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Simple Summary: The effects of pesticides on honey bees are of great concern to beekeepers and
the general public. In particular, a class of pesticides called neonicotinoids has been found in some
studies to affect bee learning and colony function. A pesticide classified as a neonicotinoid, flonicamid,
has been detected in the residue analyses of honey and pollen samples for a published study, and
that compound was tested at three concentrations (0, 50, and 250 parts per billion (ppb)) in sugar
syrup in a field study with bee colonies and in two cage studies. Colony population levels, hive
weight changes, thermoregulation, and CO2 concentrations were measured in the field study, and
syrup consumption, thermoregulation, and survivorship by worker bees were measured in the cage
studies. No significant treatment effects of the pesticide exposure were observed in either the field
or the cage studies. These results support the idea that flonicamid is safe for honey bees at these
concentrations. Publishing such results when they occur is important, so people use safe pesticides
when they need them.

Abstract: The extent to which insecticides harm non-target beneficial insects is controversial. The
effects of long-term exposure on honey bees to sublethal concentrations of flonicamid, a pyridinecar-
boxamide compound used as a systemic insecticide against sucking insects, were examined in a field
study and two cage studies. The field study involved the continuous weight, temperature, and CO2

monitoring of 18 honey bee colonies, 6 of which were exposed over six weeks to 50 ppb flonicamid
in sugar syrup, 6 exposed to 250 ppb flonicamid in syrup, and 6 exposed to unadulterated syrup
(control). Treatments were derived from concentrations observed in honey samples in a published
study. No effects were observed on foraging activity, hive weight gain, thermoregulation, or average
CO2 concentrations. However, Varroa mite infestations may have also contributed to experimental
variability. The two cage studies, in which cages (200 newly-emerged bees in each) were exposed to
the same flonicamid concentrations as the field study and kept in a variable-temperature incubator,
likewise did not show any experiment-wide effects on survivorship, thermoregulation, or syrup
consumption. These results suggest that field applications of flonicamid that result in concentrations
as high as 250 ppb in honey may be largely safe for honey bees.

Keywords: neonicotinoid; sublethal effects; colony-level behavior; thermoregulation; bee cage study

1. Introduction

Honey bees are often exposed to insecticides, yet the extent to which they are harmed
by those insecticides remains controversial [1–3]. Neonicotinoid pesticides have been a
particular object of controversy. Neonicotinoids are agonists of the nicotinic acetylcholine
receptor (nAChR), causing insect paralysis and death [4]. Neonicotinoids typically have a
broad spectrum of insecticidal activity, low mammalian toxicity, and versatility in applica-
tion methods [5]. Some countries have banned neonicotinoid insecticides due to concerns
about the impact of residues on pollinators such as honey bees [6], and those bans have,
in turn, increased concerns about the potential impacts of insecticides used to replace
neonicotinoids [1,7].
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Flonicamid, a pyridinecarboxamide [8], has been categorized as a neonicotinoid insec-
ticide [9], although the mode of action is different from that of other neonicotinoids [10].
Flonicamid is a systemic insecticide with selective activity against thrips and hemipterous
pests, such as aphids and whiteflies [11]. Studies involving aphids showed that flonicamid
caused starvation by inhibiting stylet penetration to plant tissues [11]. The LD50 for honey
bees has been reported to be about seven parts per million (ppm) [12], although another
source reported acute oral and contact LD50 values in excess of 100 µg per bee (about
1000 ppm) [13]. Honey bees can be exposed extensively to sublethal concentrations during
foraging. In a study on the effects of landscapes on honey bee colony health conducted in
southern California, flonicamid was detected in 6 of 24 honey samples at concentrations of
up to 20 parts per billion (ppb) and in 6 of 33 bee bread (stored pollen) samples in concentra-
tions up to 42 ppb [14]. Other neonicotinoid pesticides, e.g., imidacloprid and clothianidin,
have been shown to have a measurable impact on colony behavior at concentrations as low
as 5 ppb [15–18].

The focus of this study was the effect of exposure of flonicamid on honey bee colony
behavior in a field experiment and on honey bee survivorship and thermoregulation in
controlled cage studies, as has been observed with those other pesticides mentioned above.
The sensor-based field methods described here have been used to detect sublethal effects of
a variety of pesticides on honey bee colony growth and activity [14–16,19]. The study site in
southern Arizona typically has low rainfall (usually <300 mm per year) with highly seasonal
nectar flows. By feeding colonies adulterated syrup during a nectar dearth, the confounding
effects of alternative sources of nectar can be reduced or removed, see [15,16,19]. Cage
studies, using temperatures that cycle every 24 h, have previously been shown to be
effective at showing treatment effects with the neonicotinoid imidacloprid [20].

2. Materials and Methods
2.1. Syrup Preparation

Control (0 ppb flonicamid) sucrose solution was mixed at 1:1 w:w (e.g., 500 g su-
crose:500 mL distilled water). Sucrose was added to distilled water in a 5-gallon bucket and
mixed using an electric drill with a mortar mixing attachment until sugar was completely
dissolved. Sucrose solution for solutions with flonicamid (PESTANAL, CAS# 158062-67-0)
was mixed in the same manner but 50 mL was withheld to allow for the added volume
of respective flonicamid spikes. Five hundred grams of sugar was dissolved in 450 mL
of distilled water to allow for the addition of a 50 mL spike to achieve 1 kg of treatment
solution. Nine hundred fifty grams of sugar solution was transferred to a Nalgene bottle,
then the 50 g was spike added to each individual bottle. A 10 ppm flonicamid stock solution
was made by dissolving 1.0 mg of flonicamid, in 100 mL of distilled water, using a mixing
bar but without heat. To avoid problems with static electricity, the flonicamid was weighed
into small, nonreactive plastic receptacles, those receptacles were placed in the solution, the
solution was stirred, and the receptacles were removed after the flonicamid had dissolved.
For the 50-ppb solution: 5 mL of the stock solution was mixed into 45 mL of distilled water
to achieve 50 mL of spike solution, which was then added to 950 g of the short sucrose
solution to achieve 1 kg of 50-ppb flonicamid syrup. For the 250-ppb solution, 25.0 mL of
stock solution was mixed into 25.0 mL of distilled water, and that solution was added to
950 g of the short solution to achieve 1 kg of 250-ppb flonicamid syrup.

2.2. Field Experiment

In March 2019, 18 bee colonies were obtained with marked European queens (Olivarez
Honey Bees, Inc. Orland, CA 95963, USA), each containing at least 1 kg honey bees in
painted, 10-frame, wooden Langstroth boxes (43.7 L capacity) with migratory wooden lids,
and installed in the Santa Rita Experimental Range (31◦47′2′ ′ N, 110◦51′37′ ′ W, elevation
1200 m). Each hive had 2–4 frames with sealed brood and was given a 1-frame feeder
and a second Langstroth box as a super. Hives were placed on stainless steel electronic
scales (Tekfa model B-2418 and Avery Weigh-Tronix model BSAO1824-200) (max. capacity:
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100 kg, precision: ±20 g; operating temperature: −30 ◦C to 70 ◦C) and linked to 16-bit
dataloggers (Hobo UX120-006M External Channel datalogger, Onset Computer Corpora-
tion, Bourne, MA, USA) with weight recorded every 5 min. The system had an overall
precision of approximately ±20 g. Hives were arranged in groups of 6 hives near a central
box containing electronic equipment and all hives faced south to reduce the effects of hive
direction on daily colony behavior. Hives within such a group were 0.5–1 m apart and
groups were >3 m apart. On 1 July, a temperature sensor (Thermochron iButtons, Maxim
Integrated, San Jose, CA, USA, precision ±0.06 ◦C) enclosed in plastic tissue embedding
cassettes (Thermo Fisher Scientific, Waltham, MA, USA) was stapled to the center of the
top bar on the 5th frame in the bottom box of each hive and set to record every 30 min
(a reduced sampling rate was used because of the limited data storage capacity of those
sensors). CO2 probes (model GMP251, Vaisala Inc., Helsinki, Finland), calibrated for 0–20%
concentrations, were placed on top of the center frames in the top box of each hive and
linked to UX120-006M dataloggers set to record every 5 min. Fewer probes were available
from 13 September–23 October, so the number of monitored hives decreased at that time
across all treatment groups.

Colonies were all fed 2 kg sugar syrup (1:1 w:w) and 200 g pollen patty, made at a
ratio of 1:1:1 corbicular pollen (Great Lakes Bee Co., Fremont, MI, USA): Granulated sugar:
Drivert sugar (Domino Foods, Yonkers, NY, USA). On 18 June, pieces of slick paperboard
coated with petroleum jelly and covered with mesh screens were inserted onto the hive
floor to monitor Varroa mite fall within the hive. The boards were removed 2 days later,
and the number of mites counted on each board. Infestation levels of Varroa were again
monitored post treatment in September. Colonies were treated for Varroa with amitraz
(Apivar, Veto-Pharma, Palaiseau, France) on 28 June and with thymol (Apiguard, Vita Bee
Health, Basingstoke, UK) on 8 October.

Hives were assessed on 11 July (pre-treatment), again on 6 September, 11 October,
15 November, and 14 February 2020 using a published protocol (see 13). Dates were chosen
to obtain sufficient data without frequent colony disruption. Briefly, the hive was opened
after the application of burlap smoke, and each frame was lifted out sequentially, gently
shaken to dislodge adult bees, photographed using a 16.3-megapixel digital camera (Canon
Rebel SL1, Canon USA, Inc., Melville, NY, USA), weighed on a portable scale (model
EC15, OHaus Corp., Parsippany, NJ, USA), and replaced in the hive. Frame photographs
were analyzed later in the laboratory (see below). During this first assessment, all hive
components (i.e., lid, inner cover, boxes, bottom board, etc.) were also shaken free of bees
and weighed. The total adult bee population weight was calculated by subtracting the
combined weights of hive components free of bees from the total hive weight with bees
recorded at midnight prior to the inspection. At the initial inspection, 3–5 g of honey was
collected from each hive into 50 mL centrifuge tubes and stored at −20 ◦C to preserve
them. Samples collected in September, prior to treatment, were pooled and subjected to
a full panel analysis for residues of pesticides and fungicides, from all major classes, by
the Laboratory Approval and Testing Division, Agricultural Marketing Service, USDA.
Honey samples were pooled within treatment group and subjected only to neonicotinoid
residue analysis.

After the initial assessment, hives were ranked with respect to adult bee mass and
then assigned to treatment group, with 6 hives per group, while ensuring that the average
colony bee masses per group were approximately equal and after eliminating assignments
that resulted in excessive spatial clumping of the treatments. Just prior to treatment all
broodless frames containing honey and/or pollen were replaced with frames of empty
drawn comb collected earlier from the same apiary. Colonies were then fed 2–3 kg syrup
twice per week from 16 July to 30 August. Syrup consumption per colony was recorded.
At each of the post-treatment assessments, the same protocol was followed, but only the
frames, hive lid, and inner cover were weighed, and those values were used to correct for
moisture content changes in the wood and improve estimates of adult bee mass.
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2.3. Cage Experiments

On 5 June 2021, at the Carl Hayden Bee Research Center in Tucson, AZ, several frames
of mature brood were removed from each of four colonies with Cordovan Italian queens
(C.F. Koehnen & Sons, Inc., Glenn, CA, USA) and placed in an incubator (Percival model I36VL)
at 32 ◦C and 50% r.h. Adult bees emerging over the following 48 h were distributed among
28 Plexiglas® cages (internal volume: 785 cm3) until cages had 200 bees (8 replicate cages per
group). Each cage had plastic feeding bottles containing 30 mL sugar solution and 60 mL
water, and a 4 × 4 cm square of wax foundation attached to a piece of screen hung vertically
in the center. The sugar syrup was prepared as described above. Two iButtons were attached
to the center of the square, one on either side, and programmed to record temperature every
5 min. All cages were placed in the incubator, on one of three shelves. Placement was random
with respect to treatment group. Temperature sensors were also placed on each shelf in the
incubator, in order to control for temperature gradients within the incubator. Pollen patty
was prepared as described above. A 10 g sample of the patty was placed inside a rubber
gasket accessed via a hole in the side of the cage. Two such samples were provided for the
July experiment (for a total of 20 g), and three were provided for the August experiment (for a
total of 30 g). Newly emerged bees were kept for one week at a constant 30 ◦C. Thereafter, the
temperature in the incubator was set to vary with 12 h at 30 ◦C and 12 h at 15 ◦C. Dead bees
were removed and counted 2–3 times per week.

Syrup consumption was measured by weighing the bottles of syrup 2–3 times per
week. Vials were emptied and refilled with fresh syrup weekly. Consumption per bee
was calculated as the observed consumption for a given cage divided by the number of
“bee-days” for that time period, calculated as the product of the average bee density during
a time period and the length of that time period in days. Consumption data in cages
with fewer than an average of 10 bees were removed from the analyses due to high error
relative to the mean. After five weeks, all remaining bees counted in each cage. The entire
experiment was repeated the following August.

2.4. Statistical Analysis

The area of sealed brood per frame was measured from photographs using Comb-
Count [21]. Continuous hive weight data per day (from midnight to midnight) were fit
with piecewise regression using R version 3.6.1 (R Development Core Team, 2020), with
100 iterations per day sample, yielding estimates for 4 break points, 5 slope values and
the adjusted r2. Three parameters were used: (1) Night slope (rate of hive weight change,
usually due to moisture loss, from midnight until dawn), (2) dawn break point (start of
daily hive active period), and (3) slope of the 1st segment after dawn (rate of morning
hive weight change). The slope of the 1st segment after dawn was attributed to both
forager departure and moisture loss (i.e., nectar drying, respiration). Weight loss due
to moisture was estimated from the night segment and its effects were removed from
the slope estimate, resulting in the estimate of the initial forager population. Days with
rainfall >3 mm, dates of hive evaluations, days with slopes <−0.4 kg/min or >0.4 kg/min,
and days with forager weight change >0 (indicating hive weight gain) were excluded. To
focus on the active season, analyses of hive weight data were limited to the three months
after the end of treatment.

Temperature data were transformed into daily average and within-day detrended
data, calculated as the difference between the 24 h running average and the raw data. Sine
curves were fit to 3-day subsamples of detrended data, and amplitudes from those curve
fits were used as a response variable [22] in C++ (Qt Creator 4.1.0). Three-day samples
were chosen to both ensure sufficient data (to reduce the impact of outliers) and maintain
sensitivity to shorter-term changes.

Data from hive assessments, hives scales, and temperature and CO2 sensors were
evaluated in repeated-measures MANOVAs with treatment group, sample day and their
interaction as fixed effects, hive number as a random effect, and an autoregressive (ar(1)
or arma(1,1)) variance model. For the forager population, daily hive weight change, and
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average daily temperature, estimated adult bee mass from the pre-treatment hive inspection
date was used as a covariate to control for pre-existing differences. Proc Univariate was
used with all response variables to inspect the data for normality. Data analysis was
limited to those days on which valid data for at least one hive in each treatment group
were included. Varroa mite fall was log-transformed and analyzed using ANOVA with
pre-treatment mite fall as a covariate.

For statistical analysis of the cage study temperature, data were limited to the first six
hours after the incubator temperature dropped to 15 ◦C, in order to focus on when cluster
temperatures were highest. The temperature data were then analyzed with treatment,
experiment, day and all two-way interactions as fixed effects and cage number as a random
effect. Similarly, average syrup consumption per bee per day during the course of the ex-
periment was analyzed with temperature, experiment, and their interaction as fixed effects.
Bee survivorship in cages was analyzed using the mixed-model Cox regression package
coxme in R, with the same model of fixed and random effects as that for syrup consumption.

3. Results
3.1. Flonicamid Concentrations

Flonicamid concentrations conformed to a large degree to the expected concentrations
(Table 1). Honey sampled pre-treatment had no flonicimid but did have flonicamid at the
approximate sugar syrup concentrations in November. By February, concentrations were
higher, as expected, as the honey dehydrates over time.

Table 1. Flonicamid concentrations in honey (sampled from bee hives) and in the sugar syrup treatment.

Matrix Treatment Group Pre Treatment November 2019 February 2020

Honey 50-ppb flonicamid 0 58 112
250-ppb flonicamid 0 272 360

Control 0 Tr Tr

Syrup 50-ppb flonicamid 67
250-ppb flonicamid 266

Control 0
Tr = trace (<3 ppb).

3.2. Field Study

Examples of brood frame photographs are shown (Figure 1). Exposure to flonicamid
at 50 and 250 ppb had no observable effect on any of the response variables measured here
(Table 2, Figure 2). Sharp changes in hive weight, such as at the end of September (see
Figure 2), were attributed to changes in group means due to the death of colonies and their
removal from the study. Variables measured at discrete intervals, i.e., adult bee mass and
surface area of sealed brood, were similar among treatment groups (Figure 3). While these
variables were measured on 4 occasions post-treatment, the final measurement in February
was excluded because of excessive mortality of the colonies post winter: Both the control
and 50-ppb treatment groups lost 4 of 6 colonies while the 250-ppb treatment group lost
2 of 6 colonies. A large part of the problem were likely Varroa mite levels—average mite
drop rose from 24 ± 3 mites per day in June to 150 ± 25 mites per day by September, in
spite of treatment in June.
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Figure 1. Examples of photographs of brood frames, including temperature sensor, taken on
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Table 2. Statistical results for flonicamid treatment.

Experiment Response Variable Factor Num. d.f. Den. d.f. F P

Field trial Log adult mass Treatment 2 13.53 0.10 0.908
Log brood Treatment 2 12.00 0.41 0.671

Forager mass Treatment 2 273.8 1.45 0.236
Daily hive wt.

change Treatment 2 76.06 1.23 0.298

Daily temp. Treatment 2 13.08 0.46 0.641
Log temp
amplitude Treatment 2 13.95 0.69 0.519

Daily CO2 Treatment 2 22.15 0.99 0.389
Log Varroa fall Treatment 2 13.00 2.48 0.123

Cage trials 6 h cluster temp. Treatment 2 41.84 1.29 0.285
Experiment 1 41.84 2.10 0.155

“num. d.f.” means numerator degrees of freedom; “den. d.f” means denominator degrees of freedom; “F” means
F statistic and “P” means probability of the observed F statistic.
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season in southern Arizona.
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Figure 3. Mean (SE) colony measures across treatment groups. (A) Brood surface area; (B) adult
bee mass.

3.3. Cage Studies

Bee cluster thermoregulation and sugar consumption per bee per day were unaffected
by treatment. Average syrup consumption per bee per day did differ a great deal between
the two experiments (see Table 2). Bees consumed 29.1 ± 0.6 mg per day of syrup on
average in the July cage study, and 19.7 ± 0.7 mg per day on average in the August cage
study, and the experiments were significantly different (F = 111.83, p < 0.0001). This was
attributed to the additional pollen patty provided to cages in the second cage experiment.
Analyses were conducted separately for each experiment, and no treatment effects were
observed (Table 3). Survivorship was also significantly different between the two studies
(z = −7.9, p < 0.0001), so survivorship with respect to treatment was considered separately
for each study (Table 4). Pairwise contrasts of the different treatment groups revealed a
significant difference between the 50 ppb and 250 ppb treatment groups in bee survivorship
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in the second cage experiment, but it is difficult to interpret as the result was not observed
in the first experiment.

Table 3. Post hoc t test statistics and probability (p) values for consumption per bee per day for the
two laboratory cage studies.

Contrast
1st Cage Study 2nd Cage Study

t p t p

Control vs. 50-ppb flonicamid −0.73 1.00 −0.03 1.00
Control vs. 250-ppb flonicamid −1.62 0.36 0.20 1.00

50-ppb FLO vs. 250-ppb flonicamid −0.89 1.00 0.23 1.00

Table 4. Z scores and probability (p) values for the Cox regression survivorship analysis for two
laboratory cage studies.

Contrast
1st Cage Study 2nd Cage Study

z p z p

Control vs. 50-ppb flonicamid −1.30 0.19 1.21 0.23
Control vs. 250-ppb flonicamid −1.14 0.25 −1.09 0.28

50-ppb FLO vs. 250-ppb flonicamid 0.21 0.83 −2.19 0.028

4. Discussion

Bee colonies, in general, are easy to access and exhibit particular colony-level be-
haviors, such as foraging activity, thermoregulation, and CO2 management, so they are
rich environments for the use of sensors. Response variables are often not limited to, say,
average daily values, but instead are modeled using different approaches to obtain further
information on between-day and within-day effects. Continuous weight and tempera-
ture data, for example, have been modeled using piecewise regression and sine curves,
respectively, to obtain additional information and parameters from those curve fits used
as response variables. Groups of worker bees in cages, without a queen, can also exhibit
aspects of colony behavior, such as thermoregulation, and cage studies have also been
effective at showing effects of sublethal pesticide exposure.

In previous work, this system of colony monitoring has demonstrated significant
effects of several pesticides on one or more response variables, even at very low (5 ppb)
concentrations [15–19]. Effects have been observed with respect to continuous data on hive
weight, temperature, and CO2 concentration. In this study, we used the same approach.
Treatment concentrations were derived from observed contamination levels in hive prod-
ucts sampled from commercial apiaries. However, no effects were observed with respect
to hive assessment data, or continuous hive data, or survivorship or thermoregulation in
cage studies. These results were unexpected. We did not gather data on learning, mobility,
disease resistance, or foraging behavior of individual bees, which have also been found to
be affected by sublethal pesticide exposure [23–25], but it can be argued that the colony is
the functional economic unit of beekeeping and therefore a logical subject for the study of
sublethal effects.

The lack of a significant effect of sublethal exposure of flonicamid on colony growth
or behavior, or worker longevity, should not be taken as evidence that flonicamid is
completely harmless to honey bees, but rather this study found no reason for concern
within the relevant parameters. Another factor to consider are the health concerns of other
pollinators, including other bees, wasps, flies, and butterflies. The impacts of flonicamid on
those pollinators may be different and need to be taken into account.

One factor in the field study which would have added to experimental variance was
high Varroa mite levels, in spite of treatment in June and again in October. The high
Varroa levels no doubt contributed to low colony survivorship: Two colonies in the low
flonicamid treatment group had died by the end of October, and a total of eight colonies
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had died by the end of the experiment in mid-February. Cage studies were conducted
twice, and those experiments were significantly different with respect to food consumption
and survivorship. Part of the reason for those differences likely had to do with different
amounts of pollen diet given in the two studies. However, significant differences in the
outcome of replicate cage studies have been reported elsewhere (e.g., [26]).

In conclusion, exposure to field-realistic concentrations of flonicamid did not have
any measurable effects on honey bee colony growth or behavior, nor did it affect longevity,
food consumption, or thermoregulation of worker bee groups in cages studies. While it
is important to note sublethal effects when they occur, we believe it is important to note
when they are not detected, in order to support the use of compounds, when compounds
need to be used, that have minimal impact on these pollinators.
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