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Simple Summary: A study was conducted in two vineyards located in Northern Italy to investigate
the effects of mechanical leaf removal, insecticide application, and their interaction on grapevine
arthropods. The results showed that the use of insecticides reduced the population densities of
leafhoppers and predatory mites. Mechanical leaf removal had a greater impact on the populations
of predatory mites compared to leafhoppers. Interestingly, in one of the vineyards, phytophagous
mite populations increased some weeks after both leaf removal and insecticide application. These
effects are discussed within the IPM framework.

Abstract: In this study, we tested the effects of mechanical leaf removal, insecticide application, and
their interaction on leafhoppers and phytophagous and predatory mites occurring in two vineyards
over three growing seasons. Leaf removal was performed in the fruit zone using a two-head pulsed
air leaf remover, while insecticides were applied with a tunnel air-assisted sprayer at the maxi-
mum dose/ha recommended on the product label. Results demonstrated the efficacy of insecticide
application in reducing the population densities of leafhoppers but also their detrimental effects
on predatory mites. In a number of case studies, leaf removal reduced leafhopper and predatory
mite densities. In one vineyard, phytophagous mite populations increased some weeks after leaf
removal and insecticide application, highlighting the need to carefully consider the potential impact
of vineyard management practices on non-target arthropods in the IPM framework.

Keywords: grapevines; Cicadellidae; Phytoseiidae; IPM; cultural practices; insecticides

1. Introduction

Italy has a vine-growing area of approximately 650,000 hectares [1] (Eurostat Statistics,
2022), with more than 90% dedicated to wine grape production. In 2018, Italian wine
exports had a net worth of about 7.3 billion USD [2], and grapevine cultivation in all
20 regions of Italy has an impact on tourism [3]. Several factors affect grapevine cultiva-
tion, ranging from insect pest infestations to diseases associated with plant pathogenic
fungi and viruses. The implementation of grapevine protection practices can have both
economic and environmental consequences. In Italy and in other European countries, com-
mon grapevine pathogens such as downy and powdery mildews respectively Plasmopara
viticola (Berk et Curt.) Berl. et de Toni and Erysiphe necator (Schwein), present significant
challenges to growers. As a result, the majority of pesticide applications carried out in
European vineyards are focused on the control of these diseases [4]. Insects pose a sig-
nificant threat to grapevine cultivation, and, among them, grapevine moths, particularly

Insects 2023, 14, 791. https://doi.org/10.3390/insects14100791 https://www.mdpi.com/journal/insects

https://doi.org/10.3390/insects14100791
https://doi.org/10.3390/insects14100791
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/insects
https://www.mdpi.com
https://orcid.org/0000-0002-1693-7709
https://orcid.org/0000-0002-7260-6242
https://orcid.org/0000-0002-2445-7211
https://orcid.org/0000-0002-2600-2536
https://doi.org/10.3390/insects14100791
https://www.mdpi.com/journal/insects
https://www.mdpi.com/article/10.3390/insects14100791?type=check_update&version=1


Insects 2023, 14, 791 2 of 16

Lobesia botrana (Denis & Schiffermüller) (Lepidoptera Tortricidae), are a major concern.
These pests cause direct damage to grape bunches and favor the proliferation of grey mold
(Botrytis cinerea) [4,5]. Leafhoppers (Hemiptera Cicadellidae) are also common components
of grapevine fauna and can cause significant damage. Empoasca vitis (Göthe) is a com-
mon species that alters photosynthesis, transpiration rate, and mesophyll conductance [6],
while Zygina rhamni Ferrari and Erasmoneura vulnerata (Fitch) feed on mesophyll [7,8]. The
leafhopper Scaphoideus titanus (Ball) is the most economically important pest affecting
Northern Italian vineyards and is the main vector of the phytoplasma associated with
Flavescence dorée (Chuche and Thiery 2014). Mealybugs are also a major concern, as
they can dramatically reduce yield and are important vectors of grapevine viruses [9–13].
Furthermore, spider mites (Acari: Tetranychidae) can compromise the net photosynthesis,
reducing plant growth and bunch quality [14]. To achieve optimal production standards,
the use of insecticides in viticulture is intense and sometimes mandatory, such as insecti-
cides against S. titanus in some Italian regions [15]. However, the use of insecticides raises
concerns for environmental and human health [16]. It is therefore important to develop
sustainable methods to manage insect pests to ensure the health and quality of grapevine
cultivation while minimizing negative impacts on the environment and human health.
Cultural practices offer a promising approach to mitigating the impact of grape diseases
and pests in viticulture. Research has shown that leaf canopy management practices can
have a significant impact, making them a potentially effective way to reduce pesticide
use [17–19]. Chellemi and Marois (1992) conducted a two-year experiment that demon-
strated a significant reduction in the incidence of powdery mildew in plots where basal
leaves were removed in the first experimental year (from 15.3% to 4.2%); this reduction
doubled in the second year. Leaf removal combined with three fungicide applications
achieved better control of damaged fruits compared to plots that received 11–12 fungicide
applications. Similarly, English et al. (1993) found that leaf removal reduced the incidence
of Botrytis bunch rot by up to 47%. Recent studies have also shown that the application
of leaf removal combined with biopesticides can enhance their efficacy [19]. Overall, leaf
removal has been extensively documented as having positive effects in controlling diseases
and increasing grape quality in several studies [20–24]. These findings suggest that incor-
porating cultural practices into vineyard management strategies can offer a sustainable and
effective way to manage grape diseases and pests while reducing the reliance on chemical
pesticides. Thus, understanding the effects of these practices on both pests and beneficial
insects is essential in developing sustainable pest management strategies.

1.1. Impact on Grapevine Arthropod Pests

The impact of leaf removal on grapevine arthropod pests has been less explored.
To date, the literature has primarily focused on the effects of leaf removal on L. botrana
populations and the consequent reduction of B. cinerea spread in vineyards. Vartholomaiou
et al. (2008), in a two-year experiment, found that shoot thinning and/or leaf removal
practices negatively impacted L. botrana infestation levels in vines under investigation
in both years, compared to control plots [25]. Pavan et al. (2016) applied leaf removal
10 days before the start of the second-generation flight of L. botrana and found that larval
infestation declined by about 50%. Furthermore, a positive effect was also recorded on the
third generation of L. botrana [26]. Kiaeian et al. (2018) demonstrated that the increase in
temperature due to sunlight exposure associated with bunch-zone leaf removal reduced
the infestation of the European grapevine moth [27]. Tacoli et al. (2019) compared the
effects of leaf removal, kaolin application, and B. thuringensis on the moth population. Leaf
removal and kaolin and Bt application resulted in a significant decline in moth infestation
levels compared to the control. Although Bt was the most effective, the efficacy of Bt and
kaolin when combined with leaf removal was similar [28]. In San Joaquin Valley (CA,
USA) vineyards, leaf removal proved to be an effective strategy to eliminate early-season
insecticide applications against leafhoppers, with positive implications for beneficial insects,
when this practice was applied to contrast bunch rot [29]. However, Tacoli et al. (2017)
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did not find any significant effect of leaf removal on E. vitis population densities when
combined with kaolin spraying on different canopy zones [30].

1.2. Effects on Beneficial Arthropods

The effects of cultural practices on beneficials have been less investigated. Prischmann
et al. (2006) reported no effects of leaf removal on predatory mite (Acari Phytoseiidae)
population densities [31]. In another study, leaf removal initially decreased phytoseiid mite
numbers, but their populations recovered to acceptable levels at the end of the season, even
in plots where leaf removal and kaolin treatments were combined [32]. The objective of
this study was to assess the impact of mechanical fruit-zone leaf removal, both alone and
in combination with insecticide application, on the population densities of leafhoppers and
mites occurring in two vineyards during three growing seasons.

2. Materials and Methods
2.1. Experimental Sites

This study was conducted during the 2019, 2020, and 2021 growing seasons in two con-
ventional farms located in the province of Treviso, Veneto Region, Northeastern Italy. The
farm A was in Mogliano Veneto and farm B was in the Susegana municipality. In 2019,
the trials were conducted only in farm A; in 2020, in both farms; and in 2021, only in farm
B. All trials were conducted on the Glera cultivar. In farm A, vines were trained with a
vertical shoot position (VSP) trellis system, while vines in farm B were trained with the
Sylvoz system. The trials were conducted on vineyards with a surface of about 3 hectares
(farm A) and about 4 hectares (farm B), planted in 2011 and 2012, respectively.

2.2. Experimental Design

A factorial experimental design was applied. The factors considered were mechanical
leaf removal (LR) and insecticide application (T), resulting in four treatments: 1. no leaf
removal, no insecticides (CTRL-NT); 2. no leaf removal, insecticides (CTRL-T); 3. leaf
removal, no insecticides (LR-NT); and 4. leaf removal, insecticides (LR-T). Tau-fluvalinate
(30 mL/hL) was used in farm A and acetamiprid (150 mL/hL) in farm B to control S. titanus
populations. Each treatment consisted of four replicates of about 50 vines. Leaf removal
was done mechanically using a two-head pulsed air leaf remover (OLMI, mod. two head
bilateral, Castiglione d’Asti, Italy). The forward speed was about 5 km/h with 0.8 bar
operating pressure. Leaf removal was performed near the peak of the first generation
of E. vitis, in order to minimize the total number of eggs laid and the occurrence of the
second leafhopper generation. Insecticide application was always performed after leaf
removal (Table 1) using a tunnel air-assisted sprayer (model “Drift Recovery”, Friuli,
Agricolmeccanica, Udine, Italy).

Table 1. Dates of leaf removal and insecticide application in the two farms and three growing seasons.

Year 2019 2020 2021

Farm Leaf Removal Insecticide
Application Leaf Removal Insecticide

Application Leaf Removal Insecticide
Application

A 19 June 2019
20 June 2019

Tau-fluvalinate
(30 mL/hL)

16 June 2020
17 June 2020

Tau-fluvalinate
(30 mL/hL)

\ \

B \ \ 18 June 2020
18 June 2020
Acetamiprid
(150 mL/hL)

2 July 2023
2 July 2021

Tau-fluvalinate
(30 mL/hL)

2.3. Sampling

Leafhoppers and mites (both phytophagous and predatory mites) were sampled to
assess the impact of leaf removal and insecticide application on grapevine arthropod com-
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munities. Before and after leaf removal and insecticide application, a total of 40 leaves
per treatment (10 leaves per replicate) were randomly collected from the fruit zone ap-
proximately every 14 days, between June and August. Each leaf was immediately visually
inspected for leafhoppers and all individuals were counted and removed using a brush.
The leaves were then inserted into a bag and transferred to the laboratory, where grapevine
arthropods were identified and quantified under a dissecting stereomicroscope (Stemi 508,
Carl Zeiss Microscopy GmbH, Jena, Germany).

2.4. Point Quadrat Analysis (PQA)

Point Quadrat Analysis (PQA) is a commonly used method to measure vegetation
patterns and structure. In this study, PQA was performed by inserting a rigid steel rod
horizontally into the vineyard canopy using holes drilled every 10 cm on a 1-m wooden
rod. Each treatment was repeated ten times, with four replicates carried out at random
locations in the fruit zone of the canopy. During each insertion, the presence of leaves,
clusters, and gaps in the canopy was noted. This information was used to calculate the leaf
layer number (LLN), fraction of canopy gaps (%CG), and fraction of interior leaves (%IL),
following the method described by Smart and Robinson (1991) [33]. PQA was conducted
at the same time as leaf sampling, before and after leaf removal. This allowed the impact of
leaf removal on the vineyard canopy to be measured and analyzed.

2.5. Data Analysis

To analyze the data, a repeated-measures linear mixed model was employed, using
the MIXED procedure of SAS® (ver. 9.4; SAS Institute Inc., Cary, NC, USA). The response
variable was the number of insects or mites per leaf, with repeated measures taken at
different times. Each farm’s data were analyzed separately, and sources of variation in the
model included leaf removal, insecticide application, sampling time, and their interaction,
which were tested using an F-test (α = 0.05). To compare the abundance of insects or mites
in different treatments, multiple t-tests (α = 0.05) were performed on the least-square means.
The Kenward–Roger method was used to estimate degrees of freedom, which can be used
to calculate non-integer values for error terms. Before analysis, model assumptions were
checked. The model was run on log-transformed data (n + 1), but untransformed data
are shown in the figures. The SLICE option of the LSMEANS statement was used to test
treatment effect variation during observation periods.

For the Point Quadrat Analysis data, the response variables were the leaf layer number
(LLN), fraction of canopy gaps (%CG), and fraction of interior leaves (%IL), which were
analyzed using the MIXED procedure of SAS. Treatment differences were evaluated with
an F-test (α = 0.05).

3. Results
3.1. Farm A—2019

The leafhoppers found in leaf samples were represented by nymphs of E. vitis and
Z. rhamni, but E. vitis was clearly dominant, accounting for more than 90% of the total
individuals. However, the densities of leafhoppers were relatively low and thus the total
number of leafhoppers was considered in the statistical analyses (Table 2). No differences
were found prior to leaf removal and insecticide application (F = 0.03; d.f. = 1, 12; p = 0.876).
In 2019, there was a decrease in leafhopper numbers with insecticide application, but the
leafhopper population appeared to recover later. Leaf removal did not affect the leafhopper
population (Figure 1; Table 2).
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Table 2. Results of the F-test for leafhoppers occurring in farm A during 2019.

Effect DF Num DF Den F-Value p-Value

Time 4 69 18.66 <0.0001
Insecticide 1 69 6.61 0.012
Leaf removal 1 69 0.99 0.323
Insecticide × Leaf removal 1 69 1.77 0.188
Time × Insecticide 4 69 7.10 <0.0001
Time × Leaf removal 4 69 2.32 0.052
Time × Insecticide × Leaf removal 4 69 1.04 0.395
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Mite communities were represented mostly by predatory mites belonging to the
Phytoseiidae family, particularly Amblyseius andersoni (Chant) and Kampinodromus aberrans
(Oudemans). The total number of phytoseiid mites was considered in the statistical analyses
(Table 3). Prior to leaf removal and insecticide application, no significant differences were
found among leaf removal treatments (F = 0.06; d.f. = 1, 12; p = 0.817). Furthermore, neither
leaf removal nor insecticide application had any effect on the number of phytoseiid mites.
Only the effect of time was significant (Figure 2; Table 3).

Table 3. Results of the F-test on phytoseiid mites occurring in farm A during 2019.

Effect DF Num DF Den F-Value p-Value

Time 5 72 22.34 <0.0001
Insecticide 1 72 3.35 0.071
Leaf removal 1 72 2.55 0.115
Insecticide × Leaf removal 1 72 2.96 0.089
Time × Insecticide 5 72 1.33 0.260
Time × Leaf removal 5 72 0.89 0.492
Time × Insecticide × Leaf removal 5 72 0.53 0.755

3.2. Farm A—2020

Among leafhoppers, E. vitis was confirmed to be the most commonly observed species,
while only a few individuals of Z. rhamni were found. Thus, the total number of individuals
was used for statistical analyses. No differences were found before leaf removal and
insecticide application (F = 3.12; d.f. = 1, 12; p = 0.103). A population decrease was observed
due to leaf removal and insecticide application, but no interactions between these factors
were noticed. Additionally, the effect of time was found to be significant (Table 4; Figure 3).
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Figure 3. Seasonal abundance of leafhoppers in treatments under comparison in farm A during 2020
(the red arrow indicates the leaf removal application, the black arrow indicates insecticide application).

Amblyseius andersoni and K. aberrans were confirmed to be the most prevalent predatory
mites and their total numbers were considered in the statistical analysis. No differences
among treatments were observed before leaf removal and insecticide application (F = 1.70;
d.f. = 3, 12; p = 0.177). Then, the effects of time, leaf removal, and insecticide application
were significant (Table 5) Furthermore, the interaction time × insecticide application was
also significant. Both leaf removal and insecticide application resulted in a reduction in
predatory mite densities (Figure 4; Table 5).
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Table 5. Results of the F-test on phytoseiid mites occurring in farm A during 2020.

Effect DF Num DF Den F-Value p-Value

Time 3 48 17.20 <0.0001
Insecticide 1 48 28.87 <0.0001
Leaf removal 1 48 5.09 0.029
Insecticide × Leaf removal 1 48 0.81 0.372
Time × Insecticide 3 48 2.99 0.040
Time × Leaf removal 3 48 1.04 0.385
Time × Insecticide × Leaf removal 3 48 0.65 0.587

Insects 2023, 14, x FOR PEER REVIEW 7 of 17 
 

 

= 1.70; d.f. = 3, 12; p = 0.177). Then, the effects of time, leaf removal, and insecticide appli-
cation were significant (Table 5) Furthermore, the interaction time × insecticide applica-
tion was also significant. Both leaf removal and insecticide application resulted in a re-
duction in predatory mite densities (Figure 4; Table 5). 

 
Figure 4. Seasonal abundance of phytoseiid mites in treatments under comparison in farm A during 
2020 (the red arrow indicates the leaf removal application, the black arrow insecticide application). 

Table 5. Results of the F-test on phytoseiid mites occurring in farm A during 2020. 

Effect DF Num DF Den F-Value p-Value 
Time 3 48 17.20 <0.0001 
Insecticide 1 48 28.87 <0.0001 
Leaf removal 1 48 5.09 0.029 
Insecticide × Leaf removal 1 48 0.81 0.372 
Time × Insecticide 3 48 2.99 0.040 
Time × Leaf removal 3 48 1.04 0.385 
Time × Insecticide × Leaf removal 3 48 0.65 0.587 

Before leaf removal in farm A, mean values for the leaf layer number (LLN) and frac-
tion of internal leaves (IL) were similar, with values of about 6 and 68% for LLN and IL, 
respectively (Table 6). Leaf removal performed on June 15 caused a significant reduction 
in canopy density, as indicated by point quadrat parameters that differed significantly 
from the control (CTRL). Two weeks later, at the end of June, a significant reduction of 
about 2.3 leaf layers and a decrease of about 5% in the fraction of IL was observed. One 
month later, at the end of July, the differences in LLN and the fraction of IL between leaf 
removal and CTRL treatments were maintained and even increased, with a reduction of 
about 3.3 and 17.5% for LLN and the fraction of IL, respectively. While leaf removal was 
observed to significantly impact the canopy density, neither treatment showed any differ-
ence in the fraction of canopy gaps (CG), with null values observed on all sampling dates 
throughout the season.  

Table 6. Results of the F-test for the LR effect on canopy density parameters calculated in farm A 
during 2020. 

Site Year Date Treatment LLN CG (%) IL (%) 

(A) 2020 15-June 
CTRL 5.98 0.00 67.87 
LR 6.11 0.00 67.80 

Figure 4. Seasonal abundance of phytoseiid mites in treatments under comparison in farm A during
2020 (the red arrow indicates the leaf removal application, the black arrow insecticide application).

Before leaf removal in farm A, mean values for the leaf layer number (LLN) and
fraction of internal leaves (IL) were similar, with values of about 6 and 68% for LLN and IL,
respectively (Table 6). Leaf removal performed on June 15 caused a significant reduction in
canopy density, as indicated by point quadrat parameters that differed significantly from
the control (CTRL). Two weeks later, at the end of June, a significant reduction of about 2.3
leaf layers and a decrease of about 5% in the fraction of IL was observed. One month later,
at the end of July, the differences in LLN and the fraction of IL between leaf removal and
CTRL treatments were maintained and even increased, with a reduction of about 3.3 and
17.5% for LLN and the fraction of IL, respectively. While leaf removal was observed to
significantly impact the canopy density, neither treatment showed any difference in the
fraction of canopy gaps (CG), with null values observed on all sampling dates throughout
the season.

3.3. Farm B—2020

Empoasca vitis remained the dominant species in the vineyard, with only a few indi-
viduals of Z. rhamni detected. As the total densities of leafhoppers were low, their total
numbers were pooled for data analysis (Table 7). No differences among treatments were
found prior to leaf removal and insecticide application (F = 1; d.f. = 3, 12; p = 0.426). Later
on, insecticide application, time, and their interaction resulted in significant differences.
Insecticide application significantly reduced leafhopper densities (Figure 5, Table 7). Al-
though leaf removal appeared to reduce leafhopper numbers, the effect was not statistically
significant (p = 0.057).
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Table 6. Results of the F-test for the LR effect on canopy density parameters calculated in farm A
during 2020.

Site Year Date Treatment LLN CG (%) IL (%)

(A) 2020

15-June

CTRL 5.98 0.00 67.87
LR 6.11 0.00 67.80
F-value 0.047 - 0.0005
p-value 0.8332 - 0.983

29-June

CTRL 7.38 0.00 72.69
LR 5.08 0.00 66.86
F-value 24.28 - 10.97
p-value 0.0026 - 0.016

15-July

CTRL 5.8 0.00 67.01
LR 4.75 0.00 58.25
F-value 2.92 - 2.43
p-value 0.1383 - 0.170

29-July

CTRL 7.78 0.00 74.59
LR 4.48 0.00 57.08
F-value 27.72 - 44.30
p-value 0.0019 - 0.0006

CTRL = no leaf-removal treatment; LR = leaf removal; LLN = leaf layer number; CG = fraction of canopy gaps;
IL = fraction of interior leaves.

Table 7. Results of the F-test on leafhoppers occurring in farm B during 2020.

Effect DF Num DF Den F-Value p-Value

Time 3 48 4.62 0.006
Insecticide 1 48 13.71 0.001
Leaf removal 1 48 3.80 0.057
Insecticide × Leaf removal 1 48 0.61 0.439
Time × Insecticide 3 48 3.25 0.029
Time × Leaf removal 3 48 0.43 0.732
Time × Insecticide × Leaf removal 3 48 0.23 0.877
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Figure 5. Seasonal abundance of leafhoppers in treatments under comparison in farm B during 2020
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Both predatory and phytophagous mites occurred in the vineyard (Figures 6 and 7).
The predatory mites detected were A. andersoni and K. aberrans, and their total numbers
were included in the statistical analysis (Table 8). No significant differences were observed
among treatments before leaf removal and insecticide application (F = 1.28; d.f. = 3, 12;
p = 0.326). Later on, phytoseiid mite densities were reduced by insecticides but not by
leaf-removal (p = 0.053); the effect of time was also significant as phytoseiid mite densities
varied over time (Table 8, Figure 6).
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Table 8. Results of the F-test on phytoseiid mites occurring in farm B during 2020.

Effect DF Num DF Den F-Value p-Value

Time 3 48 8.68 0.0001
Insecticide 1 48 5.45 <0.0001
Leaf removal 1 48 3.93 0.053
Insecticide × Leaf removal 1 48 0.02 0.901
Time × Insecticide 3 48 2.50 0.071
Time × Leaf removal 3 48 0.95 0.422
Time × Insecticide × Leaf removal 3 48 0.52 0.668

Phytophagous mites were represented by the spider mite Panonychus ulmi (Koch). No
differences were found before insecticide application (F = 3.36; d.f. = 3, 12; p = 0.055). The
effect of leaf removal and time was significant, as well as their interaction (Table 9). Higher
P. ulmi numbers were found in the leaf removal plots compared to the control but on one
date only (Figure 7). In contrast, insecticide application did not produce significant effects.
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Table 9. Results of the F-test for P. ulmi on farm B during 2020.

Effect DF Num DF Den F-Value p-Value

Time 3 48 30.39 <0.0001
Insecticide 1 48 2.35 0.133
Leaf removal 1 48 15.50 <0.001
Insecticide × Leaf removal 1 48 0.49 0.486
Time × Insecticide 3 48 0.50 0.683
Time × Leaf removal 3 48 10.12 <0.0001
Time × Insecticide × Leaf removal 3 48 0.65 0.589

Seasonal variations in Point Quadrat Analysis-derived parameters in farm B are re-
ported in Table 10. Similar to farm A, no differences were observed in mid-June concerning
canopy density parameters prior to leaf removal, with mean values ranging between 3.3
and 3.5% and between 43.8 and 45.4% for LLN and the fraction of IL, respectively. By
the end of June, after leaf removal (June 15), a reduction in canopy density was observed,
with mean values of Point Quadrat Analysis-derived parameters that differed significantly
among treatments. Leaf removal treatment resulted in a significant difference of about
−1 and −14% in LLN and the fraction of IL, respectively, when compared to the CTRL.
Two weeks later, on July 15, the CTRL canopy displayed more than doubled values of LLN
and the fraction of IL compared to the leaf removal treatment, with values of +2.18 and
+40% for LLN and %IL, respectively. Delayed secondary shoot development likely occurred
in the fruiting zone of the canopy in leaf removal canopies against the CTRL, recovering the
leaf density, with no differences in Point Quadrat Analysis-derived parameters two weeks
later, during the last sampling date at the end of July. As observed for the vineyard trained
as VSP in farm A, in farm B with the Sylvoz system, no differences were observed in the
fraction of CG among treatments. Meanwhile, differently from the higher LLN measured
in both treatments in the VSP canopies, an increasing trend in the fraction of canopy gaps
was noticeable in the Sylvoz system, even if not significant.

Table 10. Results of the F-test for the LR effect on canopy density parameters on farm B during 2020.

Site Year Date Treatment LLN CG % IL %

(B) 2020

15-June

CTRL 3.35 5.00 43.81
LR 3.53 0.00 45.38
F-value 0.45 3 0.267
p-value 0.5275 0.1340 0.624

29-Juny

CTRL 3.00 0.00 36.01
LR 2.06 2.78 22.05
F-value 16.94 1.00 2.92
p-value 0.0062 0.36 0.138

15-July

CTRL 4.03 0.00 52.14
LR 1.85 2.50 11.35
F-value 142.81 1.00 93.95
p-value <0.0001 0.36 0.0001

29-July

CTRL 3.38 0.00 47.42
LR 2.50 2.50 32.97
F-value 3.30 1.00 4.37
p-value 0.1194 0.3559 0.081

CTRL = no leaf removal treatment; LR = leaf removal; LLN = leaf layer number; CG = fraction of canopy gaps;
IL = fraction of interior leaves.

3.4. Farm B—2021

Regarding leafhoppers, no differences were found among treatments before leaf
removal and insecticide application (F = 0.77; d.f. = 3, 12; p = 0.876). After insecticide
application, a significant decrease in leafhopper densities was observed (Figure 8; Table 11).
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Table 11. Results of the F-test for leafhoppers on farm B during 2021.

Effect DF Num DF Den F-Value p-Value

Time 3 48 5.82 0.100
Insecticide 1 48 8.10 0.006
Leaf removal 1 48 0.90 0.347
Insecticide × Leaf removal 1 48 0.40 0.530
Time × Insecticide 3 48 0.97 0.416
Time × Leaf removal 3 48 0.70 0.557
Time × Insecticide × Leaf removal 3 48 0.33 0.801

During the first part of the growing season, the mite communities were predominantly
composed of phytoseiid mites (A. andersoni and K. aberrans). Before leaf removal and
insecticide application, no differences were observed among treatments (F = 1.90; d.f. = 3,
12; p = 0.1425). Later, both leaf removal and insecticide application had a significant impact
on phytoseiid mite densities (Figure 9; Table 12).
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Table 12. Results of the F-test for phytoseiid mites on farm B during 2021.

Effect DF Num DF Den F-Value p-Value

Time 3 48 4.13 0.011
Insecticide 1 48 23.6 <0.0001
Leaf removal 1 48 9.77 0.003
Insecticide × Leaf removal 1 48 1.54 0.220
Time × Insecticide 3 48 1.26 0.297
Time × Leaf removal 3 48 0.39 0.790
Time × Insecticide × Leaf removal 3 48 0.02 0.995

Tetranychid populations (P. ulmi) increased throughout the growing season (Figure 10).
No differences among treatments were found before leaf removal and insecticide appli-
cation (F = 0.10; d.f. = 3, 12; p = 0.959). Later, the effects of insecticide application and
time were significant (Figure 10; Table 13) as the tetranychid densities increased more in
insecticide-treated than untreated plots (Figure 10; Table 13).
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Table 13. Results of the F-test for P. ulmi on farm B during 2021.

Effect DF Num DF Den F-Value p-Value

Time 3 48 6.18 0.001
Insecticide 1 48 21.19 <0.0001
Leaf removal 1 48 1.63 0.207
Insecticide × Leaf removal 1 48 1.63 0.207
Time × Insecticide 3 48 3.48 0.023
Time × Leaf removal 3 48 0.14 0.935
Time × Insecticide × Leaf removal 3 48 0.21 0.891

Table 14 presents the results of the canopy density measurements obtained from
control and leaf removal treatments in farm B in 2021. In the previous case, similar values
of Point Quadrat Analysis-derived parameters were observed in the Sylvoz system on June
28, with mean values of about 3% for LLN and 35–45% for the fraction of IL, which did
not differ between treatments. However, a significant reduction in canopy density was
observed on July 7 following leaf removal treatment, with mean values of about −1.5%
for LLN and −22% for the fraction of IL. The leaf removal treatment maintained a sparser
canopy throughout the season, while the CTRL treatment showed stable values until
August, with LLN values of about 3.3–3.4% and fraction of IL values of 40–45%. However,
a substantial drop was observed on July 7 and 21 in the CTRL treatment, followed by
progressive leaf regrowth in the fruiting zone of the leaf removal canopy in terms of LLN
and the fraction of IL. Nevertheless, the LLN and IL Point Quadrat Analysis parameters
were significantly different between the leaf removal and CTRL treatments until the last



Insects 2023, 14, 791 13 of 16

sampling date, while no differences were observed for the fraction of CG among treatments
on all sampling dates.

Table 14. Results of the F-test for the LR effect on canopy density parameters on farm B during the
2021 season.

Site Year Date Treatment LLN CG % IL %

(B) 2021

28-Jun

CTRL 3.33 0.00 45.89
LR 3.05 0.00 35.80
F-value 1.42 - 3.66
p-value 0.2779 - 0.104

7-Jul

CTRL 3.425 0.00 45.71
LR 1.88 2.50 23.62
F-value 40.32 1.00 28.39
p-value 0.0007 0.3559 0.002

21-Jul

CTRL 3.35 0.00 40.35
LR 1.55 0.00 16.07
F-value 22.09 - 10.07
p-value 0.0033 - 0.019

4-Aug

CTRL 3.45 0.00 47.62
LR 2.8 0.00 37.18
F-value 9.57 - 11.49
p-value 0.021 - 0.015

CTRL = no leaf removal treatment; LR = leaf removal; LLN = leaf layer number; CG = fraction of canopy gaps;
IL = fraction of interior leaves.

4. Discussion

Leafhopper densities were affected by insecticide applications in all the case stud-
ies. Insecticide formulations were based on acetamiprid and tau-fluvalinate as active
ingredients, both considered effective against E. vitis and other leafhoppers in previous
investigations [8,34–37]. Our results are consistent with those reported in other areas and
suggest that the populations considered in this study did not evolve resistance to these com-
pounds. Throughout these trials, the population density of leafhoppers consistently failed
to reach the recommended action threshold for the Glera cultivar in Northeastern Italy. This
threshold suggests the need for insecticide application when the population exceeds two
motile forms per leaf [38,39]. We can assume that the yearly, mandatory application of at
least one insecticide treatment targeting S. titanus [15] may have significantly influenced the
leafhopper populations, making it challenging for them to attain significant density levels.
The effect of leaf removal on leafhopper populations varied across the four case studies.
Specifically, we observed a significant reduction in leafhopper densities in one trial where
leaf removal was applied, while another trial showed a similar trend, but only approaching
statistical significance (p = 0.057). The Point Quadrat Analysis showed that leaf removal
was applied correctly, with a significant decrease in the number of interior leaves in the
plots where leaf removal was applied. It is known that E. vitis prefers to colonize leaves
located inside the canopy [40–44]. Furthermore, Pavan and Picotti (2009) [40] demonstrated
that the number of eggs was proportional to the leaf density and thus a negative effect
of leaf removal on egg laying was expected. However, in some experiments, we did not
observe a significant effect of leaf removal on leafhopper populations, possibly due to
low population densities or the vigorous nature of the grape cultivar used. Despite the
potential benefits of leaf removal, it can have a negative impact on grape quality, limiting its
usefulness in practice. To achieve a stronger effect on leafhopper populations, leaf removal
may need to be repeated, but this is not always feasible or desirable [45,46].

Insecticide applications had a negative impact on predatory mite populations in three
out of four case studies, with very low densities observed in the remaining case. This
finding is consistent with other studies that have reported the effects of acetamiprid and
tau-fluvalinate on predatory mites [47–49]. Acetamiprid and tau-fluvalinate are frequently
used to control S. titanus, the main vector of phytoplasmas associated with Flavescence
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dorée disease, and the number of insecticide applications is increasing in Northeastern Italy.
The side effects of these and other insecticides on predatory mites can favor spider mite
infestations Indeed, in two out of four case studies, P. ulmi occurred at moderate levels. In
one of these studies, spider mites reached higher densities on plots treated with insecticides
than on control plots, suggesting that the use of these chemicals can disrupt the natural
balance of predator–prey interactions and lead to an increase in spider mite populations.

Leaf removal was associated with a decline in predatory mite numbers in two out
of four case studies. Tacoli et al. (2019) reported a similar trend, with phytoseiid mite
populations initially decreasing in response to leaf removal but then recolonizing the
canopy. The practice of leaf removal is known for reducing the relative humidity levels
inside the canopy [50,51], which can have a negative impact on predatory mites, particularly
on A. andersoni, which requires moderate to high relative humidity for molting and egg
hatching [52]. In one case study, spider mites were found to be more abundant in leaf
removal plots. It can be argued that factors inhibiting predatory mites, such as leaf removal,
may favor their prey. However, it is important to note that the negative effect of leaf
removal on predatory mites was, in this case, not statistically significant (p = 0.057).

5. Conclusions

Our study confirmed that insecticide applications containing acetamiprid and tau-
fluvalinate were effective in controlling E. vitis and other leafhoppers. No resistance
issues were encountered in the populations that we studied. While leaf removal had a
significant impact on leafhopper populations in one of the four case studies, it did not
have a substantial effect in the other three. Additionally, in two of the four case studies,
leaf removal led to a decline in predatory mite numbers, likely due to decreased humidity
levels. Therefore, it is important to carefully consider the potential effects of leaf removal on
leafhoppers as well as on predatory and phytophagous mites and to implement sustainable
and integrated pest management strategies that take into account the diverse ecological
interactions that occur within the vineyard ecosystem.
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