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Simple Summary: Eutrophication and global warming have caused acute hypoxia in aquatic ecosys-
tems. However, Propsilocerus akamusi depends on great hypoxia tolerance to become a dominant
species in eutrophic lakes, but the mechanism of this hypoxia tolerance is unclear. Thus, we combined
physiological indicators and histomorphology observations with metabolome–transcriptome analysis
to explore the mechanism comprehensively. The results showed that hypoxia tolerance mainly relies
on apoptosis, energy metabolism, and an antioxidant mechanism. P. akamusi derives its energy
from glycogen metabolism, lipid metabolism, protein digestion and absorption, and the glyoxydate
cycle. Lactate is the end product of glycogen degradation, and HIF-1 plays an important role in
promoting glycogenolysis in acute hypoxic conditions. However, ethanol probably originates from
symbiodinium and, together with hydrogen peroxide, stimulates the elevation of catalase (CAT)
activity and induced apoptosis. Understanding the processes that enable P. akamusi to survive lengthy
periods of hypoxia in eutrophic lakes might provide a scientific reference for assessing toxicity and
favoring policies to reduce their impact on the environment.

Abstract: Plenty of freshwater species, especially macroinvertebrates that are essential to the provision
of numerous ecosystem functions, encounter higher mortality due to acute hypoxia. However, within
the family Chironomidae, a wide range of tolerance to hypoxia/anoxia is displayed. Propsilocerus
akamusi depends on this great tolerance to become a dominant species in eutrophic lakes. To further
understand how P. akamusi responds to acute hypoxic stress, we used multi-omics analysis in combi-
nation with histomorphological characteristics and physiological indicators. Thus, we set up two
groups—a control group (DO 8.4 mg/L) and a hypoxic group (DO 0.39 mg/L)—to evaluate enzyme
activity and the transcriptome, metabolome, and histomorphological characteristics. With blue–black
chromatin, cell tightness, cell membrane invagination, and the production of apoptotic vesicles, tissue
cells displayed typical apoptotic features in the hypoxic group. Although lactate dehydrogenase
(LDH), alcohol dehydrogenase (ADH), catalase (CAT), and Na+/K+ -ATPase (NKA) activities were
dramatically enhanced under hypoxic stress, glycogen content, and superoxide dismutase (SOD)
activities were significantly reduced compared to the control group. The combined analysis of the
transcriptome and metabolome, which further demonstrated, in addition to carbohydrates, including
glycogen, the involvement of energy metabolism pathways, including fatty acid, protein, trehalose,
and glyoxylate cycles, provided additional support for the aforementioned findings. Lactate is the end
product of glycogen degradation, and HIF-1 plays an important role in promoting glycogenolysis in
acute hypoxic conditions. However, we discovered that the ethanol tested under hypoxic stress likely
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originates from the symbiodinium of P. akamusi. These results imply that some parameters related
to energy metabolism, antioxidant enzyme activities, and histomorphological features may be used
as biomarkers of eutrophic lakes in Chironomus riparius larvae. The study also provides a scientific
reference for assessing toxicity and favoring policies to reduce their impact on the environment.

Keywords: Chironomidae; acute hypoxic stress; multi-omics analysis; energy metabolism;
antioxidant mechanism

1. Introduction

Hypoxic zones have been rapidly expanding in both space and frequency over the
past two decades in freshwater ecosystems as a result of rising nutrient loadings and global
warming [1–4]. However, acute hypoxia leads to higher mortality rates in macroinverte-
brates, which play a supporting role in the material cycle and energy flow in freshwater
ecosystems [5,6]. The composition of the macroinvertebrate community has drastically
changed due to hypoxia, which has also altered the metabolic response (metabolomes) and
perhaps other biochemical processes, such as the level of oxidative stress [7,8].

Hypoxic stress alters the metabolite content of insects relating to energy and antioxi-
dants [9,10]. Hypoxic stress increases reactive oxygen species (ROS) production in the body
by disrupting the electron transport chain and the antioxidant defense system, including
enzymes such as superoxide dismutase (SOD) and catalase (CAT), which is activated to
avoid the harmful effects of ROS on biomolecules [11,12]. For instance, in the aquatic insect
Belostoma elegans, hypoxic conditions have been shown by Lavarias et al. (2017) to be one of
the factors affecting antioxidant enzyme activity [13]. The evidence indicates that ethanol
is the only byproduct of glycogen degradation from Chironomus thummi and Culex pipiens
in hypoxic stress, and it is catalyzed by alcohol dehydrogenase (ADH) or diffused into the
surrounding water [14,15]. However, a study on Chaoborus crystallinus found that large
quantities of alanine are accumulated, while lactate is produced as a minor end product
under anoxic conditions [16]. In addition, hypoxic stress not only led to significant tissue
damage but also induced cell apoptosis, and the expression of hypoxia-inducible genes
has been identified in bivalve and crustacea [17–24]. Studies have also shown in scallops,
crabs, and clams that energy-consuming processes (including protein turnover and ion
transport) are suppressed by hypoxic stress, which is indicated by a dramatic decrease
in the activity of Na+/K+ -ATPase (NKA) [25,26]. However, the effects of hypoxia on
freshwater macroinvertebrates are unclear, especially the family Chironomidae, which
possesses a wide range of tolerances to hypoxia [27–29].

Chironomids are widely dispersed, simple to cultivate, have brief life cycles, and are also
adapted to a variety of environmental rigors, including desiccation, anoxia, high temperature,
freezing, eutrophication, and chemical pollution [30]. Thus, they are a suitable taxon to ex-
plore the adaptation mechanisms required to endure environmental stress, to monitor water
quality as bioindicators, and to test the toxicity of chemicals in ecotoxicological assays [30–32].
Chironomid midge larvae possess a wide range of tolerances to hypoxia due to extracellular
hemoglobins (Hbs) in monomeric and dimeric forms floating in their hemolymph [28,33]. In
particular, P. akamusi of Chironomidae demonstrated incredibly low fuel consumption at a stage
of estivation when the larvae lived in deep sediment and engaged in anaerobic respiration,
with ethanol as a major metabolite, to withstand prolonged hypoxia. This may be an important
reason the species frequently predominates macroinvertebrates in many eutrophic lakes [34–36].
However, the mechanisms of how P. akamusi survives for a prolonged period of time in acute
hypoxic environments are still unclear.

Approaches to P. akamusi have mostly focused on the transcriptome, proteome, or
metabolome [37–41]. However, single omics cannot systematically explain the rapid bio-
chemical reactions and metabolic changes that are expected for acute hypoxia [42,43].
For this reason, we conducted a comprehensive comparative metabolome–transcriptome
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analysis to understand how P. akamusi, the dominant macroinvertebrate species in many
eutrophic lakes, tolerates prolonged hypoxia [44]. Thus, we combined physiological in-
dicators and histomorphology observations with metabolome–transcriptome analysis to
comprehensively assess the histomorphological features, energy metabolism mechanisms,
and antioxidant mechanisms of P. akamusi larvae exposed to acute hypoxia. We predicted
(1) that acute hypoxic stress induced apoptosis and significantly increased NKA activity in
P. akamusi compared to controls. (2) Hypoxia caused a significant decrease in glycogen con-
tent, promoted a significant increase in ADH and LDA, and (3) also promoted a significant
increase in SOD and CAT compared to the control group. (4) In addition, the transcriptome
and metabolome analysis further confirmed and refined the above results.

2. Materials and Methods
2.1. Experimental Animals, Hypoxia Challenge, and Tissue Sample Preparation

The larvae of P. akamusi were collected with a Surber sampler (30× 30 cm, 500 µm mesh)
in the Taihu Lake basin (N 31◦45′37′ ′, E 120◦43′56′ ′; altitude of 4 m) in June 2019. The viable
P. akamusi were reared on an artificial diet of fish flake food (Xiamen Mincheng Imp&Exp Co.
Ltd., Xiamen, Fujian, China) in culture boxes containing 2 L of dechlorinated tap water and
1–2 cm of acid-washed sand under 25± 1 ◦C temperature conditions. After 3 d of domestication,
robust, large, and color-coordinated 4th instar larvae were selected for the experiment. A hypoxic
experimental group and a control group with four biological replicates each were established.
Larvae were transferred to 250 mL glass beakers containing 200 mL of aerated dechlorinated tap
water (90 Larvae per beaker). The temperature was kept constant at 24–25 ◦C throughout the
experiment, and no feeding was performed during exposures. The oxygen concentration in the
control group was not less than 8.0 mg/L. In hypoxic groups, DO was controlled by bubbling
nitrogen gas through the water tanks, and the oxygen content was checked by a DO meter
(DO-31 P, TOADKK, Tokyo, Japan) at all times to ensure that it did not exceed 0.5 mg/L. Two
larvae in each biological replicate were selected and washed in ultrapure water, then fixed in glass
vials containing 4% Paraformaldehyde Fix Solution for HE staining at 96 h. Six whole P. akamusi
larvae were selected from each biological replicate for physiological indicators at 0 h, 12 h, 24 h,
48 h, 72 h, and 96 h. Six larvae in each biological replicate were selected for transcriptome and
metabolome analyses at 96 h. These larvae were put into 1.5 mL EP tubes after measuring wet
weight using an electronic balance, briefly submerged in liquid nitrogen for short-term storage,
and then kept at−80 ◦C in an ultra-low-temperature refrigerator.

2.2. HE Staining

The P. akamusi larvae were washed in pre-cooled saline at 4 ◦C, and the tissue was
then chopped into small pieces and stored on ice before being placed in 10% formaldehyde
solution and fixed for one day and one night before being placed in ethanol for three hours
to dehydrate it. After being sectioned and paraffin-embedded, the slides were dried on
a staining rack for 20 min before being submerged in a solution of xylene and ethanol
for 12 min. The slides were then dehydrated in ethanol for six minutes, dehydrated in
xylene for 20 min, washed in xylene, stained in hematoxylin for two minutes, rinsed under
low-flow water for four minutes, and then soaked in eosin solution for 20 s. The slides were
then sealed with gum, dried, and examined under a biological microscope. After drying,
the films were examined under a biological microscope [45].

2.3. Tissue Enzyme Activity and Glycogen Assays

The kits for the determination of glycogen content, ADH activity, LDH activity, CAT
activity, SOD activity, and NKA activity were purchased from Nanjing Jiancheng Biological
Company (Nanjing, China), and the enzyme activities and glycogen content of the hypoxic
and control groups were determined using tissues as experimental samples. The specific
operation procedure and calculation formula were referred to in the instruction manual.
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2.4. Transcriptome Analysis

Utilizing the TRIzol reagent, which is available from Invitrogen in Vacaville, CA, USA,
total RNA was isolated from P. akamusi larvae. Total RNA quantity and integrity were
assessed using the Agilent Bioanalyzer 2100 equipment (Agilent, Santa Clara, CA, USA).
Each sample was chosen to have 1.5 g of high-quality RNA for the investigation. At a
high temperature, divalent cations break the mRNA into minute pieces. The mRNA Seq
preparation sample kit (Illumina, San Diego, CA, USA) instructions were then followed
to construct the final cDNA library utilizing reverse transcription. On the Illumina HiSeq
platform (LC Sciences, Houston, TX, USA), paired-end DNA sequencing was carried out
according to the vendor’s suggested technique. Clean data (clean reads) were chosen from
the raw data (raw reads) to explore the patterns of gene expression in P. akamusi larvae
under hypoxic stress, and then the sequence quality was checked using FastQC (https:
//fastqc.com/). With Trinity 2.4.0, clean data were then put together into a transcriptome
for reference [46]. The “gene” sequence (also known as the Unigene) was chosen as
the cluster’s longest transcript. The Basic Local Alignment Search Tool (BLAST) was
used for transcriptome annotation, while the DIAMOND technique searched numerous
databases with an E-value of 1 × e−5. We employed Blast2 GO with NR annotation for
Gene Ontology (GO) annotation and the default settings of KASS for KEGG pathway
analysis. The comparison of the hypoxic and control groups was conducted using an
evaluation of differential gene expression. To measure the amount of Unigene expression,
Drosophila melanogaster was used. The R package edgeR [47] was used to identify the
differentially expressed Unigenes with statistical significance (p-value < 0.05). Using Perl
scripts in R language, the DEGs were assessed for GO enrichment and KEGG pathway
enrichment based on hypergeometric distributions. The raw data can be viewed in the SRA
(Sequence Read Archive) database, number PRJNA972485.

2.5. Metabolome Analysis

Metabolites were used for further Liquid Chromatograph–Mass Spectrometer (LC-MS)
system analysis [48]. To obtain baseline correction, maximum alignment, maximum detec-
tion, accurate masses, and normalized intensity of the peak, Agilent MSD Chemstation
(version E.02.00.493) using the default settings was used [49]. Then, maximum acquisition
and deconvolution were performed using the automated mass spectrometry deconvolution
recognition system (AMDIS). The identification of metabolites was then completed by
contrasting mass fragment patterns and retention times across several databases. Dif-
ferentiating metabolites between the hypoxic and control groups were mapped to their
corresponding metabolic pathways with the KEGG pathway-based MetPA online tool
(http://metpa.metabolomics.ca/). Only metabolic pathways with −lg (p) < 1.301 were
preserved based on hypergeometric testing.

2.6. The Integrated Analysis of Transcriptomic and Metabolomic Data

For the integration analysis of genes and metabolites, KEGG pathway analysis was initially
used to obtain the links between gene transcripts and metabolites in metabolic pathways. Pear-
son correlation coefficients were used to calculate the association of metabolic and transcriptomic
data between the two groups. Differentially expressed Unigenes were ordered according to
p-values, and significantly accumulated metabolites were inverted based on VIP values. The
top 50 genes and metabolites were selected for heatmap plotting by R packages.

2.7. Data Analysis

To examine the significance of differences between groups, the data were analyzed
using the statistical program SPSS 25.0 for one-way ANOVA, the chi-square test, and
LSD or Duncan’s multiple comparisons depending on the findings of the chi-square test,
respectively (p < 0.05 was considered significant). ORIGIN software was used to plot the
results, which were presented as mean standard deviation (x ± SD).

https://fastqc.com/
https://fastqc.com/
http://metpa.metabolomics.ca/
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3. Results
3.1. Effect of Hypoxic Stress on Histomorphological Feature and NKA Activity in P. akamusi

Compared with the control group (Figure 1A), the P. akamusi staining in the hypoxic
group was darker and tighter (Figure 1C). The tissue cells in the hypoxic group were
haphazardly distributed with different cell morphologies, significantly smaller in size than
the control group, and displayed a tighter state (Figure 1D). In contrast, tissue cells in the
control group were neatly arranged, maintaining normal cell morphology and volume
(Figure 1B). The tissue cells in the hypoxic group tended to be rounded with blue–black
chromatin and some of the cell membranes were crinkled and invaginated, indicating
apoptosis (Figure 1F black arrows). Some tissues displayed apoptotic vesicles (Figure 1G
red-star-shaped marker cells). Under hypoxic stress, a significant number of P. akamusi
tissues exhibited morphological characteristics of apoptosis.
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Figure 1. Histomorphological feature of the P. akamusi. Note: The control group includes (A) (upper;
3×), (B) (upper; 30×), and (E) (upper; 90×); the hypoxic group includes (C) (upper; 3×), (D) (upper;
30×), (F) (upper; 90×), and (G) (upper; 90×). Bright green arrow: chromatin; black arrows (F): the
cell membranes were crinkled and invaginated; green stars (E): normal cell; dark orange stars (F): cells
exhibiting a crinkled and invaginated state; red stars (G): cells producing apoptotic vesicles. (E,F)
represent the tissue cells in the yellow boxes in (B,D). (G) represents the tissue cells with red boxes in (D).
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The hypoxia and control groups showed similar trends in NKA activity over time.
The NKA activity of the hypoxic group was significantly higher than that of the control
group (Figure 2). The NKA activity of the control group displayed an overall trend
of increasing and then fluctuating downward, with significant changes. Specifically, it
increased significantly at 12 h, decreased significantly, increased significantly again at 48 h,
and decreased significantly again at 96 h with activity similar to the initial value. In the
hypoxic group, NKA activity showed a fluctuating upward trend followed by a downward
trend with significant changes. Specifically, it increased significantly at 12 h, decreased
significantly at 24 h, then increased significantly and reached a maximum at 72 h, and
decreased significantly and reached a minimum at 96 h, with activity similar to the initial
value.
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Figure 2. Changes in NKA activity of the P. akamusi under hypoxic stress. Note: Different letter
superscripts indicate significant differences within the control or hypoxic group in different stress
times (p < 0.05). * indicates a significant difference between groups at the same time point, * indicates
p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001.

3.2. Effect of Hypoxic Stress on Energy Metabolism in P. akamusi

The glycogen content in the control group was significantly higher than that in the
hypoxic group during hypoxic stress. The glycogen content in the control group tended to
decrease overall, with significant decreases at 12 h and 96 h and reaching a minimum value
at 96 h, which was significantly lower than the initial value. In the hypoxic group, there was
a decreasing trend followed by an increasing trend with a significant change. Its content
reached its lowest value at 48 h and was significantly lower than the initial value at 96 h
(Figure 3A). LDH activity was significantly higher in the hypoxic group than in the control
group after 48 h of hypoxic stress. LDH activity in the control group decreased significantly
at 24 h, increased significantly at 48 h, and reached a maximum value, then decreased
significantly and reached a minimum value at 96 h. This value was significantly lower
than the initial value. In the hypoxic group, LDH activity showed a fluctuating upward
trend. Its activity increased significantly at 24 h, but decreased significantly at 72 h, then
increased significantly and reached a maximum at 96 h, and the value was about 3.5 times
higher than the initial value (Figure 3B). Except for at 96 h, the ADH activity of the hypoxic
group was significantly higher than the control group at different stress times. Overall,
the ADH activity of the control group showed fluctuating but non-significant changes.
The ADH activity of the hypoxic group showed a fluctuating decreasing trend. At 48 h of
hypoxic stress, the ADH activity continued to decrease. However, at 72 h, the ADH activity
increased significantly, then decreased significantly and reached the minimum value at
96 h, and the value was significantly lower than the initial value (Figure 3C).
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Figure 3. Changes in glycogen content (A), ADH activity (B), and LDH activity (C) of P. akamusi
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control or hypoxic group in different stress times (p < 0.05). * indicates a significant difference between
groups at the same time point, * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001.

3.3. Effect of Hypoxic Stress on Antioxidant Enzyme Activity in P. akamusi

During hypoxic stress, the SOD activity of the control group was significantly higher
than that of the hypoxic group except for at 0 h (Figure 4A). The SOD activity of the
control group displayed an overall fluctuating trend with significant change. Specifically,
it increased significantly at 12 h, decreased significantly, and reached a low value at 48 h,
then increased significantly and reached a maximum value at 96 h, which was significantly
higher than the initial value. In contrast, the SOD activity of the hypoxic group showed a
trend of increasing and then decreasing, with a significant decrease at 24 h and reaching
its lowest value, followed by a significant increase at 72 h and stabilization. However, at
96 h, the SOD activity was significantly lower than the initial value. The CAT activity of the
hypoxic group was significantly higher than that of the control group at different stress
times (Figure 4B). In the control group, CAT activity increased significantly at 12 h and
reached a maximum value, then decreased significantly and reached a minimum value at
48 h, but increased significantly at 72 h and then stabilized. CAT activity was similar to the
initial value at 96 h.
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3.4. GO Enrichment and KEGG Enrichment Analysis of All Differentially Expressed Genes

GO annotation enrichment was performed to analyze differentially expressed genes
in P. akamusi under hypoxic stress (Figure 5). The results revealed significant enrichment of
metabolic and catabolic processes involved in the lipid metabolic process, carbohydrate
derivative metabolic process, and trehalose metabolic process from a biological process and
ontology perspective. In terms of a molecular function perspective, catalytic activity, oxi-
doreductase activity, transferase activity, transmembrane receptor protein tyrosine kinase
activity, carbohydrate kinase activity, and trehalose activity were significantly enriched.
For cellular components, membrane-related components, such as the vesicle membrane,
endomembrane system, and extracellular region, were significantly enriched.

KEGG annotation enrichment was used to analyze the differentially expressed genes
in P. akamusi under hypoxic stress (Figure 6). Several pathways were significantly al-
tered during hypoxic stress, including metabolic pathways, drug metabolism pathways,
pyrimidine metabolism, porphyrin and chlorophyll metabolism pathways, ABC trans-
porters, and cytochrome p450-related pathways. The differentially expressed genes in
these pathways include ATP-binding cassette, subfamily C (CFTR/MRP), member 4
(ABCC4) ATP-binding cassette, subfamily G (WHITE), member 1 (ABCG1), ATP-binding
cassette, subfamily G (WHITE), member 4 (ABCG4), dimethylaniline monooxygenase,
(N-oxide forming)/hypotaurine monooxygenase (FMO), glucuronosyl transferase (UGT),
etc. (Supplementary File S1).
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3.5. KEGG Enrichment Analysis of Differentially Accumulated Metabolites

KEGG annotation enrichment was used to analyze the differentially accumulated
metabolites in P. akamusi related to acute hypoxic stress (Figure 7). The analysis indicated
that the significantly enriched pathways (q < 0.05) were mainly associated with amino
acid metabolism and synapse, including “Alanine, aspartate and glutamate metabolism”,
“Biosynthesis of amino acids”, “Arginine biosynthesis”, “D-Glutamine and D-glutamate
metabolism”, “Synaptic vesicle cycle”, “Aminoacyl-tRNA biosynthesis”, “GABAergic
synapse”, and “Glutamatergic synapse”. Additionally, “Metabolic pathway”, “ABC trans-
porters”, “Microbial metabolism in diverse environments”, “Glyoxylate, dicarboxylate
metabolism”, etc., were also significantly enriched. The differentially accumulated metabo-
lites associated with these pathways included Glutamate, Protoheme, 2,4,5-Trichlorophenol,
L-Glutamic acid, 2-Oxoglutarate, and L-Glutamine (Supplementary File S2).
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3.6. The Integrative Analysis of Transcriptome and Metabolome for P. akamusi in Response to
Acute Hypoxia

To screen the associated genes and metabolites, we further performed an integrative
analysis of the transcriptome and metabolome using the correlation coefficient model.
The Pearson coefficient of gene expression and metabolite abundance was calculated
to evaluate the correlation between genes and metabolites, using the differential genes
and the differential metabolites in the top 50. The correlation matrix of the heat map
revealed the positive (red) and negative (blue) correlations between metabolites and genes,
as shown in Figure 8. The correlation data for the top 50 metabolites and genes are dis-
played in Supplementary Files S3 and S4. The integrative analysis of the transcriptome and
metabolome revealed metabolites associated with the ABC transporter pathway, including
“Carboxylic acids and derivatives” and “Biotin and derivatives”. More metabolites associ-
ated with microbial metabolism in the diverse environments pathway include “Hydroxy
acids and derivatives”, “Keto acids and derivatives”, “Benzene and substituted deriva-
tives”, “Benzene and substituted derivatives”, etc. Pathways related to energy metabolism
include protein digestion and absorption, glycolysis/gluconeogenesis, and citrate cycle
(TCA cycle), with corresponding metabolites such as “Carboxylic acids and derivatives”,
“Indoles and derivatives” and “Organoids”, “Indoles and derivatives”, “Organooxygen
compounds”, etc. In addition, Carboxylic acids and derivatives, Keto acids and derivatives,
and Dihydrofurans were found in the alcoholism and HIF-1 signaling pathway, and all
these metabolites were significantly related to the top 50 genes.
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4. Discussion

Propsilocerus akamusi can tolerate severe hypoxia and become the dominant species in
eutrophic lakes, yet the mechanism of this hypoxia tolerance has not been determined. In
addition, single omics cannot systematically explain the rapid biochemical reactions and
metabolic changes that are expected for acute hypoxia. Thus, we combined physiological
indicators and histomorphology observations with metabolome–transcriptome analysis to
comprehensively assess the histomorphological features, energy metabolism mechanism,
and antioxidant mechanism of P. akamusi larvae exposed to acute hypoxia. As well as most
predictions being confirmed, additional pathways related to the energy metabolism of the
fatty acid, protein, trehalose, and glyoxylate cycles were discovered as well. Furthermore,
acute hypoxic stress decreases rather than increases superoxide dismutase (SOD) activity,
and we also found that HIF-1 plays an important role in promoting glycogenolysis in acute
hypoxic conditions [50,51].

Hypoxic stress significantly altered histomorphological features and NKA activity to
result in apoptosis [52]. Meanwhile, the differentially expressed genes (DEGs) associated
with the transmembrane transport and vesical membrane were significantly enriched.
These results confirmed that cell membrane permeability and osmotic pressure are altered
under hypoxic stress, which in turn leads to cell membrane shrinkage and cell volume
reduction. The apoptotic mechanism in shrimp gills, hepatopancreas, and hemocytes in
response to hypoxia has also been studied [20,23,53]. In the present study, the activity of
NKA was promoted and showed a fluctuating upward trend in hypoxic stress. However,
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the activity of NKA in the previous study was significantly inhibited and found a significant
downward trend in crab and clam [26,54]. The reason for the different study results may be
that acute hypoxia significantly inhibited O2

− production, which may put the ROS level in
an “optimal redox potential range” and thus promote the activity of NKA [55]. Furthermore,
cellular ion balance was altered by promoting NKA activity, which in turn altered tissue
cell permeability, increased cytoplasmic density, and led to cellular tightening [56]. The
apoptotic vesicles formed were eventually phagocytosed by specialized phagocytes, which
may be the reason that the NKA activity decreased significantly under hypoxic stress
for 72 h. Therefore, apoptosis may be an important factor in the ability of P. akamusi to
tolerate acute hypoxic conditions for long periods. In addition, changes in experimental
temperature may be the main reason for the tendency of NKA activity to show fluctuating
changes. This is also a shortcoming of the present study.

To evaluate the effects of hypoxia on energy metabolism in P. akamusi, various param-
eters were measured. Hypoxic conditions resulted in a significant reduction in glycogen
concentrations, indicating a decrease in energy stores [57]. Significant enrichment of HIF-1-
related metabolite suggests that HIF-1 plays an important role in promoting glycogenolysis
to produce more ATP for Chironomidae to survive under acute hypoxia [50,51]. Addition-
ally, metabolites and DEGs associated with lipids, trehalose, protein digestion and absorp-
tion, and the glyoxylate cycle, including ATP-binding cassette, subfamily C (CFTR/MRP),
member 4 (ABCC4) ATP-binding cassette, and L-Glutamine, were also significantly en-
riched, which suggested that they also play an important role in energy metabolic pro-
cesses under hypoxic stress [58]. The rate of glycogen degradation was slow in acute
hypoxic conditions, and the longer-term hypoxia caused a further suppression of the
energy metabolism in Chironomus larvae, which may be the reason glycogen no longer
decreased after 48 h [28,59–61]. Lower glycogen content might be closely related to the
increase in LDH activities in the hypoxia group because P. akamusi, like Chaoborus crystalli-
nus and other macroinvertebrates, might also enhance glycogen decomposition to cope
with hypoxia [16,62]. In a previous study, ethanol was thought to be the sole end product
of glycogen degradation in Chironomus riparius larvae under hypoxic stress [14,15]. This
study not only monitored ethanol but also found that ADH activity significantly increased
after 48 h of hypoxic stress. However, this is evidence that differentially accumulated
metabolites of the microbial metabolism and oxidative pathway, including “Hydroxy acids
and derivatives”, “Keto acids and derivatives”, and “Carboxylic acids and derivatives”,
were significantly enriched. Animal cells did not have pyruvate decarboxylase, indicating
that ethanol was derived from the anaerobic metabolism of the symbiodinium, not from
P. akamusi larvae [63]. In conclusion, P. akamusi coped with energy deficiency and ethanol
toxicity under acute hypoxic stress by promoting glycogenolysis and increasing LDH and
ADH activities. The potential of ADH and LDH as biomarkers for quick evaluation of
hypoxia stress on Chironomidae is supported by the substantial positive connection be-
tween hypoxia duration and these enzymes. Our findings provide a new perspective on
the etiology of these species by proving that hypoxia is a stressful situation that causes the
organism to enter a compensatory response.

The main contribution of acute hypoxia stress to P. akamusi may be oxidative stress.
This study revealed that extreme hypoxia (DO 0.39 mg O2 L−1) significantly inhibited
the generation of O2

− and, therefore, limited the activity of the SOD [64]. However, the
result was contrary to our prediction. According to prior research, mild hypoxia (DO
4 mg O2 L−1) increased SOD activity, while severe hypoxia (DO 2 mg O2 L−1) had no
discernible impact on SOD [65,66]. However, SOD activity was suppressed in an anoxic
environment for 8 h, which is consistent with the findings of our experiment [67]. In
essence, the DO concentration and duration of hypoxia affected the level of SOD [13].
In contrast to SOD, the oxidative stress biomarker CAT was significantly promoted in
the acute hypoxia exposure group compared to the control group, and similar results
were observed in crab and shrimp [68–70]. The reasons for these results may be that
lactate produced by P. akamusi can be used as a substrate to generate H2O2 catalyzed
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by L-α-hydroxy acid oxidases, and ethanol, produced by symbiodinium, also stimulates
the function of peroxidase in CAT [64]. Elevated H2O2 and ethanol levels may result
in cell apoptosis in P. akamusi [71–76]. Our results showing that DEGs associated with
oxidoreductase and metabolites associated with the alcoholism pathway were significantly
enriched also verified the exploration. In addition, significant enrichment of cytochrome
P450 in DEGs, including (N-oxide forming)/hypotaurine monooxygenase (FMO) and
glucuronosyl transferase (UGT), indicated that cytochrome P450 also played an important
role in promoting ethanol metabolism [77]. In the actual freshwater ecosystem, dissolved
oxygen (DO) concentration fluctuations due to anthropogenic pressure and global warming
are notable on spatial and temporal scales [5,78–80]. However, the DO concentration was
the same in this study, and thus future investigations may require different combinations of
DO concentration. In addition, this study does not leave a lot of room for generalizing about
the mechanisms of hypoxia tolerance, since it is a single-species and single-population
study. Therefore, in future studies, we should select more than two species for comparative
analyses.

5. Conclusions

We combined histomorphological features and biomarkers with the transcriptome
and metabolome to answer the question of why P. akamusi can tolerate acute hypoxic stress
for long periods. Our results confirmed that the altered cell permeability and apoptosis,
which was induced by H2O2 and ethanol, was regulated by NKA, DEGs, and differentially
accumulated metabolites. Research results indicated that lipids, protein, and trehalose,
as well as glycogen, are also critical in energy metabolism under acute hypoxic stress.
Lactate was thought to be the end product of glycogen degradation, and HIF-1 plays
an important role in promoting glycogenolysis to produce more ATP for P. akamusi to
cope with acute hypoxic conditions. In addition, there may be a glyoxylate cycle in
P. akamusi or symbiodinium, which converts fatty acids into carbohydrates to cope with
insufficient energy. Ethanol produced by the anaerobic respiration of symbiodinium was
catalyzed by ADH, CAT, and cytochrome P450 to weaken its harm to the organism, and
its content also reflects the level of hypoxia in the environment. Although severe hypoxia
inhibited SOD activity, lactate, and ethanol promoted CAT activity. These results suggest
that some parameters related to energy metabolism, antioxidant enzyme activities, and
histomorphological features may be used as biomarkers of eutrophic lakes in Chironomus
riparius larvae. The study also provides a scientific reference for assessing toxicity and
favoring policies to reduce their impact on the environment.
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