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Simple Summary: Chrysopidae are the second largest group of Neuroptera. Their larvae can prey
on various agricultural and forestry pests. In this study, we sequenced two mitochondrial genomes
(mitogenomes) of Ankylopteryx in Ankylopterygini for the first time. Comparative analyses of the
mitogenomes of Chrysopidae were conducted. The arrangements of the mitogenomes were consistent
with the other Chrysopidae species. The phylogeny of Chrysopidae was reconstructed and the
divergence time within Chrysopidae was estimated. Chrysopinae were recovered as the sister
group to Apochrysinae + Nothochrysinae. Within the subfamily of Chrysopinae, Nothancylini were
recovered as the sister group to (Leucochrysini + Belonopterygini) + (Ankylopterygini + Chrysopini).
The three extant subfamilies of Chrysopidae diverged from each other during the Early Cretaceous.
Nothancylini diverged from other Chrysopinae in the Early Cretaceous. Leucochrysini diverged
from Belonopterygini in the Late Cretaceous. Ankylopterygini diverged from Chrysopini in the
Middle Cretaceous.

Abstract: Chrysopidae (green lacewings) are a cosmopolitan and species-rich family of Neuroptera,
with remarkable significance of biological control against various agricultural and forestry pests.
However, the phylogenetic position of Chrysopidae in Neuroptera and the internal relationships
within the family remain equivocal among previous studies based on different types of data and
sampling. Here we sequenced the mitochondrial genomes (mitogenomes) of two species of the
genus Ankylopteryx in the chrysopine tribe Ankylopterygini for the first time. The characteristics of
these mitogenomes were analyzed in comparison with other green lacewing mitogenomes published
to date. In the phylogeny herein reconstructed based on mitogenomes, Chrysopinae were recov-
ered as the sister group to Apochrysinae + Nothochrysinae. Within the subfamily of Chrysopinae,
Nothancylini were recovered as the sister group to (Leucochrysini + Belonopterygini) + (Ankyloptery-
gini + Chrysopini). The divergence time estimation suggested an Early Cretaceous initial divergence
within the extant Chrysopidae. Within Chrysopinae, the four tribes except Nothancylini diverged
around mid-Cretaceous.

Keywords: Chrysopidae; mitochondrial genome; phylogeny; divergence time

1. Introduction

Chrysopidae are the second largest group of Neuroptera, with over 1400 species from
82 genera, widely distributed around the world [1,2]. The green lacewing larvae prey
on various soft-body terrestrial arthropods (e.g., aphids, mealy bugs, thrips and others),
playing an important role in the biological control of agricultural and forestry pests [3,4].

Chrysopidae are composed of three extant subfamilies (Apochrysinae, Nothochrysinae
and Chrysopinae) and an extinct subfamily (Limaiinae) [5]. However, the phylogenies at
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subfamilial and tribal levels within Chrysopidae were not exactly clear. Nothochrysinae were
recovered as the sister group to Apochrysinae + Chrysopinae based on morphological charac-
ters [6]. Apochrysinae were recovered as the sister group to Nothochrysinae + Chrysopinae
based on morphological characters and some molecular markers (cox1, 16s rDNA, cad
and mitogenomes) [7–9]. However, Chrysopinae were recovered as the sister group to
Apochrysinae + Nothochrysinae based on nuclear genes and mitogenomes [10,11].

Among the five tribes, i.e., Nothancylini, Leucochrysini, Belonopterygini, Ankyloptery-
gini and Chrysopini of Chrysopinae, Nothancylini were recovered as the sister group to
(Belonopterygini + Leucochrysini) + (Chrysopini + Ankylopterygini) based on morpho-
logical data and mitogenomes [2,12,13]. Chrysopini were recovered as the sister group to
Belonopterygini + (Leucochrysini + Ankylopterygini) based on some molecular data (cad,
cox1 and 16s rDNA) [8,11].

In recent years, many new data and methods have been used to resolve the phyloge-
netic relationships within Chrysopidae. In a recent study based on molecular data (16s
rDNA, cox1, CPSase, cad, wg, pepck, atpase, 18s and mitogenomes), the Bayesian inference
(BI) suggested Apochrysinae was the sister group to Nothochrysinae + Chrysopinae based
on the molecular supermatrix, while the tree of maximum likelihood (ML) supported
Chrysopinae was the sister group to Nothochrysinae + Apochrysinae [14]. Nothochrysinae
were recovered as paraphyletic based on the anchored hybrid enrichment (AHE) data
with a large sample [15]. Leucochrysini were recovered as sister group to Belonoptery-
gini, but Chrysopini were recovered as paraphyletic in these two studies [14,15]. Then,
Chrysopinae were recovered as the sister group to Apochrysinae + Nothochrysinae based
on the low-coverage whole genome of five species representing all three subfamilies, and
Chrysopini were recovered as the sister group to Belonopterygini [16]. However, Apoc-
hrysinae were recovered as the sister group to Nothochrysinae + Chrysopinae based on
the morphological characters of genitalia and wing-venation as well as some molecular
data (16s rDNA, cox1, CPSase, cad, wg, pepck, atpase, 18s and mitogenomes) [17]. In ad-
dition, Nothancylini were recovered as the sister group to the remaining Chrysopinae
(Belonopterygini + Leucochrysini) + (Ankylopterygini + Chrysopini) [17]. Herein, the
higher phylogeny within Chrysopidae is still controversial.

There are eleven mitogenomes of Chrysopidae published in GenBank (http://www.
ncbi.nlm.nih.gov (accessed on 11 June 2023)), but there is only an incomplete representative
mitogenome of Ankylopterygini. In this study, we newly sequenced the mitogenomes
of two species of the genus Ankylopteryx (Schneider, 1815) in Ankylopterygini. These
two mitogenomes were annotated and uploaded to GenBank with accession numbers
OQ269716 and OM510943. Comparative analyses of the mitogenomes of Chrysopidae were
conducted here, such as codon usages, the rates of nucleotide substitution and secondary
structure predictions of RNAs. The phylogeny of Chrysopidae was reconstructed based on
mitogenomes with addition of the newly sequenced Ankylopteryx data, and the divergence
time among major lineages within Chrysopidae was estimated.

2. Materials and Methods
2.1. Sampling and Genomic DNA Extraction

The specimen of Ankylopteryx octopunctata (Fabricius) was collected by Hongyu Li
on 30 July 2018, in Jiangxin, Medog, Xizang, China and that of A. gracilis (Nakahara) was
collected by Qicheng Yang on 10 June 2016, in Baisha River, Hekou, Yunnan, China. Both the
specimens were preserved in 95% alcohol at −20 ◦C before the DNA extraction. Genomic
DNA was extracted using the DNeasy Blood and Tissue kit (QIAGEN, Hilden, Germany)
from the thoracic muscle tissue. The DNA concentration was measured using a Nucleic
acid protein analyzer (Thermo Scientific, Waltham, MA, USA).

2.2. Genome Sequencing and Analysis

Whole genomes were sequenced on the Illumina HiSeq 2500 Platform (San Diego,
CA, USA) by Majorbio (Shanghai, China). Raw reads were checked by FastQC 0.11.9 [18]
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and low-quality reads were filtered using Trimmomatic 0.32 [19]. The mitogenomes were
assembled by IDBA-UD 1.1.3 [20]. Annotations were conducted by MitoZ 2.4 [21] with the
“invertebrate mt code 5” as genetic code and “Arthropoda” as clade. Then, the sequence
was checked by manual proofreading according to relative species. The circular maps
of mitogenomes were drawn by OGDRAW [22], and the base composition and codon
usage were analyzed using MEGA 7.0 [23]. The calculation formulas of base composition
asymmetry were AT-skew = (A − T)/(A + T) and GC-skew = (G − C)/(G + C) [24]. The
relative synonymous codon usage (RSCU) of protein-coding genes (PCGs) was calculated
using MEGA 7.0 [25]. Sequences of thirteen PCGs of all Chrysopidae (including Genbank
and the two newly sequenced mitogenomes) were individually aligned via the L-INS-i
algorithm using MAFFT 7.313 [26] with the “invertebrate mitochondrial” as code table,
the “codon” as alignment mode and the “auto” as strategy. Then, nucleotide diversity (Pi)
and non-synonymous/synonymous substitution ratios (Ka/Ks) were calculated by DnaSP
6.12.0391 [27] with the “first site” as protein coding regions and the “mtDNA Drosophila”
as genetic code. The secondary structures of tRNAs were predicted by the MITOS Web
Server (http://mitos.bioinf.uni-leipzig.de/index.py, accessed on 25 May 2023) and checked
through manual proofreading [28], and the secondary structures of rrnS and rrnL were pre-
dicted using RNA Structure (http://rna.urmc.rochester.edu/RNAstructureWeb/ (accessed
on 27 May 2023)) [29].

2.3. Phylogenetic Analysis

There were thirteen species of Chrysopidae used as ingroups and two species of Hemer-
obiidae, two species of Mantispidae as well as two species of Myrmeleontidae were used as
outgroups to reconstruct the phylogeny in this study (Table S1 [12,13,30–36]). Sequences of
PCGs and rRNAs were aligned using MAFFT 7.313 [26]. Each rRNA gene alignment was
conducted using the G-INS-i algorithm by MAFFT 7.313 [26] with the “invertebrate mito-
chondrial” as code table, “normal” as alignment mode and “auto” as strategy. About 0.6%
of the unaligned sites were excluded using Gblocks [37] setting “with half” as allowed gap
positions and default for other parameters. The dataset PCG123RNA contains 13,128 sites
including all codon positions of 13 PCGs and the two rRNAs. The dataset PCGAA con-
tains 3696 sites including all amino acids of 13 PCGs. The saturation of different codon
positions was assessed using DAMBE [38,39]. Due to the heterogeneity of mitogenome
composition and the third site saturation (Figure 1), the phylogenetic relationships within
Chrysopidae could not be solved using single homogeneous model [33]. Heterogenous
model (i.e., CAT-GTR) had been proven efficient to better solve the phylogenetic problems
based on mitogenomes in many studies [40–42]. The phylogenetic topologies under hetero-
geneous models were reconstructed with BI and ML methods. The BI trees were inferred
based on datasets PCG123RNA and PCGAA under the heterogeneous model CAT-GTR
using PhyloBayes 3.3 [43]. Two strands ran at the same time for separate analysis until
the maxdiff was less than 0.1, and the consensus tree was obtained. The first 25% trees
were discarded as burn-in. The ML tree was inferred based on dataset PCGAA under the
heterogeneous model LG + C60 + F using IQ-TREE 1.6.10 and 1000 ultrafast bootstraps [44].
Finally, the phylogenetic trees were visualized in FigTree 1.4.4 [45].

2.4. Divergence Time Estimation

The divergence time was estimated under the uncorrelated lognormal relaxed clock
using MCMCtree in BEAST v.2.5.0 [46] with 1,000,000 generations, with “independent
rates” as clock, “300 Ma” as root age, “JC69” as model and default for other parameters.
The topology obtained in phylogenetic analysis above was constrained using the following
four minimum age calibrations (hard bounds): (1) the most recent common ancestor
(MRCA) of Hemerobiidae and Chrysopidae was calibrated with the fossil evidence of
Mesypochrysa minuta to a minimum age of 165 Ma [47]; (2) the divergence of Apochrysinae
from Nothochrysinae was calibrated with a minimum age of 53 Ma based on the fossil
evidence of Adamsochrysa [48]; (3) the divergence of Leucochrysa from Italochrysa + Abachrysa
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was calibrated with a minimum age of 21 Ma based on the fossil evidence of Leucochrysa
(Nodita) prisca [49]; (4) the divergence of Chrysoperla was calibrated with a minimum age of
21 Ma based on the fossil species Chrysopa glaesaria [49]. The analysis was terminated until
all the effective sample size (ESS) exceeded 200. The first 25% generation was removed as
burn-in. Finally, the tree visualization was carried out using FigTree 1.4.4 [45].
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3. Results
3.1. Genome Organization and Base Composition

The complete mitogenome of A. gracilis was 18,284 bp in length, while that of A.
octopunctata is incomplete with a length of 13,881 bp. The mitogenome sequence of A.
octopunctata was not complete since the high AT content of the control region (AT-rich
region). The complete mitogenome was composed of 13 PCGS, 22 tRNAs, 2 rRNAs and a
control region (Figure 2, Tables S2 and S3) including twenty-three genes (9 PCGs, 14 tRNAs)
transcribed on the heavy strand (J-strand) and the other fourteen genes (4 PCGs, 8 tRNAs
and 2 rRNAs) oriented on the light strand (N-strand).

In total, there are six complete mitogenomes of Chrysopidae including mitogenomes
published on GenBank, ranging from 16,057 bp to 18,284 bp. The shortest one was Chrysop-
erla nipponensis (16,057 bp) and the longest was An. gracilis (18,284 bp). In the mitogenomes
of Chrysopidae, the content of C was higher than G and the content of A was higher than T
except C. pallens. The A + T content was 78.76% to 81.75% (Figure 3, Table S4). The length
of complete PCGs in the available Chrysopidae mitogenomes ranges from 11,127 bp to
11,151 bp. The shortest one was that of An. octopunctata (11,127 bp) and the longest were
those of Ch. externa and Ch. nipponensis (11,151 bp). The highest AT content was observed
in Abachrysa eureka (79.39%) and the lowest AT content was detected in Ch. externa (77.0%)
(Figure 3, Table S5).
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Ankylopteryx octopunctata represents the missing region.
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In the complete mitogenomes of Chrysopidae, the highest AT-skew was in C. pallens
(0.00), and the weakest AT-skew was in Apochrysa matsumurae (−0.04). The highest GC-
skew was in Ch. externa (−0.12), and the weakest GC-skew was in Ap. matsumurae (−0.18)
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(Figure 3, Table S4). In the complete PCGs of mitogenomes of Chrysopidae, the strongest
AT-skew was in Nothancyla sinica (−0.14) and the weakest AT-skew was in Ch. externa
(−0.18). The strongest GC-skew was in Ch. externa (0.09), and the weakest GC-skew was in
Nothochrysa sp. (0.04) (Figure 3, Table S5). Compared to the base content of other species,
Ch. externa was special. It shows a lower content of base A and a higher content of base
G (Table S5). Analysis of the base composition at three sites of PCGs revealed a variation
in the presence of bases G and C at the third site. Interestingly, our analysis discovered
that despite the differences in the third base, the encoded amino acids remained consistent
(Tables S6 and S7). This phenomenon was attributed to the degeneracy of codons [50]. The
statistical analysis of amino acids encoded by different codons are shown in Figure 4.
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3.2. Protein-Coding Genes and Codon Usage

Start codons and stop codons of most PCGs were identified except the incomplete
nad2 of Italochrysa insignis, L. pretiosa and Parankylopteryx sp. The use of start codons in
Chrysopidae was a typical form with ATN in all PCGs (Table S8). Most PCGs (atp6, atp8,
cox3, nad1 and nad4L) used TAA as stop codons in all species, while other PCGs used
TAA/TAG or TA-tRNA/T-tRNA as stop codons. The stop codons of nad3 were TAA/TAG
or T-tRNA in different species, and nad5 was terminated with T-tRNA in all species. The
stop codons of cox1, cox2 and nad4 were T-tRNA in most species, and the stop codons of
cob, nad2 and nad6 were TAA in most species.

The relative synonymous codon usages (RSCUs) of PCGs in the two newly sequenced
mitogenomes were shown in Figure 4 (Tables S9 and S10). The codons CGG (Arg), CGC
(Arg), CUC (Leu2) and AGG (Thr) were not used in An. gracilis and An. octopunctata. The
most common codons were UUA (Leu1), AUU (Ile), UUU (Phe) and AUA (Met), indicating
the preference of nucleotide composition for A/T.

The nucleotide diversity (Pi) of 13 PCGs among Chrysopidae was shown in Figure 5.
The Pi ranged from 0.098 (cox2) to 0.205 (atp8). The gene atp8 (Pi = 0.205) showed the
highest nucleotide diversity. There was also relatively high nucleotide diversity in nad6
(Pi = 0.200) and nad2 (Pi = 0.173), while cox2 (Pi = 0.098) and cox1 (Pi = 0.102) showed
relatively low nucleotide diversity, which suggested they were conserved genes. In order
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to better understand the evolution of PCGs, the rate of nucleotide substitution (Ka/Ks) of
PCGs among Chrysopidae was analyzed (Figure 5). The Ka/Ks of 13 PCGs were lower
than 1, meaning that Chrysopidae were under purifying selection [51]. The Ka/Ks ranged
from 0.049 (cox1) to 0.552 (atp8), indicating that cox1 had the slowest evolution rate, while
atp8 had the fastest evolving rate.
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rates of 13 PCGs among Chrysopidae.

3.3. The Control Region and Overlapping Regions

The control region regulated the replication and transcription of the mtDNA [52,53]. It
can be identified by a number of features, such as, (i) unassigned region (UR) (ii) secondary
structure with T-rich loops, (iii) high A-T content and (iv) repetitive elements [54,55]. The
control region of An. gracilis between rrnS and trnI (3416 bp) is much longer than the
other URs (1–136 bp). Some predicted secondary structures contain T-rich loops (Figure 6).
The A-T content (89.38%) is much higher than that of the whole mitogenomes (81.75%).
Many short repeats were also found in the control region of An. gracilis (Table S11). In the
whole mitogenomes of Chrysopidae, the length of the control region was 1244–3416 bp
(Table S12). The content of A was higher than T except Ap. matsumurae and Nothancyla
sinica, and the content of G was higher than C. Many microsatellite-like sequences were
found in the control region of six complete mitogenomes (An. gracilis, Ap. matsumurae,
Ch. nipponensis, C. pallens, Ch. externa and Nothancyla sinica) (Table S11). In addition, two
long repeats of more than 200 bp were found in the control region of An. gracilis and the
predicted secondary structures are shown in Figure 6.

There were overlapping regions of seven nucleotides between the gene pairs atp8-atp6
and nad4-nad4L, which had been reported in many other insect mitogenomes [56]. All the
13 species shared the same overlapped sequence ATGTTAA between nad4-nad4L, while
the sequences were ATGATAA between atp8-atp6 in most Chrysopiadae and ATGGTAA
in Ch. externa. In addition, there was an overlapped nucleotide ‘A’ between atp6 and cox3
found in the 13 Chrysopidae species.
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3.4. Transfer RNAs and Ribosomal RNAs

The secondary structures of tRNAs of An. gracilis were predicted and compared with
those of An. octopunctata (Figure 7). There was little variation in all the 22 tRNAs. The trnG
and trnM were identical. The greatest difference was in trnI with nine sites changed. Almost
all tRNAs could be folded into cloverleaf structures, except for trnS2, whose dihydrouridine
(DHU) arm formed a simple loop. This characteristic occurred frequently in the sequenced
mitogenomes of metazoan [57].

The rrnL was located between trnL1 and trnV. The length of rrnL was 1301–1319 bp.
The A + T content ranged from 81.64% to 83.85% (Table S13). The content of A was higher
than T except An. gracilis, C. pallens and Nothancyla verreauxi, and the content of G was
higher than C. The secondary structure of rrnL of An. gracilis was predicted (Figure 8).
There were five domains (I, II, IV, V and VI) and 50 helices in the secondary structure of
rrnL. The domain III deletion of rrnL is a typical feature of arthropods [58].

The rrnS was located between trnV and the control region. The length of rrnS was
773–784 bp (Table S13). The A + T content ranged from 80.15% to 82.32%. The content of A
was higher than T except Ab. eureka and C. pallens, and the content of G was higher than C.
The predicted secondary structure of rrnS of An. gracilis was shown in Figure 9. There were
three domains and 22 helices in the secondary structure of rrnS.
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3.5. Phylogenetic Analyses

The phylogenetic trees were reconstructed under the heterogeneous models CAT + GTR
(datasets PCG123RNA and PCGAA) and LG + C60 + F (dataset PCGAA), respectively
(Figure 10). The topologies were consistent in these three analyses. Chrysopinae were
recovered as the sister to Apochrysinae + Nothochrysinae. However, the sister group
relationship between Apochrysinae and Nothochrysinae was at low support. Nothancylini
were recovered as the sister group to other Chrysopinae. Leucochrysini were recovered
as the sister group to Belonopterygini, while Ankylopterygini were recovered as the sister
group to Chrysopini with high support.

3.6. Divergence Time Estimation

The divergence time was estimated based on the phylogeny of dataset PCG123RNA
and the chronogram was shown in Figure 9. Mean age values and 95% high posterior
density (HPD) intervals for each node are presented in Table 1. The initial divergence
with extant Chrysopidae was estimated occurring in the Early Cretaceous (~135 Ma; 95%
HPD = 103.36–174.95 Ma). Apochrysinae diverged from Nothochrysinae slightly later during
the Early Cretaceous (~115 Ma; 95% HPD = 86.37–150.55 Ma). Within Chrysopinae, Nothancylini
diverged from other tribes during the Early Cretaceous (~125 Ma; 95% HPD = 95.39–161.98 Ma).
Leucochrysini + Belonopterygini diverged from Ankylopterygini + Chrysopini also during
the Early Cretaceous (~113 Ma; 95% HPD = 86.24–147.39 Ma). Leucochrysini diverged
from Belonopterygini during the Late Cretaceous (~93 Ma; 95% HPD = 69.23–122.79 Ma).
Ankylopterygini diverged from Chrysopini during the Middle Cretaceous (~101 Ma; 95%
HPD = 76.57–132.09 Ma). Within Ankylopterygini, Parankylopteryx diverged from Anky-
lopteryx during the Late Cretaceous (~83 Ma; 95% HPD = 60.85–108.46 Ma). The divergence
between An. gracilis and An. octopunctata occurred during the early Paleogene (~59 Ma;
95% HPD = 41.81–79.46 Ma).
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Table 1. Mean divergence times and 95% high posterior density (HPD) intervals for each node of the
topology presented in Figure 11.

Node Mean Inferior 95% Superior 95% ESS Crown Clade

t1 231.51 179.28 297.26 425.30
t2 137.62 89.43 189.82 759.50 Myrmeleontidae
t3 205.66 162.42 263.75 378.50
t4 150.78 108.51 200.38 516.20 Mantispidae
t5 186.55 148.50 240.02 378.50 Hemerobiidae + Chrysopidae
t6 130.15 93.80 173.69 518.10 Hemerobiidae
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Table 1. Cont.

Node Mean Inferior 95% Superior 95% ESS Crown Clade

t7 135.09 103.36 174.95 360.40 Chrysopidae
t8 115.36 86.37 150.55 388.80 Apochrysinae + Nothochrysinae
t9 64.56 42.95 88.37 620.90 Nothochrysinae
t10 124.52 95.39 161.98 360.10 Chrysopinae
t11 113.04 86.24 147.39 361.30
t12 93.33 69.23 122.79 396.30 Leucochrysini + Belonopterygini
t13 64.83 44.96 87.14 488.50 Belonopterygini
t14 101.24 76.57 132.09 368.30 Ankylopterygini + Chrysopini
t15 82.71 60.85 108.46 398.50 Ankylopterygini
t16 59.31 41.81 79.46 480.90 Ankylopterygini
t17 77.77 56.76 102.66 418.60 Chrysopini
t18 46.08 31.14 62.89 573.30 Chrysopini
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4. Discussion and Conclusions

The mitogenomes of An. gracilis and An. octopunctata were newly sequenced and
analyzed in this study. The arrangements of these two mitogenomes were consistent with
other Chrysopidae species. The use of start codons of Chrysopidae was relatively simple
with the form of ATN. Most PCGs used TAA as stop codons, while some PCGs used
TA-tRNA or T-tRNA as stop codons. Incomplete stop codons TA-tRNA and T-tRNA would
transform into complete stop codons after transcription in Chrysopidae [50].

Concerning the phylogeny of Chrysopidae, Chrysopinae were recovered as the sister
group to Apochrysinae + Nothochrysinae. This result had also been confirmed by many
studies using molecular evidence, such as nuclear genes, mitogenomes and low-coverage
whole genomes [10–13,16]. Apochrysinae were recovered as the sister group to Nothochrysi-
nae with low support. Traditional morphological studies considered Nothochrysinae as
the sister group to the rest of the Chrysopidae based on fossil records and plesiomor-
phic similarities [2,6,7,14,17,59,60] without any molecular evidence supporting it. Mi-
togenomes provide more genetic information compared to single genes, which can better
reflect phylogenetic relationships [61,62]. However, there is still a significant gap com-
paring with low-coverage whole genomes and AHE data [15,16]. The combination of
molecular and morphological evidence provides a more comprehensive explanation of
phylogeny. Additionally, increasing the number of samples in studies can lead to more
reliable results. In a recent study, Breitkreuz et al. recovered Apochrysinae as the sis-
ter group to Nothochrysinae + Chrysopinae using a large number of samples based on
morphological and molecular data [17]. This conclusion has been endorsed by many
researchers. Within Chrysopinae, Nothancylini were recovered as the sister group to
(Leucochrysini + Belonopterygini) + (Chrysopini + Ankylopterygini), which is consistent
with previous studies using mitogenomes from studies of Jiang et al. and Zhang et al. [12,13].
The three extant subfamilies of Chrysopidae diverged from each other during the Early
Cretaceous, which is consistent with previous results based on molecular data [14,15].
However, the divergence times among the chrysopine tribes were estimated as earlier
than previous results [14,15]. In order to better resolve the phylogenetic relationships and
divergence time estimation among Chrysopidae, much more mitogenomes and molecular
data in other forms are needed in the future.
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