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Simple Summary: The larvae of Lepidoptera pests are polyphagous insects that can cause crop
mortality and severely damage crop growth, but the manual detection of such pests is a time-
consuming and laborious task. We propose an automatic detection method to distinguish similar
pests in the field. The proposed method is implemented based on the object detection framework,
which improves the feature description ability of the network for different pests, optimizes suboptimal
feature selection, and focuses the network head toward specific tasks. Our method achieves better
detection results on a similar pest dataset compared with other advanced algorithms.

Abstract: Efficient pest identification and control is critical for ensuring food safety. Therefore,
automatic detection of pests has high practical value for Integrated Pest Management (IPM). However,
complex field environments and the similarity in appearance among pests can pose a significant
challenge to the accurate identification of pests. In this paper, a feature refinement method designed
for similar pest detection in the field based on the two-stage detection framework is proposed. Firstly,
we designed a context feature enhancement module to enhance the feature expression ability of the
network for different pests. Secondly, the adaptive feature fusion network was proposed to avoid the
suboptimal problem of feature selection on a single scale. Finally, we designed a novel task separation
network with different fusion features constructed for the classification task and the localization
task. Our method was evaluated on the proposed dataset of similar pests named SimilarPest5 and
achieved a mean average precision (mAP) of 72.7%, which was better than other advanced object
detection methods.

Keywords: pest detection; field environment; similar pests

1. Introduction

Crop pests cause serious harm to crop growth [1]. Accurate detection of different pests
and the implementation of corresponding control measures can effectively improve crop
yield and quality, which are crucial for agricultural production. One such destructive insect
pest is the fall armyworm, Spodoptera frugiperda (Smith), flagged as a major concern by the
Food and Agriculture Organization of the United Nations (FAO) [2,3]. Field investigations
have revealed that S. frugiperda can easily be confused with other lepidopteran insect
pests, such as Mythimna separate (Walker), Ostrinia furnacalis (Guenee), Helicoverpa armigera
(Hübner), and Spodoptera litura (Fabricius), as they are similar in size, color, morphology,
and living environment, particularly in their larval stage [4]. The similarity of these visual
features poses a challenge for pest identification. Incorrect identification results lead to
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the use of unsuitable pesticides, which may not only jeopardize the growth of crops but
also cause environmental pollution. Traditional pest identification tasks are completed
by agricultural plant protection personnel through manual surveys, which are inefficient
and susceptible to subjective factors. Fortunately, recent advancements in computer vision
technology have provided new ideas and technical support for the automatic detection
of some insect pests, which can effectively reduce the workload of professional plant
protection personnel [5].

Traditional computer vision algorithms mainly use image processing and pattern
recognition techniques for the feature extraction and classification of pest images. A
large number of studies [6–8] have been conducted to extract color, shape, and texture
features of pests and perform pest recognition tasks using support vector machines (SVMs)
with certain results. In real-world outdoor scenarios, complex background environments
are often present. Additionally, pest images are susceptible to various factors, such as
differing light intensities, diverse weather conditions, and crop obstructions. Therefore,
pest detection algorithms based on traditional computer vision face certain difficulties in
adapting to complex field environments.

Compared with traditional machine learning techniques, deep learning techniques
can fit the intrinsic characteristics of a large number of data well with a higher accuracy
rate and strong robustness [9]. The detection-based method calculates the location and
species of multiple pests in an image, which can reduce the interference of a complex
background when the size of pests is relatively small in the image. The field of object
detection is mainly divided into single-stage detection algorithms, represented by the
YOLO series [10–15], and two-stage detection algorithms, represented by Faster RCNN [16].
Many advanced algorithms have been derived, such as Retinanet [17], Cascade RCNN [18],
Double Head [19], etc. To improve the detection ability of multi-scale objects, the feature
pyramid network (FPN) [20] was added into these detection frameworks as a common
component. Compared with the fast single-stage algorithm, the two-stage algorithm has a
slower speed but achieves higher accuracy.

Recently, many researchers have introduced deep learning technology into the field of
agriculture. Many researchers [21–23] have achieved high recognition results on cropped
datasets by using classification methods for pest recognition. For the detection of dense
small-sized pests in complex environments, Li and Teng et al. [24,25] designed a coarse-to-fine
network and a pyramid network to enhance the detection effect. Many researchers [26,27] con-
structed databases by fixed pest collection devices and utilized detectors such as YOLOv5
for pest detection. In order to enhance the discrimination ability of detectors for multiple
categories of pests, feature fusion [28,29] was considered for algorithmic improvement, and
it was experimentally demonstrated that feature fusion is effective in improving detection
accuracy. Classification-based methods [21–23] focused on the global features of images.
However, the proportion of pest areas in images collected in the field is usually small,
which leads to more invalid information contained in global features. Some of the methods
mentioned above are optimized mainly for pest detection algorithms in specific scenar-
ios [24–27], which are not applicable to similar pest detection in complex field environments.
Although the improved feature fusion methods [28,29] can improve detection results, they
are optimized only from the perspective of feature fusion and still have some limitations.

As shown in Figure 1a, pest identification problems arise from inaccurate detection
and recognition. The main factors that affect the accuracy of field pest identification
are as follows: (1) the complex living environment of field pests and the similarity in
appearance among different species of pests, which can lead to confusion in the extraction
of pest features; (2) the responses of pest regions are different on multiple-scale feature
maps, and incorrect feature mapping results in missed detection of pests, as shown in
Figure 1b; (3) the current two-stage pest detectors adopt the same RoI (region of interest)
feature for the classification task and the localization task, which may make it difficult
to train the task head network with optimal parameters; and (4) due to the difficulty of
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pest image acquisition in complex scenes, there is a lack of similar pest datasets for real
farmland scenes.
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Figure 1. (a) Examples of detection results for similar pests in the field based on the Cascade RCNN
algorithm. (b) Feature response maps of the pest image at different scales, where P3, P4, and P5
represent the feature response maps of the third, fourth, and fifth layers, respectively. The response
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To address the aforementioned issues, some methods based on feature enhance-
ment [30], feature fusion [31], and feature separation [19] were proposed. Inspired by
this, we optimized the two-stage algorithm in terms of contextual information, adaptive
feature fusion, and separating features for diverse tasks to further improve the pest detec-
tion accuracy. Firstly, a context feature enhancement module was constructed to generate
multi-scale features, which were used to enhance the features extracted by the backbone
network. Secondly, the attention mechanism was used to adaptively weight the fusion of
pest RoI features on the multi-scale feature map to obtain more accurate features of the pest
regions. Finally, different features were constructed for separating the classification and
localization tasks. The multi-scale features extracted by the context feature enhancement
module were used for the localization task, and the context-enhanced features fused by the
FPN were used for the classification task.

The main contributions of our work can be summarized as follows:

(1) A context feature enhancement module (CFEM) was proposed to obtain attention
maps at each scale by atrous spatial pyramid pooling, which was beneficial for the
detection of similar pests.

(2) We proposed the RoI feature fusion module (RFFM) to adaptively weight and fuse pest
features on multiple network layers, which was more conducive to the classification
and localization of pests at different scales.

(3) The proposed task separation module (TSM) decoupled the features of pest classifica-
tion and localization networks, improving the overall performance of the detector.

(4) A larval dataset, SimilarPest5, containing five similar pest species was established to
demonstrate the effectiveness of the developed method.
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2. Materials and Methods
2.1. Dataset

In recent years, several pest datasets have been published [32,33] which contain
various species of pests but have either low similarity between pests or a small number of
samples for each pest category. In addition, the image backgrounds in some datasets are
homogeneous and significantly differ from the actual field environment. To achieve the
specific task of accurately identifying similar pests in the field, we constructed a dataset
named SimilarPest5, consisting of 5177 images, all of which were collected from the field
environment. A comparison of multiple insect pest datasets is shown in Table 1.

Table 1. Comparison of existing datasets related to insect pests. “Class” denotes the class number.
“Samples number” represents the number of images. “Crop” refers to the crop species involved in the
acquisition of pest images. “Stage” indicates the developmental stage of the pests. “Avail” indicates
if the dataset is available. “Y” and “N” denote “yes” and “no”, respectively.

Dataset Image Class Samples Number Crop Stage Avail Similarity

Tetila et al. [21]
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The feeding habits of most Lepidoptera pests are significantly different between larval
and adult stages. The larvae mainly feed on the leaves, stems, and ears of crops, causing
serious damage to their growth [2]. The SimilarPest5 dataset mainly collects the larvae
of five similar pests, including S. frugiperda, M. separata, O. furnacalis, H. armigera, and
S. litura. The images in the SimilarPest5 dataset were collected in five different cities and
counties in China, and the collection period was mainly focused on the period from July to
October between 2020 and 2022. Weather conditions were mostly sunny or cloudy during
the acquisition process to ensure the clarity and visibility of the images. The crop species in
the images are mainly maize, and a small number of images from soybean fields are also
included. To increase the generalization capability of the dataset, we used different kinds of
acquisition devices, such as digital cameras and smartphones from different manufacturers.
In addition, we acquired images from multiple angles and distances to obtain more visual
information while ensuring that the pests were clearly visible. This diverse data collection
approach contributed to a comprehensive and diverse collection of field pest images. To
minimize crop damage, some obstructive objects were removed to ensure the capture of
larvae on the stems and leaves. The SimilarPest5 dataset contains only similar pests in
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complex environments in the field, and the number of images for each pest reaches about
1000, which is different from other pest datasets. Different species of pests have similar
morphology and appearance, which poses significant challenges for precise classification
and localization. In addition, the complex field environment causes interference, such as
obstruction and lighting, in some pest images.

We uniformly scaled the image width and height to 800 × 600 pixels and used La-
belImg (https://github.com/tzutalin/labelImg) (accessed on 28 March 2023) software to
annotate the pests in the images. We invited researchers from the Academy of Agricultural
Sciences and agricultural experts to annotate the pest images. To ensure the accuracy of
annotation, each expert focused on only one pest species. Finally, all experts collaborated to
check the correctness of each annotation instance. Annotation information mainly included
pest ID and location coordinates, which were stored in XML format. For training detection
models, these collected pest images were divided into a training set (80%) and a testing set
(20%). Table 2 reports the statistical data for each pest species.

Table 2. Statistics of the SimilarPest5 dataset. “Crop” refers to the crop species involved in the
acquisition of pest images. “Samples number” indicates the number of pest images. “Instances
number” indicates the number of pest targets in all images. “Training set” indicates the number of
images in the training set. “Test set” indicates the number of images in the test set.

Pest ID Categories Samples Number Instances Number Training Set Test Set

1 S. frugiperda 1071 1152 857 214
2 M. separata 1023 1141 819 204
3 O. furnacalis 1038 1070 831 207
4 H. armigera 1038 1041 832 206
5 S. litura 1007 1025 806 201

Table 3 provides the statistical data of pests at each scale. According to the division
standard of the MS COCO [34], objects smaller than 32 × 32 pixels are defined as small
objects, those from 32 × 32 to 96 × 96 are considered medium, and those greater than
96 × 96 are defined as large objects. The sample scale distribution in SimilarPest5 is mainly
concentrated in the range of medium and large objects.

Table 3. Statistics of pests at each scale in the SimilarPest5 dataset. “Ratio” indicates the number of
pest instances at the corresponding scale as a proportion of the number of all pests.

Scale Number Ratio Average Pixel

Medium 2149 39.6% 5304
Large 3280 60.4% 21,869

The larval images of the target insect pests in the SimilarPest5 dataset are shown in
Figure 2. Different pest species have similar morphology and appearance. Additionally, due
to the living habits of pests in the field, some pests in the images are subject to interference,
such as occlusion and lighting, which weakens the feature information used to distinguish
between different species of pests and between foreground/background. All these factors
pose significant challenges to the accurate classification and positioning of pests.

2.2. Methodologies

In general, the detection speed of the first-stage detector is faster, but the detection
accuracy is not higher than that of the two-stage detector [35]. Therefore, we focused on
studying the feature refinement method based on the two-stage detection framework to
improve the accuracy of pest detection, and the Cascade RCNN [18] algorithm was used
as the baseline network. First, pest images were fed into a backbone network to extract
features. Then, the extracted feature maps were fed into the feature enhancement module
(CFEM) to generate high-quality enhanced features. Next, after the enhanced feature

https://github.com/tzutalin/labelImg
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maps were processed through the FPN, the RoI feature fusion module (RFFM) fused target
region features at multiple scales. Finally, the task separation module (TSM) decoupled the
features of different tasks to achieve the pest classification and localization. The overall
framework of the pest detector is shown in Figure 3, and a detailed description of the
modules is given in the following subsections.
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constructs independent feature and task head networks for classification and localization.

2.2.1. Context Feature Enhancement Module

In order to enhance the feature description ability of the network for the target pests,
we designed the CFEM to generate enhanced features of different layers. Different from
the global feature enhancement based on the backbone network [30], the CFEM captured
contextual information using multi-scale receptive fields, which helped the model un-
derstand semantic information of an image at different scales. As shown in Figure 4, a
1 × 1 convolution operation was conducted on each scale of features, Ci, extracted from
the backbone network to ensure a uniform number of channels for each scale feature. In
this paper, the number of channels was 256. In order to obtain the multi-scale context
information of the target pest, atrous spatial pyramid pooling (ASPP) [36] with multiple
sampling rates and effective target field of view was employed to generate the context
information for the corresponding scale layers. The context heat map of the corresponding
layers was obtained through the sigmoid activation function. The contextual feature maps
of the different layers have differing scale biases. To enhance the information of the specific
scale object, the contextual features of the corresponding layers were added to the origi-
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nal features using residual connections to avoid the pest features at specific scales being
overwhelmed by background information.
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The whole computation process can be summarized as follows:

Ai = σ( faspp(ϕi(Ci))), (1)

Mi = (1⊕ Ai)⊗ ϕi(Ci), (2)

where σ is the sigmoid activation function, ϕi denotes a 1 × 1 convolution operation at
the ith layer, faspp indicates the ASPP context-aware operation, and Ai denotes the context
features at the ith layer. Ci represents the output features of the ith layer of the backbone
network, Mi represents the enhancement features of the ith layer, ⊕ denotes element-wise
addition, and ⊗ denotes element-wise multiplication.

2.2.2. RoI Feature Fusion Module

In the feature pyramid structure, high-resolution feature maps have more detail and
are more sensitive to small objects, while low-resolution feature maps have a high degree
of semantic information and are usually employed in the detection of large objects [20].
The general two-stage object detection algorithm maps the feature of the proposal box to a
specific layer of the FPN by the size of the proposal box to obtain the RoI features. However,
this approach may lead to incorrect detection results because the proposal boxes of the
target may not be assigned to the optimal feature map.

The effectiveness of the attention mechanism in feature fusion has been verified,
and representative algorithms include channel attention networks and spatial attention
networks, such as SENet [37] and CBAM [38]. The attention module can learn weight
parameters adaptively, instead of mapping proposal boxes to one feature map. Unlike
PANet [31], which used a fully connected layer to fuse all pyramid-level RoI features,
we adopted the RFFM to adaptively aggregate the RoI features of the different scales
from all feature maps. As shown in Figure 5, RoIAlign [39] was used to extract the RoI
features of the P2–P5 layers, with a feature size of 7 × 7, and then these features were
connected. To reduce the computational effort, the RFFM module initially performed
feature dimensionality reduction. It subsequently adaptively calculated the weights of
the features at each scale and finally performed weighted fusion of the features. After
multiple convolutional operations and the sigmoid activation function, the spatial weights
of multiple layers were obtained. The RoI features of different layers were weighted and
fused with the weights of the corresponding layers to obtain the final fused features. It
is important to note that the weight parameters were adaptively learned with the back-
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propagation of the network, which avoided the hard selection of RoI features and achieved
better detection results.
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The RFFM formula is expressed as follows:

w = σ(φ3(ψ(φ1(Rc))), (3)

R =
5

∑
i=2

wi ⊗ Ri, (4)

where Rc denotes the RoI features after the concatenate operation; φ1 and φ3 denote the
1 × 1 convolution and 3 × 3 convolution, respectively; ψ is the ReLU activation function; σ
is the sigmoid activation function; w is the adaptive weight of the RoI features; wi is the
weight of the ith layer after splitting; Ri represents the RoI features of the feature pyramid
at the ith layer; and R is the features after adaptive fusion.

2.2.3. Task Separation Module

High-level semantic information is helpful for classification, while localization is more
sensitive to details [40]. Therefore, the features suitable for classification and localization
may not always be consistent. The Double Head [19] algorithm was decoupled from the
localization head and the classification head, which leads to better performance. However,
they still share the same RoI feature.

In this study, we focused on constructing different features for pest classification and
localization tasks. Notably, the fusion features within layers P2 to P5, connected from
top to bottom, have enhanced semantic information. Conversely, the fusion features in
the layers M2 to M5 have richer detail information. Therefore, the RoI features extracted
by the RFFM on the FPN output features (P2–P5) were used for the classification task,
while the RoI features extracted by the RFFM on the CFEM output features (M2–M5) were
used for the localization task. As shown in Figure 6, the first stage of the two-stage object
detection algorithm would output proposal boxes, which were mapped to the M2–M5
and P2–P5 feature maps. The RoI features on M2–M5 and P2–P5 were adaptively fused
by their corresponding RFFMs. Then, the output features were independently used for
localization and classification tasks through separate task branches while maintaining
feature consistency. For the classification task, we employed the cross-entropy loss function,
and for the localization task, the Smooth L1 loss function was used.
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2.2.4. Parameter Settings

All the experiments were based on the SimilarPest5 dataset. In our experiments, the
ResNet-50 [41] and ConvNext-B [42] models trained on the ImageNet [43] dataset were
used as pre-trained models. The size of the input images to the network was proportionally
adjusted to (1333, 800). The experiments were based on single-scale training and testing of
the MMDetection [44] object detection framework. The experiments were conducted on
the operating system Ubuntu 18.04 based on Python 3.7, PyTorch 1.10, and CUDA 11.3. In
our experiments, two NVIDIA TITAN RTX GPUs with 24 GB of memory were used. All
experiments were iteratively fine-tuned for 12 epochs, and the optimizer SGD (stochastic
gradient descent) was adopted to train the models. The learning rate was initialized to
0.005 and reduced to one-tenth after the 8th and 11th epochs. The hyper-parameter settings
are shown in Table 4, and other parameters were set to the defaults of MMDetection [44].
Due to memory constraints, all layers were fine-tuned with a stochastic gradient descent
(SGD) optimizer in mini batches of size 2. The random flip operation was used in the
training phase with a random scale of 0.5.

Table 4. Training hyper-parameters.

Batch Size GPUs Epoch Optimizer Learning Rate Weight Decay Momentum

2 2 12 SGD 0.005 0.0001 0.9

3. Results
3.1. Evaluation Metrics

The evaluation metric is an important basis for evaluating the performance of a method.
To ensure the fairness of an experimental comparison, the standard evaluation metrics for
the general object detection task are used. These metrics use the intersection over union
(IoU) to represent accuracy in predicting bounding boxes and evaluate the performance.
The average precision (AP) indicates the detection performance of each category; it is the
area bounded by the precision-recall curve. The mean average precision (mAP) was used
to evaluate the overall performance, and it represented the mean value of the AP for all
categories, starting from 0.5 for the IoU threshold and increasing by steps of 0.05 up to
0.95. The mean recall (mRecall) represented the mean value of the recall for all categories,
starting from 0.5 for the IoU threshold and increasing by steps of 0.05 up to 0.95. The
calculation formulas are as follows:

Precision =
TP

TP + FP
(5)
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Recall =
TP

TP + FN
(6)

AP =
∫ 1

0
P(R)d(R) (7)

where TP, FP, and FN denote true positives, false positives, and false negatives, respectively.

3.2. Comparison with State-of-the-Art Methods

To illustrate the overall performance of the proposed method, we conducted a com-
parison with other advanced object detection methods, including CNN-based one-stage
methods (RetinaNet [17], YOLOF [45], YOLOV5 [13], and YOLOV8 [14]) and two-stage
methods (Faster RCNN [16], Double Head [19], Libra RCNN [46], Cascade RCNN [18], and
Sparse RCNN [47]), as well as the transformer-based object detectors (such as Dino [48]).
Table 5 reports the experimental results for the SimilarPest5 dataset, and the training process
of the model was reported in the Supplemental Materials (Figures S1 and S2). The proposed
modules were integrated into the Cascade RCNN [18] framework. Compared with the
other methods, our proposed method achieved the highest mAP of 72.7%, 1.2% higher
than the other best-performing algorithm. Additionally, the proposed method performed
better in the detection of medium- and large-scale pests with a higher recall rate. This
indicated that feature optimization modules can improve the detection accuracy for similar
pests in the field. As additional modules were added to the original two-stage detection
framework, the overall number of parameters of the proposed method increased, resulting
in a decrease in FPS (frames per second). Table S1 of the Supplementary Material reports
the AP of different methods for detecting each category based on the ConvNext-B [42]
backbone network.

Table 5. Comparison experiments with other advanced object detection algorithms (unit: %).
“Params” indicates the number of parameters (unit: M). “FPS” represents the number of frames
processed per second.

Method Backbone mAP APM APL mRecall Params(M) FPS

RetinaNet [17] ResNet50 56.9 48.8 60.0 66.4 36.29 33.4
YOLOF [45] ResNet50 62.8 55.2 65.9 70.4 42.27 52.6

Faster RCNN [16] ResNet50 60.1 51.9 63.4 67.1 41.17 32.3
Libra RCNN [46] ResNet50 62.4 52.4 66.2 70.4 41.43 30.8
Double Head [19] ResNet50 63.3 52.9 67.2 70.0 46.76 14.2

Cascade RCNN [18] ResNet50 64.5 50.7 69.1 70.8 68.95 26.8
Sparse RCNN [47] ResNet50 63.0 52.4 67.4 74.1 105.95 25.6

Dino [48] ResNet50 64.3 52.0 69.6 70.6 47.59 17.3
Ours ResNet50 66.1 55.7 70.2 72.2 78.52 10.3

RetinaNet [17] ConvNext-B 65.5 58.9 68.4 72.8 97.65 15.1
YOLOF [45] ConvNext-B 66.2 58.7 69.8 73.5 105.97 18.5

Faster RCNN [16] ConvNext-B 69.3 60.5 72.8 74.0 104.94 14.8
Libra RCNN [46] ConvNext-B 69.9 61.3 73.3 75.0 105.20 14.5
Double Head [19] ConvNext-B 71.4 61.8 75.1 76.1 110.52 9.3

Cascade RCNN [18] ConvNext-B 71.3 60.9 75.4 76.2 132.73 13.7
Sparse RCNN [47] ConvNext-B 67.9 58.8 71.9 74.2 169.74 13.8

Dino [48] ConvNext-B 71.5 61.2 75.8 76.3 111.62 9.8
YOLOV5-L [13] CSPDarknet 67.0 56.7 70.7 73.4 46.16 63.9
YOLOV5-X [13] CSPDarknet 67.9 57.2 71.2 74.0 86.25 43.7
YOLOV8-X [14] CSPDarknet 67.2 55.2 70.1 73.5 68.15 59.8

Ours ConvNext-B 72.7 62.4 76.3 76.7 143.28 6.2

Figure 7 shows the confusion matrix of the proposed method when the confidence
threshold was equal to 0.5. The diagonal represents the percentage of each pest that was
correctly identified. The complex field environment is the main reason for the misidentifica-
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tion between pest targets and backgrounds. The similarity in appearance led to confusing
identifications between pests. As shown in Figure 7, the accuracy for S. frugiperda was
reduced because some of H. armigera, O. furnacalis, and the background were misidentified
as S. frugiperda. A larger proportion of H. armigera was misidentified as S. frugiperda and the
background, which reduced the accuracy for H. armigera. In addition, there were different
proportions of confusing identifications for M. separata, O. furnacalis, and other pests. The
accuracy for S. litura was higher due to the lower percentage of misidentifications.
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3.3. Ablation Experiments

We conducted several experiments on the SimilarPest5 dataset to explore the effect
of the sampling rate, r, on detection accuracy in the ASPP network. The detection results
were evaluated by the metrics of mRecall and mAP, as shown in Figure 8. For efficiency,
the experiments were conducted using the Faster RCNN detector with our constructed
CFEM by using ResNet-50 [41] as the backbone. When r equaled 1, the pest features were
not sufficiently correlated with the surrounding contextual information to achieve optimal
accuracy. Too large an r led to a higher correlation of pest features with distant background
information, decreasing accuracy. Therefore, setting r to 2 was more suitable for our dataset,
and the mAP and mRecall achieved the highest accuracy.
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To verify the effectiveness of the CFEM in enhancing pest feature expression, we
compared the feature response maps before and after adding the CFEM based on the
Faster RCNN [16] algorithm framework in Figure 9. The features enhanced by the CFEM
had stronger semantic correlation between local and contextual features of pests. The
incorporation of richer contextual information made the feature responses of pest regions
more obvious and accurate. Figure S3 of the Supplementary Material shows the feature
response maps of our method to different pests at multiple scales.
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Figure 9. Comparison of feature response maps. The first row shows the feature response maps of
the original pest features fused by the FPN, and the second row shows the feature response maps
after adding the CFEM. All feature response maps were from the P4 layer, and ResNet-50 was used
as the backbone network.

Based on the Faster R-CNN [16] framework, we constructed ablation experiments with
different features selected for the classification task and the localization task of the TSM.
The results of these experiments are shown in Table 6. From the results, we could observe
that the highest detection accuracy of 63.2% mAP was obtained when using M2~M5 layer
features for the localization task and P2~P5 feature layers for the classification task. These
results indicated that M2~M5 layer features were more suitable for localization, while
P2~P5 layer features fused by the top-down pathway had stronger semantic information
and were more suitable for pest classification.

Table 6. Ablation studies with different features were selected for the classification task and the
localization task of the TSM (unit: %).

Classification Localization mAP mRecall

M2~M5 M2~M5 61.0 67.8
P2~P5 P2~P5 62.6 69.2

M2~M5 P2~P5 62.2 68.6
P2~P5 M2~M5 63.2 69.3

To further validate the effectiveness of each module, we constructed ablation experi-
ments for each module based on the Faster RCNN [16] framework. As shown in Table 7,
the addition of any module led to a performance improvement. As shown in the second
row of the table, the CFEM could effectively enhance the feature representation ability and
achieved a 1.4% mAP improvement. The improvement shown in the third row indicated
that the RFFM adaptively fusing multi-layer RoI features outperformed the method with
single-layer RoI features in accuracy. The fourth row shows the result of introducing the
TSM with a 0.3% mAP improvement, which indicated that the decoupling of tasks based
on different features had a positive effect on the detection accuracy improvement. Finally,
the proposed method achieved a 63.2% mAP, which was a 3.1% improvement over the
original method, and was accompanied by a higher recall rate.

As the proposed method can be embedded as a plug-and-play plugin into most
existing two-stage object detection frameworks, we conducted experiments to verify the
applicability of the proposed modules with different methods. As shown in Table 8, the
mAP of the three methods improved by 3.1%, 2.2%, and 1.6%, respectively, with the addition
of our module, and the recall rate also increased. The experimental results demonstrated
that the proposed feature refinement modules had good generalization ability.
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Table 7. Ablation experiments based on the Faster RCNN algorithm (unit: %). “Params” indicates
the number of parameters (unit: M).

CFEM RFFM TSM mAP mRecall Params(M)

60.1 67.1 41.17
3 61.5 (+1.4) 68.6 (+1.5) 50.06

3 61.9 (+1.8) 69.0 (+1.9) 41.41
3 3 62.2 (+2.1) 68.7 (+1.6) 41.69

3 3 62.6 (+2.5) 69.2 (+2.1) 50.33
3 3 3 63.2 (+3.1) 69.3 (+2.2) 50.61

Table 8. The performance of various detection methods with or without our module (unit: %).

Method w/ours mAP mRecall

Faster RCNN [16]
60.1 67.1

3 63.2 (+3.1) 69.3 (+2.2)

Double Head [19]
63.3 70.0

3 65.5 (+2.2) 71.1 (+1.1)

Cascade RCNN [18]
64.5 70.8

3 66.1 (+1.6) 72.2 (+1.4)

3.4. Visualization Analysis

The visualization results provide us with a more intuitive way to observe the perfor-
mance improvement of the proposed method. In Figure 10, we compared the detection
results of some two-stage detection methods before and after optimization. Due to the
similarity in color and texture between some pests and the complex background, such
as M. separata and O. furnacalis, this resulted in missed detections with Double Head [19]
and Cascade RCNN [18]. For the detection of S. frugiperda, Faster RCNN [16] and Double
Head [19] incorrectly recognized objects in the background as the target pest. Addition-
ally, Double Head [19] showed category confusion in identifying O. furnacalis. Although
these methods were able to correctly recognize pests in detecting H. armigera and S. litura,
they were not accurate enough in pest localization due to partial occlusion of the pest
ontology in some training image sets. In Figure 11, we compared the detection results of
the proposed method with those of the other methods. Some other methods also showed
incorrect identification results, e.g., Dino [48] and YOLOV8-X [14] misidentified H. armigera
as S. frugiperda, while RetinaNet [17] and YOLOV8-X [14] misidentified the background as
S. litura. By comparing the detection results of different methods, it can be found that our
method is more accurate in both pest classification and localization.

3.5. Discussion

Traditional computer vision algorithms are simple in design and low in computational
resource consumption, but weak in feature representation for complex scenes. Therefore,
many researchers have started to focus on the application of deep learning methods
for pest identification. However, classification-based methods [21–23] usually require
tedious preprocessing processes, such as manually cropping or segmenting out pest regions,
while the algorithms themselves focus mainly on the classification task and have limited
applications. In images of field pest datasets, the size and location of pests vary widely,
and thus classification-based methods are not adapted to datasets in field environments. In
pest identification methods based on object detection frameworks [24–29], researchers have
designed specific algorithmic frameworks for the characteristics of different pest datasets
or optimized them only from the perspective of feature fusion. However, the pests in
these datasets differ significantly from the SimilarPest5 dataset in terms of scale, context,
and similarity.

Although generic object detection algorithms perform well in most tasks, they often
struggle to achieve outstanding results in specific tasks. From the results shown in Table 5,
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the detection accuracy of two-stage algorithms [16,18,19,46] is usually higher compared
to single-stage algorithms [14,17,45] on similar pest datasets. Since two-stage algorithms
achieve detection through a coarse-to-fine process of object classification and localization,
they are more suitable for fine-grained tasks such as the detection of similar pests in
the field.
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In this study, we designed a feature refinement method based on the two-stage de-
tection framework with the aim of improving the detection accuracy for similar pests in
the field. The two-stage algorithm was optimized by adding feature enhancement, feature
fusion, and feature selection modules, and the overall detection accuracy of this method
reached 72.7% mAP. Although the proposed method achieved the best accuracy, the subtle
differences between the same types of pests at different age stages, the similar appear-
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ances between different species of pests, and complex background environments posed
challenges for the detection algorithm. As the S. litura sample contained some images of
soybeans that had different backgrounds from the images of corn, this led to the highest
detection accuracy for S. litura, while similar pests from the same crop were more likely to
be confused.
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To verify the effectiveness of the proposed method, several ablation experiments
were constructed. As shown in Figure 9, the semantic correlation of pest region features
was stronger due to the fusion of contextual information at multiple scales, and the richer
feature information helped to distinguish different pests. The ablation experiment in Table 7
showed that the RFFM of adaptive fusion of multi-scale region features could improve the
detection accuracy compared with selecting only single-scale region features. Furthermore,
the fourth and sixth rows of Table 7 verified that feature separation of different tasks
allowed different task heads to focus more on specific tasks, thereby enabling the network
to train better parameters to improve accuracy. Table 8 showed the generality of the
proposed method on different models, with improved accuracy for these models. Overall,
compared with other excellent detection algorithms, the proposed method based on the
Cascaded RCNN [18] framework was superior in terms of overall detection accuracy.

4. Conclusions

In agricultural production, many lepidopteran pests with similar appearances, repre-
sented by S. frugiperda, cause serious damage to crop growth. Therefore, we constructed a
SimilarPest5 dataset with images of five similar pests in corn and soybean fields. However,
since these images were obtained in actual corn and soybean field environments, they
frequently exhibit challenges like complex backgrounds, uneven lighting, and occasional
obstruction. These factors make it challenging for a generic model to describe the features
of the pests accurately. To improve the accuracy of pest detection in real-field scenarios,
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we optimized the detection network from different perspectives. The effectiveness of
the proposed modules was validated through ablation and comparison experiments, and
state-of-the-art performance was achieved on the SimilarPest5 dataset.

The method proposed in this paper can provide intelligent recognition functions for
terminal devices and reduce the burden on professionals (Figure S4). In real-world IPM
scenarios, higher pest detection accuracy can provide effective decision support for pest
control, while providing early warning information to agricultural personnel and helping
to develop more effective IPM strategies. However, our proposed method still has some
limitations. In future work, we hope to collect and construct larger datasets of field pests
from different crops and extend the proposed method to other types of pest detection, such
as rice pests like Nilaparvata lugens Stal, Sogatella furcifera, and ladelphax striatellus falln, to
explore the effectiveness of the method in pest detection for other crops. Furthermore, we
would like to further analyze the similarity of pests based on their morphological, ecological,
and statistical characteristics and verify the detection accuracy of the proposed algorithm
for pests with different similarity levels. Since the algorithm introduces additional modules,
it leads to greater computational complexity and requires support from hardware devices
with higher computational performance. Therefore, in future work, we will try to build
lighter model architectures while maintaining detection performance.
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