the software USEARCH v10.0.240 [47] to, in silico, reform
the sequenced molecule. The resulting merged reads were screened with the software
Tandem Repeats Finder, v4.09 [48]. Primer pairs were then designed using Primer3 [49] for
the SSR candidates using standard default values. Given the inconsistent performance of



Insects 2023, 14, 881 4 of 16

the obtained SRR for O. quadricollis (see below and Figure S1), an additional library was
prepared for a pooled DNA sample of O. quadricollis and O. subinteger, following the same
pipeline as outlined for the previous library.

2.2. Multiplex Optimization

From each library, we identified potential SSR candidates and subsequently optimized
and characterized these candidates to assess their suitability for cross-species amplification.
Loci were chosen for amplification testing based on the number of repeats (≥ 7), the product
size (≥ 100 bp), the absence of primer-dimer, and the primer alignment score to the target
sequence. Subsequently, these markers were tested for amplification in fifteen individuals
representing the four species of the genus Ochthebius here studied (see Table S1). PCRs
for SSR amplification were performed in a final volume of 10 µL, including 2–10 ng of
DNA, 1× HOT FIREPol MulitPlex Mix (Solis BioDyne), and 0.3 µM of each primer, with
the forward primer labelled with an FAM dye. The PCR program comprised an initial
denaturation step of 95 ◦C for 12 min, followed by 35 cycles with denaturation at 95 ◦C for
20 s, annealing at 60 ◦C (unless stated otherwise in Table S2) for 50 s, extension at 72 ◦C for
120 s, and concluded with a final extension step at 72 ◦C for 5 min. Allele-calling was based
on the observed pattern using an Applied Biosystems 3730 Sequencer with a GeneScan
500 LIZ Size Standard (Applied Biosystems, Waltham, MA, USA).

To facilitate future population-based studies, we carefully selected optimized loci
based on their allele size ranges and the absence of apparent null alleles across the individ-
uals. These optimized loci were then combined into multiplex PCRs panels, considering
their allele size and primer annealing temperature (Table 1). Individuals were genotyped
by assessing the allele size using forward primers labelled with fluorescent dyes (FAM,
ATTO532, ATTO550, ATTO565). PCRs were conducted using Phire Animal Tissue Direct
Kit (Thermo Scientific, Waltham, MA, USA) and following the manufacturer’s instructions.
Multiplex PCRs were performed in a final volume of 8 µL that contained 1× Phire Tissue
Direct PCR Master Mix with 1.5 mM MgCl2, 0.3–0.5 µM of each primer with the forward
primer labelled (details in Table 1), 1.2 µM BSA (bovine serum albumin) and 2 µL of DNA
extract (2–10 ng/µL). The PCR program comprised an initial denaturation step of 98 ◦C
for 5 min, followed by 40 cycles with denaturation at 98 ◦C for 5 s, annealing at 60 ◦C,
extension at 72 ◦C for 20 s, and a final extension step at 72 ◦C for 30 min. PCR products
were visualized on a 1.5% agarose gel stained with GelRed (Biotium Inc., Fremont, CA,
USA) and were sent to Secugen S.L. (Madrid, Spain) for fragment analysis using an Ap-
plied Biosystems 3730 Sequencer. GeneScan 500 LIZ (Applied Biosystems, Waltham, MA,
USA) was used for accurate sizing. Allele sizes were scored and checked manually using
GeneMapper software v.5 (Applied Biosystems, Waltham, MA, USA). All ambiguous peak
profiles were considered as missing data.

Genetic diversity parameters based on SSR markers were estimated using GenAlEx
6.5 [50]. These parameters included the effective number of alleles (NA), number of effective
alleles (NEA), and observed and expected levels of heterozygosity (HO and HE, respec-
tively). Principal component analysis (PCA) was performed using the “prcomp” function
in R [51] to investigate genetic differentiation. Population structure analysis was carried out
using Structure 2.3.4 software (Stanford University, California, USA) [52] with subgroups
(K) set from 1 to 5. Each K was assessed through 10 independent runs. The project pa-
rameters encompassed a burn-in period of 100,000 iterations followed by 1,000,000 Monte
Carlo Markov Chain (MCMC) replicates. The analyses assumed an admixture model and
correlated allele frequencies. To determine the most likely number of populations (K),
Structure results were imported into Structure Harvester [53] software to calculate ∆K [54].
The results of the runs for the best K were combined with CLUMPP software (version
1.1.2) (University of Michigan, Ann Arbor, MI, USA) [55]. The CLUMPP output files were
visualized using StructuRly [56].



Insects 2023, 14, 881 5 of 16

Table 1. Locus characteristics at 20 novel optimized microsatellites combined in four multiplex PCR panels for Ochthebius species.

O. lejolisii, O. subinteger and O. celatus

Locus Primer Sequences 5′-3′ Motif Allele Size
Range (bp)

No. of
Alleles Multiplex Dye Final Primer

Concentration (µM)
Annealing
Temp. ◦C

os_37067 F:
R:

GGGAGCGGTGCATATTGTTG
ACAAAGTGATAAAAAGCGAAAAGC (TCT)7 220–241 4 1 FAM 0.3 60

os_120990 F:
R:

TCGGAAAGGTGCTACTAACAAAC
ATAATTGTCACTTGGACGACAG (TA)13 135–208 5 1 ATTO550 0.3 60

os_890215 F:
R:

CACAGGTCGGGGCTAAAATG
TCGAAAACTTTAACCCAAGATTGC (ATA)8 138–144 3 1 FAM 0.3 60

os_1099692 F:
R:

TGCCACTTGCTCGAAGAAAC
TCTCGTAAATTTTGTAGAGTTGGGG (TTA)8 173–186 5 1 ATTO565 0.3 60

os_1225179 F:
R:

AACAAAAGGCGCTTATGACG
AGAACAATTACGTTCTACAATGTGC (AT)27 125–130 2 1 ATTO532 0.3 60

os_70525 F:
R:

ACAACAATCATGGAGGTCCG
CGTAGGTCGAAAACTAATGTCCTC (AAT)9 243–261 6 2 FAM 0.3 60

os_336684 F:
R:

AGTTTCCTTACTTATCAAATAAAAGCG
AGTCTGAAAAGCCCACTTGC (AT)24 146–211 5 2 ATTO565 0.3 60

os_712676 F:
R:

ATTACAGTGCGTCTGAGTGC
AGACAACTTATTCCAACGAAGC (AAT)8 85–97 4 2 ATTO532 0.3 60

os_866755 F:
R:

CACCGATTGTATCAGCAGCC
TGAACAAATAAAGTGCGCTTCTTC (TAA)8 146–156 4 2 ATTO550 0.3 60

os_1099017 F:
R:

AAATTAAAATTGGGATTTTCAAGTGC
GGATGTGTATCAAAAATACTCTCTAGG (TA)25 139–142 2 2 FAM 0.3 60

O. quadricollis

Locus Primer Sequences 5′-3′ Motif Allele Size
Range (bp)

No. of
Alleles Multiplex Dye Final Primer

Concentration (µM)
Annealing
Temp. ◦C

Oq_116301 F:
R:

AGTCATGTTTGGTTAATGGATGTC
ACTACAGTGAGTGACGTAAGC (TTA)9 188–200 3 3 ATTO550 0.3 60

Oq_117536 F:
R:

ACTCGGTGTTCCACAGATCG
CATCAAGCCTTCTTCAGACCG (TTA)9 207–217 3 3 FAM 0.3 60

Oq_1610909 F:
R:

CGACCCTCTTCAATACCAAGC
GTCCACCAAAGAACGAGGAC (ATT)9 222–231 4 3 ATTO565 0.5 60

Oq_2015046 F:
R:

TCCGTTTGAGAGTAGCACCC
GGGACGGTATATGGGGATGG (AGT)10 201–210 4 3 ATTO532 0.3 60

Oq_2184903 F:
R:

ATGTTTGGACCGCCATTGTG
TGTTAGTTTGATGATTTTCTTCGAC (ATTA)7 118–143 2 3 ATTO565 0.5 60

Oq_122989 F:
R:

ATAAATGGTGAGCAAGTAGCG
ATATGGTACAACGGAGGCGG (TAT)8 205–212 3 4 ATTO565 0.3 60

Oq_743481 F:
R:

CACTCCAATTTGAACTACAATAAGTCC
AGCATCCTCTGGTGATGTCC (TAT)8 232–247 6 4 FAM 0.3 60

Oq_1061334 F:
R:

TGTTTCCTAAGTGCTTGTGCG
ACTGGTTACATTCAGCAAACTG (TAA)10 170–228 5 4 ATTO550 0.5 60

Oq_1457302 F:
R:

CTACATCCTGATCGGAGCCC
CACCATCCAGAACACCAAGC (ATA)9 180–194 6 4 FAM 0.3 60

Oq_2353236 F:
R:

AACACTCCTAGTGCTCGCTC
ATCTGGAGCTCATATCCGCC (TTA)8 216–225 4 4 ATTO532 0.3 60
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2.3. By-Catch Shotgun-Sequencing Data

Similar to other protocols for shotgun-sequencing, we anticipated the presence of
potentially overrepresented sequences, specifically the mitochondrial genome, even though
it was not the primary target (e.g., as in [57]). First, low-quality raw reads were discarded,
and low-quality ends were trimmed using fastp v0.23.1 [58]. Next, SPAdes v3.15.5 [59]
was used for library assembly. Contigs containing mitochondrial data were identified
using blast [60] and already published mitochondrial genomes of Ochthebius [45]. Contigs
were circularized searching for repetitive motifs with Geneious v10.2.6 [61], provisionally
annotated using the Mitos 2 WebServer [62], and manually refined by comparison with
reference genomes. Additionally, individual genes were extracted and aligned using
MAFFT v7.450 [63], followed by the calculation of pairwise distance per gene within
Geneious v10.2.6.

3. Results
3.1. Isolation and Characterization of Microsatellite Loci

A total of 2,035,605 raw reads were processed for O. lejolisii and 2,876,134 for O. quadri-
collis. The resulting merged reads were 91,615 for O. lejolisii and 99,953 for O. quadricollis. A
total of 2650 (O. lejolisii) and 4037 (O. quadricollis) merged reads contained a microsatellite
insert, for which primers could only be designed on 1276 and 1472 microsatellite fragments
for O. lejolisii and O. quadricollis, respectively. For the selection of candidate markers, we
used microsatellites with a tetra- or a trinucleotide of at least 6 repeat units or a dinucleotide
of at least 10 repeat units, which generated 247 (O. lejolisii) and 394 (O. quadricollis) SSR
candidates.

Among the candidate SSRs for O. lejolisii, dinucleotide repeats (68.42%) were more
frequent than trinucleotide repeats (31.58%). Among the candidate SSRs of O. quadricollis,
dinucleotide repeats (84.52%) were more frequent than tri- and tetranucleotide repeats
(13.96% and 1.52% respectively).

The frequency distribution range of microsatellite repeats ranged from 11 to 30 repeats
for dinucleotides, and from 7 to 12 repeats for trinucleotides among the candidate SSRs for
O. lejolisii (Figure 1A). In the case of O. quadricollis SSR candidates, the frequency distribution
range ranged from 11 to 30 repeats for dinucleotides, from 7 to 14 for trinucleotides, and
from 7 to 9 for tetranucleotide repeats (Figure 1B).

In both cases, in the dinucleotide SSRs, AT and TA were the most abundant repeat
types, accounting for 31.09% in O. lejolisii and 35.28 and 48.98%, respectively, in O. quadri-
collis. Of the trinucleotide repeats, TAA and TAC were the most abundant in O. lejolisii
(5.04 and 5.88% respectively), while in O. quadricollis, the TTA repeat was the most frequent
(3.55%) (Figure 1C).

Among these candidate SSRs, 143 loci were selected (48 for O. lejolisii and another 95 for
O. quadricollis) for the amplification test following the criteria and protocols previously
described. Details and sequences of the 143 selected loci are in Table S2.
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3.2. Multiplex Optimization and Cross-Species Amplification

The 48 SSR primers selected for O. lejolisii were tested for cross-species amplification
on fifteen individuals belonging to the four sampled species of the genus Ochthebius.
Twenty-four SSR primers showed no amplification, one was monomorphic (os_898357),
and the other 23 SSR markers were polymorphic in the target species (Table 2), showing
clear amplification profiles and reliable amplification in all the species tested except for O.
quadricollis (Figure S1); therefore, it was necessary to build a specific library for this species.

For the 23 polymorphic primers, the allele number ranged from two to six, the ef-
fective allele number ranged from 1.00 to 5.00, and the observed and expected levels of
heterozygosity varied from 0.00 to 1.00 and from 0.00 to 0.80, respectively (Table 2). When
investigating these markers in each of the Ochthebius species, only six of them (os_37067,
os_70525, os_712676, os_866755, os_1099692, and os_1225179) displayed alleles for all
species, so together with three other primers that showed alleles for at least two of the
species (os_120990, os_336684, and os_890215) and os_1099017, which worked well in O.
celatus, they were selected to design multiplex PCR reactions for the O. celatus, O. subinteger,
and O. lejolisii species set. The details of the designed multiplex PCR combinations are
shown in Table 1 and the genetic diversity parameters of these 10 SSR markers by species
are described in Table 2. PCA and Structure analysis showed that the 10 selected SSRs for
multiplex PCR differentiate the three Cobalius species studied (Figure 2).
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Table 2. Genetic variation at 24 SSR primers selected for O. lejolisii and successfully tested for
cross-species amplification in O. celatus and O. subinteger.

O. celatus O. subinteger O. lejolisii Total

Locus NA NE HO HE NA NE HO HE NA NE HO HE N NA NE HO HE

os_23931 0 0.000 0.000 0.000 2 1.385 0.333 0.278 0 0.000 0.000 0.000 3 2 1.385 0.333 0.278
os_37067 * 2 2.000 1.000 0.500 1 1.000 0.000 0.000 2 2.000 1.000 0.500 10 4 2.597 0.700 0.615
os_70525 * 4 2.778 0.800 0.640 2 1.385 0.333 0.278 1 1.000 0.000 0.000 10 6 4.545 0.500 0.780

os_120990 * 1 1.000 0.000 0.000 4 3.600 1.000 0.722 0 0.000 0.000 0.000 7 5 2.649 0.429 0.622
os_163989 0 0.000 0.000 0.000 2 1.385 0.333 0.278 0 0.000 0.000 0.000 3 2 1.385 0.333 0.278
os_166922 0 0.000 0.000 0.000 3 2.571 0.667 0.611 2 1.600 0.500 0.375 5 5 4.167 0.600 0.760
os_198491 0 0.000 0.000 0.000 4 3.600 0.333 0.722 0 0.000 0.000 0.000 3 4 3.600 0.333 0.722
os_258100 0 0.000 0.000 0.000 4 3.000 1.000 0.667 0 0.000 0.000 0.000 3 4 3.000 1.000 0.667
os_265699 0 0.000 0.000 0.000 4 3.600 0.667 0.722 2 1.600 0.500 0.375 5 6 5.000 0.600 0.800
os_314710 0 0.000 0.000 0.000 2 1.385 0.333 0.278 0 0.000 0.000 0.000 3 2 1.385 0.333 0.278

os_336684 * 1 1.000 0.000 0.000 4 3.600 0.333 0.722 0 0.000 0.000 0.000 6 5 3.130 0.167 0.681
os_458175 0 0.000 0.000 0.000 3 2.000 0.667 0.500 0 0.000 0.000 0.000 3 3 2.000 0.667 0.500
os_532182 0 0.000 0.000 0.000 3 2.571 1.000 0.611 0 0.000 0.000 0.000 3 3 2.571 1.000 0.611
os_537494 0 0.000 0.000 0.000 2 2.000 1.000 0.500 0 0.000 0.000 0.000 3 2 2.000 1.000 0.500

os_712676 * 1 1.000 0.000 0.000 2 1.800 0.667 0.444 1 1.000 0.000 0.000 10 3 1.852 0.200 0.460
os_858059 0 0.000 0.000 0.000 3 2.571 0.333 0.611 0 0.000 0.000 0.000 3 3 2.571 0.333 0.611

os_866755 * 2 1.220 0.200 0.180 2 1.385 0.333 0.278 2 1.600 0.500 0.375 10 4 2.740 0.300 0.635
os_890215 * 1 1.000 0.000 0.000 3 2.571 0.333 0.611 0 0.000 0.000 0.000 8 3 1.471 0.125 0.320
os_897615 0 0.000 0.000 0.000 2 2.000 1.000 0.500 1 1.000 0.000 0.000 4 2 1.882 0.750 0.469
os_898357 0 0.000 0.000 0.000 1 1.000 0.000 0.000 0 0.000 0.000 0.000 3 1 1.000 0.000 0.000
os_953020 0 0.000 0.000 0.000 3 2.667 1.000 0.625 1 1.000 0.000 0.000 3 4 3.600 0.667 0.722

os_1099017 * 2 1.923 0.800 0.480 0 0.000 0.000 0.000 0 0.000 0.000 0.000 5 2 1.923 0.800 0.480
os_1099692 * 3 1.515 0.400 0.340 3 3.000 1.000 0.667 1 1.000 0.000 0.000 10 5 3.922 0.500 0.745
os_1225179 * 1 1.000 0.000 0.000 1 1.000 0.000 0.000 1 1.000 0.000 0.000 10 2 1.724 0.000 0.420

Microsatellites marked with an asterisk (*) are those selected for multiplex PCR reactions in panels 1 and 2 (details
in Table 1). N, number of individuals with reliable amplification; NA, number of alleles; NE, number of effective
alleles; HO, observed heterozygosity; HE, expected heterozygosity.
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the subgenus Cobalius (O. lejolisii, O. subinteger, and O. celatus) based on the allelic variance of the
10 selected SSRs for multiplex PCR. Each dot represents an individual and each colour corresponds
to the species assignment generated from the Structure analyses in K = 3.
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For the design of multiplex PCRs in O. quadricollis, it was necessary to test 95 candi-
date SSRs (Table S2) obtained from the species-specific library. Forty-eight primer SSRs
presented non-amplification or difficulties in interpretation for allele size selection, one
was monomorphic (Oq_14408), and the remaining forty-seven were available for testing in
seven O. quadricollis individuals (see Table S1). For these 47 polymorphic SSRs, the allele
number ranged from 2 to 6, the effective allele number ranged from 1.15 to 5.16, and the
observed and expected levels of heterozygosity varied from 0.00 to 1.00 and from 0.13 to
0.81, respectively (Table 3). Considering the allele size ranges and the apparent lack of
null alleles across the individuals tested, the Ecogenics company recommended 10 SSRs to
design multiplex PCRs in the O. quadricollis species. The details of the designed multiplex
PCR combinations are shown in Table 1 and the genetic diversity parameters of these
10 SSR markers are described in Table 3.

Table 3. Genetic variation at 47 SSR primers selected for O. quadricollis.

Locus N NA NE HO HE

Oq_116301 * 7 3 1.342 0.286 0.255
Oq_117536 * 7 3 1.342 0.286 0.255
Oq_122989 * 7 3 2.800 0.714 0.643
Oq_129897 7 5 2.227 0.714 0.551
Oq_222765 7 3 2.000 0.714 0.500
Oq_235636 7 4 2.970 0.571 0.663
Oq_349914 7 2 1.508 0.429 0.337
Oq_467933 7 2 1.324 0.286 0.245
Oq_475499 7 6 4.083 0.857 0.755
Oq_556301 7 2 2.000 0.714 0.500
Oq_558655 7 2 1.690 0.000 0.408
Oq_673482 7 2 1.153 0.143 0.133
Oq_730507 7 5 3.379 0.571 0.704

Oq_743481 * 7 4 1.849 0.571 0.459
Oq_793953 7 2 1.153 0.143 0.133
Oq_801691 7 2 1.960 0.571 0.490
Oq_857784 7 2 1.508 0.429 0.337
Oq_958857 7 3 2.085 0.286 0.520

Oq_1061334 * 7 5 3.920 0.857 0.745
Oq_1151835 7 6 3.769 0.571 0.735
Oq_1217367 7 3 1.342 0.286 0.255
Oq_1227338 7 6 4.900 1.000 0.796
Oq_1237963 7 4 2.882 0.286 0.653
Oq_1388647 7 2 1.153 0.143 0.133

Oq_1457302 * 7 6 3.769 1.000 0.735
Oq_1489818 7 5 2.649 0.857 0.622
Oq_1493143 6 6 4.800 0.167 0.792
Oq_1555513 7 3 2.085 0.714 0.520
Oq_1557685 7 3 2.279 0.571 0.561

Oq_1610909 * 7 4 3.379 1.000 0.704
Oq_1708927 7 2 1.153 0.143 0.133
Oq_1714988 7 2 1.153 0.143 0.133
Oq_1750394 7 5 3.379 0.571 0.704
Oq_1763578 7 2 1.960 0.571 0.490
Oq_1821745 7 2 1.153 0.143 0.133
Oq_1879905 7 3 1.782 0.571 0.439
Oq_1966394 7 2 1.153 0.143 0.133
Oq_2006473 7 2 1.960 0.286 0.490
Oq_2010748 7 6 5.158 0.714 0.806

Oq_2015046 * 7 4 3.161 0.857 0.684
Oq_2044728 7 3 2.970 0.143 0.663
Oq_2057906 7 2 1.849 0.429 0.459
Oq_2144776 7 4 2.970 0.286 0.663
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Table 3. Cont.

Locus N NA NE HO HE

Oq_2145901 7 2 1.153 0.143 0.133
Oq_2184903 * 7 2 1.508 0.143 0.337
Oq_2254408 7 3 2.882 0.571 0.653

Oq_2353236 * 7 4 2.882 0.714 0.653
Microsatellites marked with an asterisk (*) are those selected for multiplex PCR reactions in panels 3 and 4 (details
in Table 1). N, number of individuals with reliable amplification; NA, number of alleles; NE, number of effective
alleles; HO, observed heterozygosity; HE, expected heterozygosity.

3.3. Mitochondrial Genomes

We recovered three mitochondrial genomes as “by-catch” from the raw data, which
correspond with the species O. quadricollis (Figure 3), O. lejolisii (Figure 4), and O. subinteger
(base coverage of mitochondrial contigs was 31×, 187×, and 18×, respectively; accession
numbers OR760222, OR760221, and OR760223, respectively). These mitochondrial genomes
include 13 protein-coding genes (PCGs), the mitochondrial small and large subunits of
ribosomal RNA (rRNAs), and 22 transfer RNAs (tRNAs), 1 per amino acid except serine
and leucine, which have two copies. All genes followed the standard gene order exhibited
for Coleoptera. Due to the low-coverage data, the AT-rich control region situated between
Ile-tRNA and the small subunit rRNA was not completely recovered for O. subinteger, and,
thus, its mitochondrial genome was not circularized. In all cases, we detected incomplete
stop codons in the following protein-coding genes: cytochrome b, cytochrome c oxidase
subunits 1, 2, and 3, and NADH dehydrogenase subunits 2, 3, 4, and 5.

Figure 3. Visualization of the mitochondrial genome of Ochthebius quadricollis. Abbreviations:
ATP6/ATP8: ATPase subunit 6/8, cox1–3: cytochrome c oxidase subunit 1–3, nad1–6/4l: NADH
dehydrogenase subunits 1–6/4l, cob: cytochrome b, rrnL: large subunit of ribosomal RNA, and rrnS:
small subunit of ribosomal RNA. All tRNA are labelled according to the IUPAC-IUB single-letter
amino acid codes preceded by “trn”.
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Figure 4. Visualization of the mitochondrial genome of Ochthebius lejolisii. Abbreviations:
ATP6/ATP8: ATPase subunit 6/8, cox1–3: cytochrome c oxidase subunit 1–3, nad1–6/4l: NADH
dehydrogenase subunits 1–6/4l, cob: cytochrome b, rrnL: large subunit of ribosomal RNA, and rrnS:
small subunit of ribosomal RNA. All tRNA are labelled according to the IUPAC-IUB single-letter
amino acid codes preceded by “trn”.

Pairwise distance comparison for the protein-coding genes and the ribosomal rRNAs
has been done for O. quadricollis and O. lejolisii, for which reference mitochondrial genomes
were available (accession numbers MT822975 and MT822977, respectively). We detected
scarce genetic variability for O. lejolisii, with an average pairwise comparison of 0.18%
(ranging between 0 and 0.63%). Comparison of O. quadricollis displays a high genetic
variability, with an average distance of 8.34% (ranging between 5.55 and 9.94%) and 3.64%
(ranging from 3.20 to 4.07%) for PCGs and rRNAs, respectively.

4. Discussion

Traditionally, designing microsatellites for non-model species was laborious and
costly, involving marker isolation, cloning, and Sanger sequencing. NGS techniques have
simplified the identification and characterization of microsatellites, establishing them as
valuable markers in ecology and evolution for non-model species [64,65]. NGS techniques
enabled the reliable discovery of microsatellite markers, a usual method for the description
of de novo microsatellites applied in recent studies [66–70]. In this study, we successfully
characterized new loci and mitochondrial genomes while performing optimization and
cross-species validation of multiplex assays in four species of supralittoral Ochthebius. Of the
20 SSRs selected for multiplexing, 4 were dinucleotides, 15 were trinucleotides, and 1 was a
tetranucleotide. Most of the tri- and tetranucleotide loci were preferred due to their reduced
susceptibility to amplification errors, particularly stuttering [71], and their ease of scoring
and rounding [72,73]. For dinucleotides, those with more than 10 repeat units were selected
because higher repeat numbers have been linked to greater polymorphism resulting from
polymerase slippage [74]. These criteria are important, especially for insects, which have
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been considered problematic for microsatellite isolation and genotyping [24,75]. Our data
show that the 20 SSR loci selected are reliable markers for genetic analyses of individuals
of the genus Ochthebius, offering excellent detection quality and high polymorphism.

Cross-species validation is decisive, particularly when full or partial genomic se-
quences are not available, as developing SSRs is time-consuming and costly [76–79]. The
lack of highly polymorphic and easy-to-use molecular markers, such as SSRs, may be an
important reason why genetic studies have not been carried out in certain groups [79].
Overall, the success of interspecies transfer is inversely related to the evolutionary distance
separating the origin and focal species [76,79–82]. In the analysed species, differences
emerged between those from the subgenera Cobalius and Ochthebius, with an estimated
evolutionary divergence of c. 55 Mya [36]. Consequently, it was necessary to design two
independent multiplex assays, one for the species of the genus Cobalius (O. lejolisii, O.
subinteger, and O. celatus) and another for the species of the subgenus Ochthebius s.str. (O.
quadricollis), formerly known as Calobius group [83]. Genetic structure analysis (PCA and
Structure) identified three clusters within the subgenus Cobalius, which corresponds to the
three species analysed in this genus (O. lejolisii, O. subinteger, and O. celatus).

The release of mitochondrial genome data significantly enhances our understanding of
the target species, especially given the potential existence of cryptic lineages, as suggested
by recent literature [35,36,42]. Mitochondrial genomes have already been published for
several Ochthebius species [45], including two of the target species in this study: O. lejolisii,
from a specimen of Ceuta (African coast of Spain) and O. quadricollis, from a specimen of
Sicily (Italy). Comparing these genomes with those obtained from the Mediterranean coast
of the Iberian Peninsula revealed minor differences in O. lejolisii (pairwise average of 0.18%)
and significant genetic divergence in O. quadricollis, ranging from 3.2% to 9.94%. These
results corroborate earlier findings [35,36,41–43,45,84,85], further supporting the presence
of multiple cryptic lineages within coastal Ochthebius [86]. Additionally, the publication of
the first mitochondrial genome for O. subinteger holds promise for further investigation
into its potential crypticity within the western Palaearctic [36,42].

The design of the markers obtained in this work, along with the cross-species valida-
tion, enables population structure studies, genetic diversity assessment, and investigation
into connectivity among Ochthebius subpopulations in a given area. Moreover, microsatel-
lites open the possibility of much greater sensitivity in testing additional evolutionary
questions than previous studies relying on a limited set of molecular markers. These ques-
tions may include topics such as sex-biased dispersal [87,88]. This will help to elucidate in
the future much of the lack of knowledge about these organisms.

In summary, our study provides, for the first time, microsatellite markers for the
aquatic beetle genus Ochthebius and presents complete mitochondrial genomes for three
species (O. quadricollis, O. lejolisii, and O. subinteger). Our results demonstrate the useful-
ness of these markers for different species within the same genus, facilitating studies on
population structure, genetic diversity, dispersal capacity, and connectivity. This research
will enhance our understanding of the complex dynamics of these interesting organisms,
adapted to one of the most inhospitable habitats on the planet.

5. Conclusions

The microsatellite markers presented in this study, along with the included mito-
chondrial genomes, represent a pioneering resource. They will prove highly beneficial for
future research on Ochthebius aquatic beetles, which thrive in some of the most challenging
habitats on the planet. With these tools, we can delve deeper into various aspects of this
genus, such as identifying cryptic species, exploring their genetic diversity, investigating
potential sex-biased dispersal, and assessing the genetic structure and connectivity of their
populations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects14110881/s1, Table S1: Site location information and

https://www.mdpi.com/article/10.3390/insects14110881/s1
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analysis performed on samples; Figure S1: Example of five markers initially designed from the O.
lejolisii library, where the electropherogram shows unclear amplification for O. quadricollis specimens;
Table S2: Details and sequences of the loci selected from the O. lejolisii and O. quadricollis libraries
(source of samples in Table S1) for the amplification test.
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