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Simple Summary: Several regions of Slovenia and Hungary retained numerous centuries-old white
mulberry trees, evidence of past sericultural activities, being traditionally used to feed the silkworm
larvae. Attempts for the reintroduction of sericulture in these countries are ongoing. The current
study assessed the suitability of the locally adapted mulberry trees for contemporary sericultural
needs. Silkworm hybrids were fed with leaves of the selected local mulberry genotypes and the larvae
performance parameters (bodyweight, spinning success, cocoon quantity, and quality) were compared
to those fed with reference mulberry varieties. The chemical contents and nutritive parameters of the
mulberry leaves were determined, and connections were predicted between selected leaf compounds
and silkworm performance parameters. The local mulberries had higher total protein contents, and
lower total phenolic contents and differed in some individual phenolics, macro- and microelements
compared to the reference sericultural and fruit varieties. A combined positive influence of proteins,
specific phenolics, and microelements on larval growth and silk thread parameters was predicted.
The health status and gut microbiome compositions of larvae were also analyzed. The results of
the study indicate that selected local Slovenian and Hungarian mulberry varieties are suitable for
high-quality silk cocoon and raw silk production.

Abstract: Silkworm rearing activities ceased in the 1970′s in several European countries. Attempts on
the re-establishment of ecological and sustainable sericulture in Slovenia and Hungary are ongoing.
The aim of the study was to assess the usability of locally adapted mulberry genotypes for sericulture
and to estimate connections between leaf compound and silkworm performance parameters. A
controlled feeding experiment of silkworms was performed to test the influence of leaves from
selected trees on the growth of larvae, the health and microbiological status of larvae (e.g., gut
bacterial microbiome, Bombyx mori nucleopolyhedrovirus infection), weight of cocoons and raw silk
parameters. The Slovenian and Hungarian mulberry genotypes had significantly higher total protein
contents, and lower total phenolic contents and differed significantly in some individual phenolics
compared to the reference sericultural and fruit varieties. Significant differences were found in
the contents of the macro- and microelements, namely S, Mn, Fe, and Sr. Based on correlative
statistics and multivariate analysis, a combined positive influence of proteins, specific phenolics, and
microelements on larval growth and silk thread parameters was predicted. The results of the study
indicate that selected local Slovenian and Hungarian mulberry varieties are suitable for high-quality
silk cocoon and raw silk production.
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1. Introduction

Although China and India are the current monopolists in silk production, representing
more than 97% of the global sourcing of this natural fiber, there are initiatives for the re-
establishment of silk production in European countries which were major silk producers in
the past centuries [1]. In the time of the Austro-Hungarian Empire, sericulture was highly
developed in the territories of today’s Slovenia and Hungary. Due to the competition in
the global silk market, highly developed silkworm rearing in these two countries ceased
approximately 60 years ago [2–4]. Nowadays, all around these countries, we can still see
up to 600 years old white mulberry (Morus alba L.) trees—living monuments of sericultural
history, as the leaves of these trees were used for feeding the larvae of the domestic silk
moth (Bombyx mori L.) over centuries. These mulberry genotypes are adapted to the
local climatic and environmental conditions and were appropriate for feeding silkworm
larvae in the past. Sericulture subsided in the previous decades in Italy, and nowadays
production is increasing [5]. In Italy currently, high-performance hybrids of B. mori are
used for silk production, which are typically fed by selected mulberry genotypes. One
of the most important practical questions of the sericulture re-establishment attempt is,
whether the locally adapted genotypes in other European countries are appropriate for
feeding the modern hybrids of silkworm, or the reference varieties are necessary to achieve
appropriate performance (i.e., quality of silk cocoons according to the standards and
market’s expectations, and quantities comparable with rearing farms in Italy).

Recently, a joint Slovenian-Hungarian basic research project was implemented to
define the conditions for the re-establishment of ecologically and economically sustainable
sericulture. The main research question was whether the development and health status
of silkworm larvae, production of silk cocoons, and quality of raw silk are affected by the
diversity and nutritive characteristics of locally adapted mulberry trees native in Hungary
and Slovenia compared to reference varieties currently used for silkworm rearing. As a
multidisciplinary research approach, local mulberry genetic resources were catalogued and
their biochemical characteristics were analysed [6,7]. The aim of the presented research
was to test the selected genotypes in a silkworm feeding experiment and to compare their
effect on silkworm development, cocoon production, the health status of silkworm larvae,
and raw silk parameters, compared to reference mulberry varieties.

2. Materials and Methods
2.1. Mulberry Material for Silkworm Feeding Experiment

Mulberry genotypes from the mulberry collection were chosen for the feeding ex-
periment based on previous screening of metabolites in leaves [6,7], and were organized
into three sections: the first part is represented by Italian sericultural M. alba varieties
(‘Giazzola’, ‘Florio’, ‘Morettiana’) and the Japanese variety ‘Kokusou-20’ obtained from the
gene bank at the Centro di Ricerca per l’Agricoltura e Ambiente (CREA-AA), Laboratorio
di Gelsibachicoltura di Padova, Italy. The second part comprises vegetatively propagated
trees derived from the local historical Slovenian and Hungarian mulberries, which were
obtained during the classification of the mulberry gene pool. The third part of the collection
is intended for growing recent varieties of M. alba, M. nigra and M. australis as well as
hybrids of M. alba × rubra suitable for fruit production.

The choice of mulberry trees for reference plantation feeding experiments was con-
ducted according to: (1) geographical distribution of the original old local mulberry geno-
types in Hungary and Slovenia; (2) multivariate analyses of previous biochemical values of
original trees that allowed us to define seven chemotypes in more details in terms of the
composition of individual amino acids and phenolics [6,7], out of which genotypes rich in
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total proteins, total phenolics, chlorogenic acid, and particular flavonoids were chosen. For
the experiment, three to five trees of the same genotype were harvested.

Mulberry trees are grouped into four main sections:

(A) Slovenian mulberry genotypes: selected, locally adapted genotypes, obtained by
cuttings from old (trunk diameter > 180 cm) Slovenian M. alba trees (n = 10);

(B) Hungarian mulberry genotypes: selected, locally adapted genotypes, obtained by
cuttings from old (trunk diameter > 180 cm) Hungarian M. alba trees (n = 16);

(C) reference sericultural M. alba varieties, obtained from the mulberry gene bank of the
CREA-AA (‘Kokusou-20’, ‘Morettiana’, ‘Florio’, ‘Giazzola’);

(D) varieties of M. alba, M. alba× rubra, M. nigra and M. australis grown for fruit production.

The list of mulberry genotypes along with their location and geographic coordinates
of historical mulberry trees are presented in Supplementary Table S1.

2.2. Determination of the Chemical Composition of Mulberry Leaves

For biochemical analyses, five to seven fully developed sun-exposed leaves (5th to 7th
leaf below the apex) from a one-year branch were collected randomly per each sampled
tree (3–5 trees per selected genotype) and used as one sample. The trees were sampled
twice during the experiment on 16th and 23rd of June 2021. Samples were immediately
stored on dry ice, later transferred to a freezer at −80 ◦C, and subsequently freeze-dried
and grounded. The prepared samples were then stored in airtight vials at −20 ◦C prior to
biochemical analyses. The concentrations of the analyzed nutrients are calculated on a dry
weight (DW) basis.

Total proteins were determined spectrophotometrically at 595 nm, following the
Bradford procedure [8]. The total protein content was calculated based on a standard curve,
which was prepared using bovine serum albumin (BSA, 0.05–0.25 mg mL−1) and expressed
as mg BSA equivalent per 100 g of dried mulberry leaves (mg BSA/100 g DW).

Total phenolics of the methanolic extracts (3% formic acid in 95% methanol) were deter-
mined using the Folin-Ciocalteu method following the procedure of Ainsworth and Gille-
spie [9]. The absorbance was measured at 765 nm against a reagent blank (3% formic acid in
95% methanol). Gallic acid was used as the reference standard (GA, 0.025–0.25 mg mL−1).
The total PH was expressed as mg gallic acid equivalents per 100 g of dried leaf sample
(mg GAE/100 g DW).

Furthermore, the methanolic extracts were subjected to the gradient HPLC analysis
as described in detail in a previous study [6]. All considered phenolic compounds were
previously identified by a mass spectrometer (Thermo Finigan, San Jose, CA, USA) with
an electrospray interface (ESI) operating in negative ion mode as previously described
in Šelih et al. [7]. The identification of compounds was confirmed by comparing their
spectra, retention times, and fragmentation as well as by adding the standard solution
to the sample. Quantification was achieved by comparing with corresponding external
standards (chlorogenic acid, kaempferol, p-coumaric acid, rutin, and quercetin; all obtained
from Sigma Aldrich) of known concentrations. For the compounds for which the standards
were not available, related compounds were used as standards. Therefore, quercetin-3-O-
glucoside (isoquercetin), quercetin dirhamnosylhexoside and quercetin malonylhexoside
were quantified in quercetin equivalents, kaempferol acetylhexoside in kaempferol equiv-
alents, caffeoylquinic acid derivatives in equivalent of chlorogenic acid and p-coumaric
and p-coumaroylquinic acid derivatives in equivalent of p-coumaric acid. The contents of
individual compounds were expressed in mg/g DW.

Macro- and microelement analyses (phosphorus (P), sulphur (S), chlorine (Cl), potas-
sium (K), calcium (Ca), manganese (Mn), iron (Fe), nickel (Ni), zinc (Zn), rubidium (Rb)
and strontium (Sr)) were performed with a tabletop X-ray fluorescence (XRF) spectrometer
PEDUZO T02 (Jožef Stefan Institute, Slovenia) with rhodium-anode X-ray tube. X-ray
fluorescence was detected by a silicon drift diode detector (Amptek Inc., Bedford, MA,
USA). The energy resolution of the spectrometer at count rates below 1000 cps was 140 eV
at 5.9 keV. Measurements were performed in air and the samples were irradiated for
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1000–5000 s to ensure sufficiently low statistical error [10,11]. The spectra were analysed
by software operating in LabVIEW [12]. Element analysis was validated using standard
reference material NIST SRM 1573a (tomato leaves).

2.3. Silkworm Rearing
2.3.1. Silkworm Genetic Material

Certified, traceable silkworm genetic material (eggs of a polyhybrid strain) was
obtained from CREA-AA, Laboratory of Sericulture in Padua, Italy. The polyhybrid
(4-way-hybrid) strain was generated by crossing a parental Chinese strain (SC2 × SC3) ×
a parental Japanese strain (SG1 × SG3). Eggs proved to be negative to the microscopic
pebrine analysis, which is routinely carried out to detect Nosema bombycis infection.

2.3.2. Silkworm Rearing Technology

Estimation of the optimal timing for the start of silkworm rearing was determined by
observation of the vegetative status of mulberry trees according to the reference guidelines
of Brion [13].

The eggs of silkworm hybrids were transported from CREA-AA to the Faculty of
Agriculture and Life Sciences, University of Maribor, Slovenia in controlled temperature
conditions (25 ◦C). The eggs were weighed to have similar quantities for each lot, i.e., about
5000 larvae per thesis. In all five instars of silkworm development silkworms were reared
in faculties facility near reference plantation in cardboard boxes, changed after each moult.
Photoperiod was 12 h day-night. Rearing temperature and relative humidity all the time
varied between 23–26 ◦C and 45–60%, respectively. Rearing place was constantly aerated.

Until the beginning of the 4th developmental instar larvae were reared together in
a common box and fed with the mixture of leaves of Slovenian (Slo), Hungarian (Hu)
mulberry genotypes and reference sericultural varieties (ref) of Morus alba trees from the
mulberry collection (groups 1–4). After the 3rd moult larvae were randomly distributed
to 38 cardboard boxes (25 × 55 × 5 cm) in groups of 30 larvae to test individual mulberry
genotypes. For studies on gut microbiome analysis and haemocyte parameters, groups of
larvae were fed with mixtures of leaves according to the four main groups (i.e., Slo, Hu, ref,
and fruit varieties).

Larvae were fed ad libitum with leaves of selected genotypes/species of mulberry
trees. When in the rearing box about 10% of leaves from the previous feeding were left, a
new portion of food was added every 3–4 h during the day and every 6 h, during the night.
Leaves were offered until the last larva started to spin or for 12 days after the last moult to
those larvae which did not start to spin. After the start of each moult, food was not offered
for two days, in order to obtain complete moulting from all the individuals of each lot and
to start the following instar homogeneously.

The cumulative body weight of the larvae within one group was measured every 24
h. Larvae were observed for activities (e.g., eating, moulting, spinning) and health status
(signs of any disease).

Cocoons were collected eight days after beginning of spinning. The number and
cumulative weight of the cocoons were measured in each experimental group. Cocoons
were dried to 42–45% of the original fresh weight at 60 ◦C.

2.3.3. Monitoring the Health and Microbiological Status of Silkworm Larvae

The activity of larvae was checked at least six times per day, during feeding and
bodyweight measuring. Larvae showing signs of illness (e.g., inactivity, cessation of eating,
sluggishness, or flaccidity, colour changes, swollen body, fragile intersegmental membranes,
diarrhoea) or dead larvae were immediately removed from the group and were stored at
−20 ◦C until processing.
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Molecular Detection of Bombyx Mori Nucleopolyhedrovirus

Bombyx mori nucleopolyhedrovirus (BmNPV, Baculoviridae) (the causative agent of Grasserie
disease) has previously been detected in larvae at CREA-AA [14]. Vertical (transovar-
ial) transmission occurs with BmNPV, and the virus can persist in some larvae as sub-
lethal infection [15,16]. Therefore, diseased larvae were tested for infection by in-house
developed, qualitative real-time PCR (rt-PCR) assay using the TaqMan technology. Lar-
val specimens were homogenised in sterile ceramic mortars, and 10× volume sterile
phosphate-buffered saline (PBS) was added. Homogenates were centrifuged at 1500× g
for five minutes and total DNA was extracted from 200 µL supernatants, using the Qiagen
Viral DNA extraction kit (Qiagen, Hilden, Germany). The rt-PCR assay was targeting
the polymerase gene region (genomic primer: 5′-GCCACCGTAATCACRCGTCTTT-3′,
complementary primer: 5′-CGATAACCCGGGCAAAAA-3′ and TaqMan probe: 5′-FAM-
ACCTTCATTATTATCGTCAGCCGATTTGCG-TAMRA-3′. Samples were tested in dupli-
cates. The specificity of the assay was confirmed by direct sequencing of the amplification
products and identification through BLAST search in the gene bank databases. Relative
quantification of BmNPV DNA loads in the samples was based on cT values.

Identification of Gut Microbiome and Potential Bacterial Pathogens by
Metagenomic Studies

Three randomly selected, healthy 5th instar larvae were collected from groups fed
with Slovenian and Hungarian mulberry genotypes, reference varieties, M. australis, and
M. nigra. The guts of larvae from each pool were removed, homogenized, and total DNA
was extracted. The DNA samples were submitted to a metagenomic investigation targeting
the 16S rRNA gene of bacteria to reveal the bacterial gut microbiomes of silkworms, fed
with different genotypes and species of mulberry leaves.

After merging the paired-end reads by PEAR quality-based filtering, trimming was
performed by Trimmomatic, using 20 as the quality threshold, and reads longer than 50 bp
were retained only [17,18]. The remaining reads after deduplication by VSEARCH [19] were
taxonomically classified using Kraken2 (k = 35) with the NCBI non-redundant nucleotide
database for the shotgun sequenced samples [20,21]. In the case of 16S rRNA sequenced
samples for the classification the Greengenes database was used following chimera filtering
by VSEARCH [19,22]. The taxon classification data was managed in R (R Core Team) using
functions of package phyloseq [23,24].

Comparison of Selected Qualitative and Quantitative Hemogram Parameters in the Main
Feeding Groups of Larvae

For the description of the immune cells, 10 fifth instar larvae were collected from differ-
ent experimental groups. Haemolymph was collected by cutting a proleg into Schneider’s
insect medium supplemented with 5% foetal bovine serum and phenylthiourea. Tenfold
dilution of the haemolymph in the same medium was used to determine total cell count in
a Bürker counting chamber and 30 µL aliquots of the diluted cell suspensions were placed
on the spots of Hendley Essex—Diagnostic Microscope Slides for phenotype analysis.
The haemocytes were allowed to settle and adhere to the slide for 60 min in a humidity
chamber. After the one-hour incubation, the haemocytes were fixed with acetone for six
minutes and were classified according to morphological criteria [25,26]. The proportions of
three main haemocyte classes, the granular cells, the plasmacytes, and the prohemocytes
were determined.

2.4. Methods for Evaluation of Quality of Silk Cocoons

The number and cumulative weight of the cocoons were measured in each experi-
mental group. Cocoons were dried until they reached approximately 45% of their original
weight at 60 ◦C and sent to CREA-AA, Laboratory of Sericulture, for the analysis.
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The whole cocoon weight, the silk shell weight, and the silk percentage were calculated,
after cutting cocoons and extracting pupae on around 20 cocoons per sample. The silk
percentage was calculated according to Lee [27].

Ten cocoons for each experimental sample were used for experimental reeling on a
testing reeling machine apt to reel individual cocoons, by recording the silk thread length,
the title in deniers, the number of breakages, and the wastes.

2.5. Statistical Data Analysis

The results of biochemical analyses of mulberry leaves are shown as mean (average)
values (±standard deviation, SD) of the analyses on two sampling dates (16th and 23rd of
June 2021) during the feeding experiments, in which three to five trees were sampled and
used as one sample. Measurements were performed at least four times for each sample
and in duplicate. Assumptions of normality for all chemical traits were checked with
Kolmogorov–Smirnov test.

The chemical traits of mulberry leaves, silkworm weight (5–7th day/5th instar), cocoon
weight (fresh), silk thread parameters, and reeling wastes were presented by means and SD
and were statistically evaluated by one-way analysis of variance (ANOVA), followed by
post-hoc comparison according to Duncan. Letters describe significant differences among
genotypes and origin-dependent genotype groups.

The Pearson correlation coefficient (Sig. 2-tailed) was calculated between evaluated
chemical parameters, silkworm weight, cocoon weight, and silk thread parameters, to
analyze the correlative relationship between the measured parameters and to find out the
most effective differentiating traits.

Principal component analysis (PCA) enabled us to perform a comprehensive assess-
ment of chemical traits of individual trees, silkworm weight, cocoon weight, and silk thread
parameters by discriminating geographical distribution with respect to reference varieties.

IBM SPSS Statistics 25 (Armonk, New York, NY, USA; 2017), StatSoft, Inc. Statistica 8.0
(Victoria, Australia; 2007) and Past 3.17 (Zürich, Switzerland; 2020) software were used for
statistical analysis [28].

3. Results
3.1. Chemical Composition of the Leaves of Selected Slovenian and Hungarian Mulberry Genotypes,
Reference Sericultural and Fruit Varieties

The results of biochemical analyses of the total proteins, total phenolics and individual
phenolic components in leaves are presented in Figure 1A,B and Supplementary Table S2.
The highest total protein content was determined in genotype SM 101.1 (239.42 mg/g DW),
the lowest in the Bulgarian fruit genotype. Phenolics were the highest in M. alba × rubra
(21.51 mg/g DW) and the lowest in Slovenian genotype SM 6 (11.26 mg/g DW) (Figure 1A,
Supplementary Table S2).

By evaluating the individual phenolics in mulberry leaves, eight different hydrox-
ycinnamic acids and eleven flavonols were identified (Figure 1B, Supplementary Table S2).
The main phenolic acids, from the hydroxycinnamic group were caffeoylquinic deriva-
tives (with chlorogenic acid predominating) and p-coumaroylquinic acid derivatives. The
predominant flavonoids were quercetin and kaempferol glycosides. The main quercetin gly-
cosides were rutin, quercetin malonyl-hexoside, and quercetin-3-glucoside (isoquercetin),
whereas the predominant kaempferol glycoside was kaempferol acetyl-hexoside (Figure 1B,
Supplementary Table S2).

The maximum concentration of chlorogenic acid was determined in M. nigra
(18.05 mg/g DW), the minimum concentration in Hungarian genotype SO 1042 (4.00 mg/g DW).
Within the Slovenian mulberry genotypes, the highest concentration was determined in SE
5 (11.73 mg/g DW), whereas within the Hungarian genotypes in SO 1035 (13.52 mg/g DW).
Among the reference varieties ‘Kokusou-20’ yielded the highest chlorogenic acid content
(17.67 mg/g DW), whereas the concentration of 4-caffeoylquinic acid (4.36 mg/g DW) was
the highest in M. alba × rubra. The above-mentioned genotypes superior in chlorogenic
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acid were also characterized by the highest total caffeoylquinic acid derivatives (Figure 1B,
Supplementary Table S2).

Insects 2022, 13, x FOR PEER REVIEW 8 of 31 
 

 

 
Figure 1. The mean concentrations of the (A) total proteins and total phenolics (mg/g DW), and (B) 
the concentrations of individual phenolics (mg/g DW) in leaves of Slovenian, Hungarian old mul-
berry genotypes, reference sericultural, and fruit varieties. For detailed data and statistics see Table 
1 and Supplementary Table S2. 

The results of the element analysis of mulberry leaves are shown in Figure 2. P con-
centrations ranged between 1.07 and 2.04 g/kg DW and were the highest in genotype SE 
5. Some mulberries contained more than 1 g/kg DW of S with the highest concentration in 
genotype GMS 2532 (1.26 g/kg DW). K reached maximum concentration in genotype BA 
2225 (22.1 g/kg DW) and Ca in genotype GMS 2532 (20 g/kg DW) (Figure 2A, Supplemen-
tary Table S3). 

Figure 1. The mean concentrations of the (A) total proteins and total phenolics (mg/g DW), and
(B) the concentrations of individual phenolics (mg/g DW) in leaves of Slovenian, Hungarian old
mulberry genotypes, reference sericultural, and fruit varieties. For detailed data and statistics see
Table 1 and Supplementary Table S2.



Insects 2022, 13, 836 8 of 30

Table 1. Mean concentrations (±SD) of the total proteins, total phenolics, and predominant phenolics (mg/g DW) in Slovenian, Hungarian mulberry varieties,
reference sericultural varieties, and fruit varieties. Different letters (a–c) indicate significant differences (p < 0.05) in the concentrations of specific compounds
between the analysed groups, as determined by the post hoc Duncan test. n, number of repetitions.

n Total Proteins Total PH Chlorogenic a. 4-CQA c-CQA Rutin Q-3-glu QMH KAH *

Slovenian genotypes 19 211.48 ± 18.51 a 17.03 ± 2.07 b 9.07 ± 1.66 c 0.9 2± 0.30 b 1.50 ± 0.32 a 2.32 ± 0.63 b 0.2 6 ± 0.06 b 1.51 ± 0.30 ab 2.15 ± 0.48 a
Hungarian genotypes 25 211.89 ± 13.77 a 18.19 ± 2.02 b 9.97 ± 1.61 bc 0.91 ± 0.25 b 1.52 ± 0.48 a 2.81 ± 0.64 a 0.31 ± 0.08 ab 1.63 ± 0.43 a 2.29 ± 0.65 a
reference varieties 4 191.38 ± 12.72 ab 19.95 ± 1.21 a 11.72 ± 4.36 ab 1.03 ± 0.14 b 1.12 ± 0.37 a 3.27 ± 0.57 a 0.40 ± 0.15 a 1.63 ± 0.53 a 2.09 ± 0.87 a
fruit varieties 4 183.95 ± 24.20 b 20.07 ± 2.03 a 13.43 ± 3.61 a 2.47 ± 1.64 a 1.53 ± 1.07 a 1.63 ± 0.40 c 0.41 ± 0.26 a 1.26 ± 0.24 b 2.35 ± 1.31 a

* t PH, total phenolics; 4-CQA, 4-caffeoylquinnic acid; c-CQA, c-5-coumaroyilquinnic acid; Q-3-glu, quercetin-3-glucoside; QMH, quercetin-malonyl-hexoside; KAH,
kaempherol-acetyl-hexoside.
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The predominant coumaroylquinic acid derivative was 5-coumaroylquinic acid, whose
concentration was the highest in M. nigra, yielding a total coumaroylquinic acid amount of
10 mg/g DW, followed by M. alba × rubra with 7.39 mg/g DW.

Among quercetin glycosides, rutin concentration was the highest in Hungarian geno-
type TO 1131. Maximum quercetin malonylhexoside was determined in ‘Kokusou-20’
(2.25 mg/g DW). Quercetin-3-glucoside and kaempherol acetyl-hexoside were the high-
est M. alba × rubra. This hybrid was also characterized by the highest total kaempherol
glycoside derivatives (6.27 mg/g DW) (Figure 1B, Supplementary Table S2).

The results of the element analysis of mulberry leaves are shown in Figure 2. P con-
centrations ranged between 1.07 and 2.04 g/kg DW and were the highest in genotype
SE 5. Some mulberries contained more than 1 g/kg DW of S with the highest concen-
tration in genotype GMS 2532 (1.26 g/kg DW). K reached maximum concentration in
genotype BA 2225 (22.1 g/kg DW) and Ca in genotype GMS 2532 (20 g/kg DW) (Figure 2A,
Supplementary Table S3).
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Table 2. Mean concentrations (±SD) of the macroelements (g/kg DW) and the predominant mi-
croelements (mg/kg DW) in mulberry leaves in Slovenian, Hungarian mulberry varieties, reference
sericultural varieties, and fruit varieties. Different letters (a, b) indicate significant differences
(p < 0.05), which were determined using the post hoc Duncan test. n, number of repetitions.

n P S K Ca Cl

Slovenian genotypes 19 1.75 ± 0.75 0.88 ± 0.23 a 15.92 ± 3.59 17.14 ± 4.90 788.16 ± 36.26
Hungarian genotypes 25 1.42 ± 0.32 0.83 ± 0.19 ab 16.47 ± 3.16 14.03 ± 3.47 953.20 ± 34.69
reference varieties 4 1.52 ± 0.23 0.84 ± 0.80 ab 16.15 ± 4.39 14.63 ± 2.57 735.25 ± 27.79
fruit varieties 4 1.30 ± 0.18 0.62 ± 0.12 b 17.58 ± 1.48 14.20 ± 2.72 569.25 ± 18.45

Mn Fe Ni Zn Rb Sr

Slovenian genotypes 19 66.04 ± 14.58 a 147.42 ± 26.27 ab 28.35 ± 11.88 23.91 ± 11.34 36.23 ± 28.72 54.02 ± 25.16 ab
Hungarian genotypes 25 67.32 ± 21.29 a 154.36 ± 29.89 a 24.19 ± 9.40 19.98 ± 5.66 26.75 ± 9.73 72.01 ± 31.40 a
reference varieties 4 52.03 ± 6.16 ab 128.25 ± 21.42 ab 21.68 ± 8.06 18.20 ± 5.32 31.20 ± 20.27 35.10 ± 7.16 b
fruit varieties 4 45.38 ± 4.22 b 119.50 ± 7.05 b 23.65 ± 4.20 18.40 ± 4.59 22.40 ± 7.73 57.53 ± 15.07 ab

Among microelements, maximum Cl concentrations were found in genotype BE
1264.2 (1320 mg/kg DW). Fe and Ni concentrations were the highest in genotype GMS 2533.
The highest Zn concentration was found in Slovenian genotype SM 6. ‘Kokusou-20’ was
found to be rich in Rb (59.4 mg/kg DW), whereas Sr concentrations ranged from 22.8 to
152 mg/kg DW with the maximum value in GMS 2533 (Figure 2B, Supplementary Table S3).

3.2. Origin Dependent Differences in Chemical Composition of Mulberry Leaves

The mulberry genotypes were categorized according to their origin to Hungarian
and Slovenian old mulberry genotypes and compared to the reference and fruit varieties.
Based on the statistical evaluation of the chemical compounds we determined the signifi-
cant highest amounts of proteins in both Slovenian and Hungarian genotypes of M. alba,
when compared to fruit varieties, which had the lowest protein contents. The sericultural
reference varieties were intermediate in proteins (Table 1, Supplementary Table S2).

The significant highest amount of total phenolics was observed in classical contempo-
rary sericultural genotypes and fruit varieties. In Table 1 predominant individual phenolics
are summarised as mean values of Slovenian, Hungarian local genotypes, reference seri-
cultural, and fruit varieties, whereas the ranges of all analysed phenolics of individually
selected mulberry genotypes are presented in Supplementary Table S2. The least mean
content of chlorogenic acid was found in Slovenian genotypes, the most in fruit varieties.
Similarly, the highest amount of 4-caffeoylquinic acid was found in fruit varieties. The
highest amount of rutin was analysed in reference and Hungarian genotypes of M. alba,
the lowest in fruit varieties. Reference sericultural genotypes and fruit varieties have
the highest amount of quercetin-3-glucoside, the least concentration was determined in
Slovenian genotypes of mulberry trees. The highest amount of quercetin malonyl-hexoside
was found in the leaves of Hungarian and reference mulberry trees, the lowest in fruit
varieties (Table 1, Supplementary Table S2).

Significant differences between the mulberry groups in the contents of the main ele-
ments were determined for S, Mn, Fe, and Sr. Slovenian mulberry genotypes were charac-
terized by the highest S content, whereas the lowest was determined in fruit varieties. Both,
Slovenian and Hungarian genotypes were rich in Mn content. Fe was significantly highest
in Hungarian genotypes and lowest in fruit varieties. Sr was significantly enhanced in
Hungarian genotypes, whereas the lowest concentrations were found in reference varieties
(Table 2, Supplementary Table S3).

3.3. Description of the Influence of Feeding Silkworms with Leaves of Various Genotypes of
Mulberry Trees on Larval Development

The highest silkworm weight was obtained when silkworms were fed with the Hun-
garian genotype BA 2151 and the lowest with ZA 1060 (Supplementary Table S4). Out of
Slovenian varieties, the maximum weight was obtained when larvae were fed with leaves
of SP12 mulberry genotype, the lowest weight was determined for larvae that were fed with
Submediterrean varieties (SM6, SM101.1, SM137). Among the reference varieties, signifi-
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cantly higher weight was obtained by feeding them with ‘Florio’. Among the fruit varieties,
larvae fed with M. nigra gave the highest weight (Figure 3, Supplementary Table S4).
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Figure 3. Mean weight of a larvae (±SD) on day 5 (black dots), 6 (red dots), 7 (blue dots) of the fifth
instar when fed with Slovenian, Hungarian mulberry varieties, reference sericultural varieties, and
fruit varieties. For detailed data and statistics see Table 3 and Supplementary Table S4.

Table 3. Mean weight (±SD) of a larvae and cocoon fresh weight (FW, g) when fed with Slovenian,
Hungarian mulberry varieties, reference sericultural varieties, and fruit varieties. Different letters (a,
b) indicate significant differences (p < 0.05), which were determined using the post hoc Duncan test.
FW, fresh weight. n, number of repetitions.

n 5th Instar/5th D 5th Instar/6th D 5th Instar/7th D Cocoon FW

Slovenian mulberry genotypes 19 3.97 ± 0.46 b 4.28 ± 0.33 b 4.77 ± 0.46 b 2.14 ± 0.12 a
Hungarian mulberry genotypes 25 4.32 ± 0.46 ab 4.46 ± 0.34 b 4.96 ± 0.43 b 2.26 ± 0.09 a
reference sericultural varieties 4 4.54 ± 0.38 a 4.85 ± 0.23 a 5.36 ± 0.36 a 2.25 ± 0.14 a
fruit varieties 4 4.39 ± 0.57 ab 4.55 ± 0.33 ab 5.07 ± 0.30 ab 2.20 ± 0.14 a

3.4. Origin Dependent Differences in the Growth of the Silkworm Larvae and Cocoon Weight

Based on statistical evaluation of the four main groups (Slovenian, Hungarian, ref-
erence sericultural and fruit varieties) reference sericultural varieties were characterized
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by the highest larval growth, whereas no statistical differences were found between mean
cocoon fresh weight (Table 3).

3.5. Description of the Influence of Feeding Silkworms with Leaves of Various Mulberry Genotypes
on the Quality of Raw Silk

Among Slovenian varieties, the maximum length was obtained when larvae were fed
with Slovenian variety SP 256. Superior length was also obtained with GMS 2286, whereas
the lowest was obtained with the reference varieties ‘Giazzola’, Bulgarian fruit genotype,
and M. alba × rubra, which also gave the lowest raw silk weight. Significant highest weight
was obtained with Hungarian genotype SO 1013. The Hungarian genotype BE 1264.2 was
characterized by the highest thickness and the Slovenian genotype SM 137 with the lowest.
When analysing the reeling wastes, the highest struse was found in most of the Hungarian
varieties and the significant highest telette was determined in Hungarian variety GMS 2533
(Supplementary Table S4).

3.6. Origin Dependent Differences in the Quality of Raw Silk

There was a trend for longer silk thread production when larvae were fed with Slove-
nian and Hungarian varieties in comparison to reference sericultural varieties, although the
trend was insignificant. Fruit varieties were characterized by a shorter length and weight
of raw silk. Struse was significantly largest when larvae were fed with Hungarian varieties,
thickness and telette did not significantly differ among the groups. When analysing reeling
wastes struse was highest in Hungarian genotypes and lowest in Slovenian genotypes and
fruit varieties. There were no significant differences in telette (Table 4).

Table 4. Mean (±SD) raw silk and reeling waste parameters (g) of Slovenian, Hungarian mulberry
varieties, reference sericultural varieties, and fruit varieties. Different letters (a, b) indicate significant
differences (p < 0.05), which were determined using the post hoc Duncan test. n, number of repetitions.

n Silk Thread Parameters Reeling Wastes

Length Weight Thickness Struse Telette

Slovenian genotypes 95 1419.09 ± 64.14 a 0.43 ± 0.03 a 2.72 ± 0.13 a 0.036 ± 0.013 b 0.017 ± 0.009 a
Hungarian genotypes 211 1429.18 ± 94.82 a 0.44 ± 0.03 a 2.82 ± 0.15 a 0.047 ± 0.022 a 0.021 ± 0.019 a
reference varieties 70 1363.20 ± 135.94 a 0.43 ± 0.02 a 2.84 ± 0.19 a 0.043 ± 0.016 ab 0.017 ± 0.016 a
fruit varieties 30 1244.80 ± 44.03 b 0.37 ± 0.03 b 2.73 ± 0.13 a 0.040 ± 0.020 b 0.022 ± 0.016 a

3.7. Correlation between Mulberry Metabolites, Silkworm, and Raw Silk Parameters

A high correlation was found between silkworm weight and raw silk thickness, as well
as raw silk length, and weight; whereas a negative between silk thread parameters (length,
weight) and reeling waste (telette, struse). The results of the chemical analysis of mulberry
leaves indicate a strong correlation between total proteins and raw silk length and weight.
Among phenolic acids, t-5-coumaroylquinic acid correlated strongly with the weight of
silkworms. There was a medium negative correlation between p-coumaric acid hexoside
and raw silk length. Among flavonols, rutin correlated positively with struse. There was
a negative correlation between kaempherol-dirhamnosyl-hexoside and raw silk length
and weight, whereas a positive correlation between kaempherol-rhamnosyl-hexoside and
struse (Table 5).
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Table 5. Pearson’s correlation coefficient between silkworm, cocoon, and raw silk parameters in
relation to the main phenolics (n = 32) in mulberry leaves listed according to their retention times
on HPLC.

Silkworm Weight (Larvae/g) Cocoon Weight Silk Thread Reeling Waste

Correlations 5th C/5th
D 6th D 7th D Mean 3d

Weight Fresh Dry Length Weight Thickness Struse Telette

5th C/5th D 1 00.856** 0.764 ** 0.934 ** 0.777 ** 0.766 ** −0.11 0.191 0.438 * 0.234 0.121
5th C/6th D 0.856 ** 1 0.907 ** 0.967 ** 0.713 ** 0.715 ** −0.088 0.21 0.452 ** 0.18 0.066
5th C/7th D 0.764 ** 0.907 ** 1 0.935 ** 0.607 ** 0.618 ** −0.032 0.166 0.298 0.226 0.133
mean 3d weight 0.934 ** 0.967 ** 0.935 ** 1 0.744 ** 0.745 ** −0.082 0.199 0.418 * 0.229 0.116
cocoon FW 0.777 ** 0.713 ** 0.607 ** 0.744 ** 1 0.992 ** 0.024 0.376 * 0.562 ** 0.193 0.081
cocoon DW 0.766 ** 0.715 ** 0.618 ** 0.745 ** 0.992 ** 1 0.016 0.378 * 0.583 ** 0.189 0.076
length −0.11 −0.088 −0.032 −0.082 0.024 0.016 1 0.785 ** −0.075 −00.368 * −0.183
weight 0.191 0.21 0.166 0.199 0.376 * 0.378 * 0.785 ** 1 0.555 ** −00.455 ** −0.07
thickness 0.438 * 0.452 ** 0.298 0.418 * 0.562 ** 0.583 ** −0.075 0.555 ** 1 −0.269 0.099
struse 0.234 0.18 0.226 0.229 0.193 0.189 −0.368 * −0.455 ** −0.269 1 0.176
telette 0.121 0.066 0.133 0.116 0.081 0.076 −0.183 −0.07 0.099 0.176 1
total proteins −0.198 −0.139 −0.116 −0.164 0.083 0.073 0.448 ** 0.495 ** 0.175 −0.024 −0.262
total phenolics −0.001 0.131 0.137 0.087 0.096 0.108 −0.197 −0.12 0.069 0.191 0.13
chlorogenic a. 0.02 0.202 0.228 0.148 0.205 0.205 −0.198 −0.068 0.165 0.211 0.15
4-caffeoyl-QA −0.092 −0.12 0.006 −0.071 −0.125 −0.136 −0.329 −0.312 −0.098 0.211 0.246
5-caffeoyl-QA −0.031 −0.068 −0.002 −0.034 0.004 0.019 0.109 0.079 −0.023 0.046 −0.15
total caffeoyl-QA −0.003 0.154 0.206 0.117 0.157 0.155 −0.248 −0.127 0.126 0.236 0.186
c-5-CQA 0.023 0.034 0.037 0.033 0.231 0.225 0.21 0.272 0.176 0.034 −0.167
t-5-CQA −0.451 ** −0.328 −0.281 −0.382 −0.265 −0.28 −0.01 0.002 0.003 −0.1 −0.092
p-CAH −0.048 −0.15 −0.059 −0.084 −0.123 −0.13 −0.378 * −0.322 −0.045 0.158 0.196
p-CAH2 −0.044 −0.057 −0.1 −0.07 0.028 0.008 0.15 0.168 0.066 0.05 −0.281
p-CQA −0.147 −0.181 −0.154 −0.168 −0.094 −0.09 −0.283 −0.313 −0.097 0.121 −0.034
total coumaroyl-QA −0.183 −0.171 −0.146 −0.177 −0.04 −0.055 0.007 0.05 0.065 0.044 −0.145
rutin −0.179 −0.054 −0.05 −0.108 0.081 0.101 −0.02 −0.041 −0.033 0.364 * −0.018
Q-3-glu −0.326 −0.105 −0.056 −0.185 −0.163 −0.153 −0.247 −0.342 −0.225 0.298 0.033
QMH −0.268 0.02 −0.047 −0.122 0.098 0.11 0.085 0.177 0.193 −0.029 −0.161
Q-diR-gly −0.082 −0.098 −0.132 −0.109 −0.155 −0.128 −0.209 −0.228 −0.088 0.086 0.011
QRH −0.299 −0.301 −0.235 −0.295 −0.25 −0.27 −0.16 −0.304 −0.303 0.127 0.155
Q-acetyl-RH −0.207 −0.185 −0.084 −0.168 −0.044 −0.065 −0.082 −0.125 −0.1 0.046 −0.047
QAH 0.009 0.135 0.006 0.045 0.284 0.275 −0.132 0.054 0.264 0.189 −0.12
total quercetin-gly −0.27 −0.044 −0.071 −0.15 0.077 0.097 −0.037 −0.018 0.033 0.298 −0.077
KAH −0.197 −0.071 −0.007 −0.105 −0.043 −0.044 −0.077 −0.028 0.066 0.086 0.054

K-diRH 0.126 0.054 −0.044 0.052 0.05 0.01 −0.525
** −0.407 * 0.042 0.284 0.231

KRH −0.199 −0.175 −0.075 −0.16 0.003 0.012 −0.152 −0.204 −0.125 0.482 ** 0.106
K-acetyl-RH −0.192 −0.175 −0.091 −0.163 −0.216 −0.23 −0.247 −0.324 −0.22 0.163 0.167
total K-gly. deriv. * −0.194 −0.101 −0.038 −0.123 −0.046 −0.053 −0.202 −0.162 0.011 0.231 0.118

** Correlation is significant at the 0.01 level (2-tailed); * Correlation is significant at the 0.05 level (2-tailed). FW,
fresh weight; DW, dry weight. * 4-caffeoyl-QA, 4-caffeoylquinic acid; 5-caffeoyl-QA, 5-caffeoylquinic acid; 5-total
CQA, total caffeoylquinic acid derivatives; c-5-CQA, c-5-coumaroylquinic acid; t-5-CQA, t-5-coumaroylquinic acid;
p-CAH, p-coumaric acid hexoside; p-CAH2, p-coumaric acid hexoside 2; p-CQA, p-coumaroylquinic acid; total
CQA, total coumaroylquinic acid derivatives; Q-3-glu, quercetin-3-glucoside; QMH, quercetin malonyl-hexoside;
Q-diR-gly, quercetin dirhamnosyl-glycoside; QRH, quercetin rhamnosyl-hexoside; Q-acetyl-RH, quercetin acetyl-
rhamnosyl hexoside; QAH.

There was no significant correlation between the macroelements and silkworm weight,
silk thread parameters, and reeling waste. Among microelements, Cl correlated positively
with silk weight, while Fe and Sr correlated with telette (Table 6).

Table 6. Pearson’s correlation coefficient between silkworm, cocoon, and raw silk parameters in
relation to the macro- and microelements (n = 32) in mulberry leaves.

Silkworm Weight (Larvae/g) Cocoon Weight Silk Thread Parameters Reeling Waste

Correlations 5th
C/5th D

5th
C/6th D

5th
C/7th D

3d
Weight Fresh Dry Length Weight Thickness Struse Telette

5th C/5th D 1 0.856 ** 0.764 ** 0.934 ** 0.777 ** 0.766 ** −0.11 0.191 0.438 * 0.234 0.121
5th C/6th D 0.856 ** 1 0.907 ** 0.967 ** 0.713 ** 0.715 ** −0.088 0.21 0.452 ** 0.18 0.066
5th C/7th D 0.764 ** 0.907 ** 1 0.935 ** 0.607 ** 0.618 ** −0.032 0.166 0.298 0.226 0.133
mean 3d weight 0.934 ** 0.967 ** 0.935 ** 1 0.744 ** 0.745 ** −0.082 0.199 0.418 * 0.229 0.116
cocoon FW 0.777 ** 0.713 ** 0.607 ** 0.744 ** 1 0.992 ** 0.024 0.376 * 0.562 ** 0.193 0.081
cocoon DW 0.766 ** 0.715 ** 0.618 ** 0.745 ** 0.992 ** 1 0.016 0.378 * 0.583 ** 0.189 0.076
length −0.11 −0.088 −0.032 −0.082 0.024 0.016 1 0.785 ** −0.075 −0.368 * −0.183
weight 0.191 0.21 0.166 0.199 0.376 * 0.378 * 0.785 ** 1 0.555 ** −0.455 ** −0.07
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Table 6. Cont.

Silkworm Weight (larvae/g) Cocoon Weight Silk Thread Parameters Reeling Waste

Correlations 5th
C/5th D

5th
C/6th D

5th
C/7th D

3d
Weight Fresh Dry Length Weight Thickness Struse Telette

thickness 0.438 * 0.452 ** 0.298 0.418 * 0.562 ** 0.583 ** −0.075 0.555 ** 1 −0.269 0.099
struse 0.234 0.18 0.226 0.229 0.193 0.189 −0.368 * −0.455 ** −0.269 1 0.176
telette 0.121 0.066 0.133 0.116 0.081 0.076 −0.183 −0.07 0.099 0.176 1
P −0.016 0.001 −0.001 −0.006 0.144 0.129 0.269 0.261 0.052 −0.068 −0.097
S 0.207 0.212 0.347 0.271 0.075 0.08 0.228 0.287 0.135 −0.017 0.331
K 0.288 0.236 0.208 0.262 0.282 0.296 0.178 0.234 0.176 −0.14 −0.155
Ca 0.074 −0.108 −0.086 −0.032 −0.103 −0.141 −0.16 −0.1 0.021 −0.108 0.166
Cl −0.003 −0.136 −0.194 −0.11 0.042 0.063 0.237 0.352 * 0.249 −0.211 −0.022
Mn −0.058 −0.152 −0.05 −0.086 −0.035 −0.041 0.334 0.324 0.058 −0.106 0.226
Fe −0.074 −0.115 −0.062 −0.086 −0.184 −0.202 0.167 0.113 −0.062 −0.019 0.434 *
Ni −0.035 −0.027 −0.049 −0.04 −0.161 −0.211 0.027 0.012 −0.02 −0.151 0.185
Zn −0.052 −0.048 0.025 −0.027 −0.139 −0.126 0.081 0.037 −0.032 −0.105 −0.016
Rb −0.367 −0.094 0.056 −0.159 −0.276 −0.267 0.26 0.097 −0.185 −0.119 −0.16
Sr −0.083 −0.205 −0.168 −0.154 −0.083 −0.123 −0.003 0.005 −0.024 −0.042 0.533 **

** Correlation is significant at the 0.01 level (2-tailed); * Correlation is significant at the 0.05 level (2-tailed); FW,
fresh weight; DW, dry weight.

3.8. Principal Component Analysis of Mulberry Metabolites, Silkworm, and Raw Silk Parameters

To enable a comprehensive assessment of the chemical composition of mulberry leaves,
with respect to their genotype, larval growth and silk parameters, a principal component
analysis (PCA) has been conducted. The discriminant function 1, which accounts for 78.14%
of the variance, as explained by the model, was weighted most strongly by total phenolics,
followed by rutin, quercetin glucoside, larval weight, and chlorogenic acid. It is further
negatively associated with silk length, total proteins, Mn and Sr.

Thus, function 1 clearly (over 89%) separates reference varieties, which are character-
ized by higher larval weight, which coincides with high values of chlorogenic acid, rutin,
and other quercetin glycosides, from Hungarian and Slovenian varieties, being higher in
proteins, length, and weight of silk thread. Furthermore, it must be pointed out that some
old Hungarian and Slovenian varieties coincide with high concentrations of Cl, Mn, Zn,
and Sr.

The second discriminant function accounts for another 21.86% of the variance. It is
positively associated with cocoon fresh and dry weight, length, total phenolics, Mn, and K
and negatively with Ca and quercetin glucoside. Function 2 clearly separates Hungarian
mulberry (by over 87%), which is characterized by higher cocoon fresh and dry weight
and the above-mentioned elements from Slovenian genotypes being high in Ca (Figure 4,
Supplementary Table S5).

Genotypes with the highest average cocoon fresh and dry weight are GMS 2532 and
GMS 2329. Genotype TO1131 contained high total phenolic concentration, in particular
quercetin-3-rutinoside which coincided with high 5th instar/5th day weight. BA 2225 is
highest in Mn and K concentrations. Slovenian genotype A6 was high in Ca and certain
quercetin glycosides as well as NG 214 in Ca content and caffeoylquinic acid glycosides
(Figure 4, Table 1).



Insects 2022, 13, 836 15 of 30

Insects 2022, 13, x FOR PEER REVIEW 16 of 31 
 

 

 
Figure 4. Principal component analysis of silkworm, cocoon, and raw silk parameters along with 
the chemical composition of leaves of different origins. The convex hulls delimit the space that in-
cludes the samples of mulberry trees from different Slovenian regions (squares), Hungarian regions 
(dots) compared to traditional high yielded sericultural varieties (Ref, crosses). * 4-caffeoyl-QA, 4-
caffeoylquinnic acid; c-5-CQA, c-5-coumaroylquinnic a.; Q-3-glu, quercetin-3-glucoside; QMH, 
quercetin malonyl hex; KAH, kaemph acetyl-hexoside. 
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Figure 4. Principal component analysis of silkworm, cocoon, and raw silk parameters along with
the chemical composition of leaves of different origins. The convex hulls delimit the space that
includes the samples of mulberry trees from different Slovenian regions (squares), Hungarian regions
(dots) compared to traditional high yielded sericultural varieties (Ref, crosses). * 4-caffeoyl-QA,
4-caffeoylquinnic acid; c-5-CQA, c-5-coumaroylquinnic a.; Q-3-glu, quercetin-3-glucoside; QMH,
quercetin malonyl hex; KAH, kaemph acetyl-hexoside.

3.9. Health and Microbiological Status of Silkworm Larvae

All larvae were moulting synchronously, no prolonged instar duration was observed.
Obvious unequal growth and development were observed by three larvae of various
groups. During rearing healthy, but cachectic larvae were found only in groups fed with
Hungarian (Hu) mulberry genotypes of trees GMS 2532 (fourth instar), SO 1042 (fourth
instar), and TO 1131 (fifth instar).

Six ill or dead larvae (0.47% of all larvae) were found in the following developmental
stages: 1st day of third instar (one dead larva); 2nd day of third instar (one ill cachectic
larva); 1st day of fourth instar (one dead larva); 1st day of fifth instar (one dead larva in
group Hu-BE 1264/2); end of fifth instar (one dead larva from group Hu-ZA 2084; one
dead larva from group Hu-mix).

In the groups of larvae fed with Slovenian mulberry genotypes (n = 10) all larvae
successfully spun in three groups. In five groups 5%, in one group 15% and in one group
20% of the larvae failed to spin. All larvae successfully spinned in the group fed with the
mixture of Slovenian mulberry genotypes.

In the groups of larvae fed with Hungarian M. alba genotypes (n = 16) all larvae
successfully spinned in seven groups. In another seven groups 5% and in two groups
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15% of the larvae failed to spin. In the group fed with the mixture of Hungarian mulberry
genotypes 20% of the larvae failed to spin.

The groups fed with reference sericultural M. alba varieties ‘Florio’ and ‘Morettiana’
had 10% losses, while the larvae fed with leaves of variety ‘Kokusou’ successfully spinned.

All larvae in groups fed with M. alba Bulgarian fruit genotype and M. australis
leaves have successfully spinned. 5% losses were observed in the group fed with the
M. alba × rubra. None of the larvae fed with M. nigra leaves spinned cocoons, however,
food was offered until 12 days after the last moult.

3.9.1. Molecular Detection of BmNPV by Real-Time PCR

The rt-PCR assays resulted in amplification signals (cT values at 17–21) in DNA
extracts of diseased larvae. The nucleotide sequences of the amplification products have
shown >99% similarity to an 81 bp long region of the polymerase gene region (between
nt positions 47,965 and 48,045) of the BmNPV reference sequence (GenBank accession
number: NC_001962). No amplification was detected in the negative control samples
(healthy larvae).

Clinically healthy larvae were collected randomly from each experimental group
before each moulting and spinning and were tested for BmNPV infection by real-time PCR:
all real time-PCR assays in regularly sampled healthy larvae from each group were negative.

BmNPV DNA was detected in the dead or cachectic body of third and fourth instar
larvae from the common box:

• 1st day, third instar: 1 dead (liquid rotting) larva; cT mean 40.63, standard deviation
(SD) 0.84;

• 2nd day, third instar: 1 cachectic larva; cT mean 40.70, SD 1.49;
• 1st day, fourth instar: 1 larva died during moulting, showed signs of Grasserie; cT

mean 18.32, SD 0.17.
• In the fifth instar, BmNPV DNA was detected in three out of the 1340 larvae (0.22%).

Positive larvae were ill or were found dead:
• 1st day: Hu-BE 1264/2 (signs of Grasserie); cT mean 37.38, cT SD 0.69;
• end of 5th instar: Hu-ZA 2084.2 (moribund larva with black stripes), cT mean 20-09,

SD 0.14;
• end of 5th instar: Hu-mix (dead larva, signs of Grasserie), CT mean 37.43, SD 0.92.

BmNPV DNA was not detected in any of the 39 larvae extracted from cocoons showing
signs of failed spinning.

3.9.2. Identification of Gut Microbiome and Potential Bacterial Pathogens by
Metagenomic Studies

In the group of Slovenian genotypes mixture, approximately 102,489 different bacterial
species were detected. In the group of Hungarian genotypes mixture, the number of
detected species exceeded 106,000, while in the group reference genotypes mixture it
exceeded 123,958. In group M. australis approximately 143,366, and in group M. nigra
144,551 different bacterial species were detected. Core bacterial microbiomes are shown in
Figure 5.
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Figure 5. Species compositions of core gut bacterial microbiomes in the different experimental groups.

While on the 5th day of fifth instar all larvae were still eating, the gut microbiomes
differed considerably in the samples of larvae fed with mixtures of Slovenian, Hungarian,
and reference genotypes of Morus alba, as well as the fruit varieties M. australis and M. nigra.

Major differences in silkworm gut bacterial microbiome in different groups on the
level of bacterial classes and Chloroplast are the followings:

(1) 57% of representatives of Chloroplast (99% Streptophyta) were found by Slovenian
genotypes and 47% by Hungarian genotypes, almost half less (22%) by reference
genotypes, while M. australis and M. nigra had only 16% and 12%.

(2) The range was quite opposite by class Betaproteobacteria (mainly representatives
from order Burkholderiales): 44% by M. nigra, 39% by reference genotypes, 24% by
Slovenian genotypes, 22% by Hungarian genotypes, and 18% by M. australis.

(3) The representatives from Alphaproteobacteria (99% of representatives coming from
order Rickettsiales) were in the following ranges: M. nigra and Hungarian genotypes
8%, Slovenian genotypes 6%, reference genotypes 3%, and M. australis 2% (representa-
tives mainly from orders: Rhodobacterales 40%, Rhizobiales 24%, Sphingomonadales
12%, Rhodospirillales 12%, 9% Rickettsiales).

(4) The representatives from class Gammaproteobacteria were in following ranges: Hun-
garian mulberry genotypes 4% (Pseudomonadales 3%, Enterobacteriaceae 1%, Xan-
thomonadales 0.1%), M. nigra 3% (Pseudomonadales 2%, Enterobacteriaceae 0.07%,
Xanthomonadales 0.1%, Oceanospirillales 0.1%, Alteromonadales 0.1%), Slovenian
genotypes 1% (Pseudomonadales 1%, Enterobacteriaceae 0.06%), reference genotypes
1% (Pseudomonadales 0.7%, Enterobacteriaceae 0.4%), M. australis 1% (Pseudomon-
adales 0.8%, Enterobacteriaceae 0.3%).
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(5) The representatives from class Actinobacteria were in the following ranges: reference
genotypes 14%, Hungarian genotypes 9%, M. australis 9%, M. nigra 5%, and Slovenian
genotypes 4%.

(6) The representatives from class Bacilli were in the following ranges: Slovenian geno-
types 4%, Hungarian genotypes 9%, reference genotypes 14%, M. australis 9%, and
M. nigra 5%.

(7) The representatives from class Clostridia were in the following ranges: M. nigra
3%, M. australis 2%, Slovenian genotypes 1%, Hungarian genotypes 1%, reference
genotypes 0.8%.

(8) The representatives from class Flavobacteriales were in the following ranges: M. nigra
3%, M. australis 2%, Slovenian genotypes 1%, Hungarian genotypes 1%, reference
genotypes 0.8%.

(9) The representatives from other classes were in the following ranges: Slovenian
genotypes 4%, Hungarian genotypes 3%, reference genotypes 2.2%, M. nigra 2%,
M. australis 1.2 %.

In comparison with other groups, Slovenian genotypes had the highest percentage
of Chloroplast and lowest percentage of Gammaproteobacteria, Actinobacteria, Bacilli,
Clostridia, and Flavobacteriale.

Hungarian genotypes had the highest percentages of Chloroplast, Alphaproteobacte-
ria, and Gammaproteobacteria and the lowest of Bacilli, Clostridia, and Flavobacteriales.

In reference genotypes, the highest percentage of Actinobacteria and low percentage
of Gammaproteobacteria, as well as Clostridia and Flavobacteriales, were described.

The group of M. australis had the lowest percentage of Chloroplast, Betaproteobacte-
ria, Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriales while the highest
percentage of Bacilli of all groups.

The group of M. nigra had the highest percentage of Alphaproteobacteria and Clostridia,
second highest of Betaproteobacteria, and second lowest percentage of Chloroplast.

Rikettsiales were the most representative order of class Alphaproteobacteria by all
groups. The highest percentage of order Enterobacteriaceae was found by the Hungarian
genotypes group, the lowest by M. nigra. The highest percentage of Lactobacillales was
described by the group fed with M. australis.

The lowest percentage of family Microbacteriaceae was found by Slovenian genotypes
and M. nigra, and the highest by reference genotypes and Hungarian genotypes. The highest
percentage of family Micrococcaceae was found by reference genotypes and M. australis;
the highest percentage of family Bifidobacteriaceae was found by M. australis and the lowest
by Hungarian genotypes and reference genotypes groups. The lowest percentage of family
Staphylococcaceae was found by Slovenian genotypes and Hungarian genotypes, highest
by M. australis.

3.9.3. Comparison of Selected Qualitative and Quantitative Hemogram Parameters in the
Main Feeding Groups of Larvae

The highest total number of haemocytes was found in larvae fed with Hungarian
mulberry genotypes (74.3 × 104/mL; SE 5.8 × 104/mL), followed by Slovenian geno-
types (62.8 × 104/mL; SE 7 × 104/mL), reference genotypes (61.2 × 104/mL; SE 2.6 ×
104/mL), M. nigra (58.3 × 104/mL; SE 11.2 × 104/mL) and M. australis (45.9 × 104/mL; SE
6.6 × 104/mL).

The qualitative analysis of the different haemocyte subsets revealed the dominance of
granular cells, followed by plasmatocytes and small spheric cells (Figure 6).
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4. Discussion

The main factors that contribute to the success of cocoon harvest are mulberry feed,
environmental conditions, silkworm cultivation techniques, and silkworm strains [29].
Mulberry leaves are known as a rich source of proteins with unique amino acid composition
and are highly palatable and digestible for herbivorous animals [6,30–32]. It has been
previously confirmed that high protein content in leaves has a direct impact on the growth
of larvae and cocoon production [28,33–36].

Mulberry leaves are further known by their unique composition of phenolic com-
pounds, which were shown to have biological properties [6,37–44]. The identification of
phenolics in mulberry leaves with UPLC-MS has been the subject of only a few recent
studies so far [44,45].

The main phenolic compound in mulberry leaves was identified as chlorogenic acid
followed by other hydroxycinnamic acids, including caffeoylquinic acid, p-coumaric acid
derivatives, and p-coumaroylquinic acid derivatives [6,7,44–47]. The flavonol’s fraction
mostly contains quercetin-3-O-rutinoside (rutin) as well as other quercetin and kaempferol
glycosides [6,7,46,48–52].

It has been previously confirmed that chlorogenic acid enhances the rate of silkworm
development. Furthermore, quercetin and kaempferol glycosides have been found to be
transferred from the larval diet into the hemolymph and cocoons, where they act as UV
shields and antimicrobial barriers and might therefore increase the survival rate of devel-
oping insects inside the cocoons [53–58]. However, when treated artificially, flavonoids
may act as antinutrients by binding to amino acids and proteins as well as digestive gut
enzymes they may reduce the nutrient value of mulberry leaves [50].

Based on mulberry inventory in Slovenia and Hungary, we established a collection
of historical mulberry trees and screened their biochemical patterns regarding important
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primary (proteins and amino acids) metabolites and phenolics; we aimed for a definition
of high-yielding and nutritive richer mulberry genotypes from the local Slovenian and
Hungarian gene pool, which were included in the presented feeding experiment and
compared with reference sericultural and fruit varieties. The analysis of study result data
indicates possible influences of mulberry chemical parameters on silkworm development
and production.

4.1. The Influence of Proteins and Phenolics on Larval, Cocoon and Raw Silk Parameters

The silkworm’s growth, cocoon, and raw silk quality can be affected by their feed
sources to a great extent. The results of the screening of the metabolites in the leaves of
Slovenian and Hungarian genotypes from their local origin were previously published by
Urbanek Krajnc et al., and Šelih et al. [6,7]. These data served as the basis for the current
research into the impact of feeding silkworms with selected mulberry genotypes out of the
local gene pool. Based on biochemical analyses, we selected those genotypes of old local
mulberries that proved to be the most favorable for silkworm rearing in terms of nutritional
value and leaf yield.

The protein content of mulberry leaves ranges between 13 to 31% [29,51,59,60]. In
the current experiment, the highest total protein content was determined in the Slovenian
genotype SM 101.1 (239.42 mg/g DW), the lowest in the fruit variety Bulgarian accession
(151.50 mg/g DW). The results further coincide with our previous study comprising local
trees of the Gorizian region alone and Slovenian old mulberry genotypes sampled at the
place of their origin with respect to pruning management and eco-geographical origin [6,7].
We confirmed a strong positive correlation between total proteins and raw silk length and
weight. It has been previously confirmed that high protein content in leaves has a direct
impact on the growth of larvae and cocoon production [29,61].

Mulberry leaves are also known to have high contents of phenolics, that in our varieties
ranged between 11.26 and 21.51 mg/g DW. They were highest in the M. alba × rubra variety
(21.51 mg/g DW) and lowest in SM 6 (11.26 mg/g DW). The analyzed concentrations were
in accordance with those of Sánchez-Salcedo et al., who found phenolics in mulberry leaves
in the range between 12.8 and 15.5 g GAE/g DW [62].

As previously reported, the predominant caffeoylquinic acid derivative was chloro-
genic acid followed by 4-caffeoylquinic acid. In our feeding experiment, the average
concentration of chlorogenic acid ranged between 4.00 and 18.05 mg/g DW, with the
maximum content analyzed in M. nigra [6,7]. Amongst the Slovenian genotypes, the maxi-
mum content was found in genotype SE 5. Screening of phenolics on Slovenian genotypes
sampled at the place of their origin revealed chlorogenic acid concentration in the range be-
tween 1.80 and 6.89 mg/g DW, whereas the maximum content was determined in genotype
from the SM region. The concentrations are in accordance with other authors reporting the
concentrations of chlorogenic acid in the range between 3 and 10 mg/g DW [43,49,62].

Generally, the predominant phenolic acids are known to have a stimulative effect on
feeding, growth, and development [63]. Chlorogenic acid and other dihydroxybenzoid
compounds isolated from mulberry leaves were found to be beneficial for silkworms’
growth and development. Chlorogenic acid is sensed by chemosensory organs in the
mouthparts and stimulates feeding; hence, high concentrations of chlorogenic acid in
mulberry leaves significantly promote feeding and correlate with growth parameters of
silkworm larvae [64–68]. Furthermore, Yamagishi et al., identified an additional role of
chlorogenic acid in the mid-gut lumen as a cue inducing the tachykinin-related peptide
secretion from enteroendocrine cells [63]. These peptide hormones are known to modu-
late physiological processes such as the release of other hormones, secretion of digestive
enzymes, gut motility, feeding behaviour, and energy homeostasis. Thus, the silkworm
might use chlorogenic acid in differentially directed functions as a food marker in both the
mouthparts and mid-gut.

The beneficial effect also correlates with increased silk production and quality. Naik et al.,
reported that supplementation of chlorogenic acid increased silk productivity and had a
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positive influence on different silk parameters, such as silk filament length and weight as
well as silk protein fibration [69]. Our results did not show a correlative relationship of
silkworm parameters with chlorogenic acid, but out of phenolic acids, there was a negative
correlation between 5-coumaroylquinic acid and silkworm weight and p coumaroylquinic
acid hexoside and the silk thread length.

In our study, the predominant flavonoids were quercetin and kaempferol glycosides.
The main quercetin glycosides were rutin, quercetin malonyl-hexoside, and quercetin-3-
glucoside (isoquercetin), whereas the predominant kaempferol glycoside was kaempferol
acetyl-hexoside, that were generally recognized as the main flavonols in mulberry
leaves [6,7,44,45,70,71]. The nutritional effect of flavonols on the growth and develop-
ment of silkworm larvae and cocoon formation has been intensively studied [53–58,71–74].
In low concentrations, they have a beneficial effect on growth and development, whereas
high doses might have an antinutrient effect [75].

Quercetin malonyl-hexoside has been recognized as the main quercetin glycoside with
antioxidant activities [43,45,49,71,76–79]. In our sampled genotypes the mean concentra-
tions ranged between 0.74 and 2.25 mg/g DW with the highest value in sericultural variety
‘Kokusou-20′. A high correlation was found between the length and weight of raw silk.

The second predominant flavonol was rutin, the maximum concentration was
4.31 mg/g DW determined in one Hungarian genotype (TO 1131). We found a medium
correlation only with the struse of the raw silk. By reviewing the literature studying the
effect of rutin on silkworm larvae, it was reported that rutin has no stimulative effect on
the behaviour of silkworm larvae, although it stimulates feeding on many insects. Further-
more, a significant effect of rutin on the growth of silkworm larvae was not confirmed [74].
However, the authors were able to confirm that larvae can differentiate among quercetin
glycosides of mulberry leaves. Quercetin-3-glucoside was recognized as a feeding stim-
ulant but the rhamnose conjugate may deter feeding [74]. Furthermore, a positive effect
of quercetin-3-glucoside on the growth and development of silkworm larvae was deter-
mined [66,74]. In the presented study, the trend towards a weak negative correlation was
determined for silkworm weight and silk thread parameters.

The main kaempferol glycoside that was analyzed in leaves of local mulberries was
identified as kaempferol acetyl-hexoside (0.94–4.42 mg/g DW), which reached the highest
amount in M. alba× rubra. Other authors determined kaempferolhexoside in concentrations
up to 0.75 mg/g DW, whereas kaempferol malonyl-hexoside was found in traces [71].

Interestingly, we found a negative correlation between kaempherol dirhamnosyl-
hexoside and raw silk length and weight, whereas kaempherol rhamnosyl-hexoside cor-
related positively with struse. The studies on biologically active kaempferol derivatives
in mulberry leaves are scarce, and it remains to be seen whether these derivatives may
deter feeding.

4.2. The Influence of Macro- and Microelements on Larval, Cocoon and Raw Silk Parameters

Besides phenolics as bioactive compounds, minerals are among the important bio-
chemical components of mulberry leaves, and they may have a high influence on silkworm,
cocoon, and raw silk parameters. Previously, positive correlations of nitrogen, phosphorus,
potassium, calcium, magnesium, and sulphur were obtained with larval, cocoon, and
egg production parameters of mulberry silkworms [80,81]. Shifa et al. considered these
macroelements as basic parameters for the evaluation of mulberry varieties for mulberry
silkworms rearing in the future [81]. Based on this, we hypothesized that a high amount of
these macroelements in mulberry leaves of selected mulberry genotypes will significantly
contribute to silkworm and silk thread parameters.

Phosphorus (P) is an important major nutrient in the mulberry plant. It is a compo-
nent of the complex nucleic acid structure of plants, which regulates protein synthesis.
Therefore, it is very important in cell division and the development of new tissue. Phos-
phorus is also associated with complex energy transformations such as ATP [80,82]. An
inadequate amount of P level affects the uptake of other nutritive elements in mulberry
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leaves for various other physiological activities, in turn, it hampers the growth and eco-
nomic characteristics of silkworms [83,84]. The highest concentration of P was found in
Slovenian genotype SE 5 (2.04 g/kg DW), which was superior in silk thread weight and
thickness. When compared to other authors, Shifa et al., determined a minimum value
of 1.11 g/kg in ‘Jimma coll’ and a maximum record of 3.22 g/kg in M-4 accession [81].
Similar to Shifa et al., we found no significant correlation between P and silk parameters
or with silkworm weight [81].

Sulphur (S) is known to have an important role in the synthesis of proteins, oils, and
vitamins [85]. It plays a vital role in the N metabolism and thus proper development of
mulberry [86]. It is a constituent of S-containing amino acids, cysteine (contains 27% of
S), and methionine (contains 21% of S). Methionine forms one of the ten essential amino
acids for silk formation in silkworms. Cystine and cysteine are among the non-essential
amino acids, the quantitative presence of which influences the formation of fibroin over
sericin [87]. Deficiency of S level leads to low levels of S-containing amino acids, thus
reducing protein synthesis. As a result, amino acids without S and amides of nitrate ions
accumulate in the plant tissue and lead to a decrease in sugar as well as insoluble N (protein)
in plants [86]. Similar to Ca, the highest content of S was found in the Hungarian genotype
GMS 2532 (1260 mg/kg DW). The S concentrations of mulberry varieties analysed by
Shifa et al., ranged from 0.15 g/kg in K-2 to 0.34 g/kg in M-4 accession [81]. In the presented
experiment S ranged between a minimum value of 0.46 g/kg and a maximum value of
1.26 g/kg, which is up to four-fold higher than what was reported by Shifa et al. [81]. These
could be due to the different soil conditions and because the mulberry gene bank is on the
silicate geological basis of the southern slopes of Pohorje mountain (central alpine region)
which might positively affect the uptake of several minerals (Zn, S, Fe), but negatively Ca,
Mg, K, P [82]. Shifa et al., found S to have a significant positive correlation with larval
weight, cocoon weight, and shell weight. In contrast to these authors, we did not find any
correlation with measured parameters [81].

Potassium (K) plays important regulatory roles mostly in cell ion homeostasis, and
stomatal conductance, and thus in maintaining water potential on the cell and whole plant
level. Furthermore, it is known that the starch synthetase is activated by K. Thus, with
inadequate K, the level of starch declines while soluble carbohydrates and N compounds
accumulate. Therefore, it also plays a significant role in the high yield and quality of
leaves [88]. It is also involved in the translocation of carbohydrates, protein metabolism,
and pathogen tolerance in mulberry [80]. In the silkworm body, the strong alkalinity
of the gastric juice originates from potassium and sodium compounds present in the
haemolymph. The high alkaline condition of digestive fluid has strong germicidal power
against pathogens. K is a unique element that contributes to the growth of silkworms to
the maximum extent. In addition, K has a stimulating effect on protein synthesis including
silk protein in the silk glands [89]. In the presented experiment, K was increased in fruit
varieties, although insignificant. The highest concentration of K was present in Hungarian
genotype BA 2225 (22.10 g/kg DW), which was also characterized by superior raw silk
length, weight, and thickness as well as silk waste parameters. Shifa et al., reported the K
contents of mulberry varieties with ranges from 11.35 g/kg in local varieties to 18.61 g/kg
in M-4 accession [81].

Calcium (Ca), in the form of calcium pectate, is important for the cell wall structure
in plant. Its deficiency causes incomplete cell division or mitosis, without the formation
of a new cell wall resulting in multi-nuclear cells. Calcium is also important in activating
certain enzymes and to acts as second messengers in cell signalling that coordinates certain
cellular activities. Calcium acts as a detoxifying agent by neutralizing organic acids such as
oxalic acid which helps in membrane stability and maintenance of chromosome structure,
the activity of enzymes, and translocation of carbohydrates. It is also involved in the
differential permeability of membranes [82]. Superior Ca contents were found in genotype
GMS 2532 (20.00 g/kg DW). Shifa et al., reported calcium concentrations in the range from
13.45 mg/kg (local check) to 20.52 mg/kg (M-4), which is similar to our findings [81].
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Micronutrients are needed in small quantities and they play a pivotal role in the
enzymatic reactions and thus govern the growth, development, and yield of mulberries.
Chloride (Cl) is involved in the hydrolysis of water in photosynthesis, the synthesis of
starch, cellulose, and lignin. It influences cell homeostasis (water holding capacity) of plant
tissues. It stimulates the activities of some enzymes [82]. Cl correlated with the weight of
raw silk. The highest content of Cl was in the Hungarian genotype BE 1264.2.

Manganese (Mn) is essential for the synthesis of chlorophyll and the hydrolysis of
water in photosynthesis, and its principal function is to activate some of the enzyme systems
in plant physiology and regulation of Fe metabolism. In addition, it has a close relation with
N metabolism, assimilation of carbohydrates, and formation of ascorbate. It is involved in
redox processes and electron transport systems [82]. Similar to Fe, Mn has the potential to
enhance larval development, filament length, cocoon weight, and yield [90]. Mn was the
highest in Hungarian genotype BA 2225 (105 mg/kg DW).

Iron (Fe) is present in the chloroplast proteins and several enzymes. It plays a dominant
role in protein metabolism and N fixation [82]. Fe has the potential to enhance larval
(silkworm) development, filament length of a single cocoon, cocoon weight, and yield [90].
The altered Fe content in mulberry foliage resulted in reduced larval weight, cocoon weight,
and silk filament length [89]. In the presented experiment, Fe correlated strongly with
telette. The highest content of Fe was found in genotype GMS 2533.

Zinc (Zn) correlates strongly with silk filament length and pupal weight, whereas
the excess Zn content in mulberry leaves leads to a reduction in cocoon yield [84,90]. In
our experiment, the highest Zn content was found in Slovenian genotype SM6. However,
no correlative relationship with Zn was detected in our analysis. We further found a
negative correlation between Rb and silkworm weight and a positive correlation between
Sr and telette.

In the presented experiment, significant differences between the mulberry groups
in the contents of the main elements were determined for S, Mn, Fe, and Sr, which were
based on the PCA analysis considered as important markers in the selection of mulberry
feed source.

4.3. Correlations between Test Parameters in Multivariate Analysis

The foliar protein, phenolics, and mineral composition of mulberry varieties resulted
in significant inter-relationship with larval, cocoon, and silk thread parameters when their
leaves served as feeds. This relationship between leaf composition values and important
silkworm and raw silk traits has been worked out through correlation and multivariate
(PCA) analysis.

Function 1 clearly separated reference varieties, which were characterized by higher
larval weight, which coincided with high values of chlorogenic acid, rutin, and other
quercetin glycosides, from Slovenian and Hungarian varieties with higher in proteins,
length, and weight of raw silk. The second discriminant function was positively associated
with cocoon weight, length of raw silk, total phenolics, Mn, and K, and negatively with Ca
and quercetin glucoside. Function 2 clearly separated Hungarian mulberries (by over 87%)
from Slovenian genotypes.

Positive correlation of coumaroylquinic acid derivatives, certain flavonols, phosphorus,
sulphur, Cl, Ca, Mn, Fe, Ni and Rb were obtained with larval, cocoon, and silk thread
parameters, whereas caffeoylquinic acid derivatives affected only the length of raw silk.
Therefore, it is likely that the levels of these bioactive compounds and elements in mulberry
leaves are important feed markers (basis parameters) to the gains on important mulberry
silkworm parameters when these leaves served as feed sources.

4.4. Development and Health Status of Larvae

The measurement of body weight gain was used within the experiment to monitor
larval development in the different groups. Bodyweight was most successfully increasing
in groups of larvae fed with reference varieties of mulberry trees, followed by fruit varieties
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closely together with the Hungarian genotypes. The slowest gain of bodyweight and
lowest weight on day seven of the fifth instar were observed by larvae fed with Slovenian
genotypes of mulberry trees. Nonetheless, larvae with lower body weights at this instar
started spinning approximately one day later. The additional one-day eating mainly
compensated for their backlogs and they have started spinning with approximately the
same weight as the other ones.

A correlation was observed between larval body weight in the last days of fifth
instar and the weight of the fresh cocoons; however, differences between the averages of
sub-groups of cocoons within Slovenian, Hungarian, reference, and fruit variety groups
were only 5% (2.14–2.25 g of average fresh cocoon weights). The highest proportion of
heavier cocoons was produced in the Hungarian groups. Additionally, the best silk thread
parameters (length, weight, and thickness) were also described by cocoons from Hungarian
groups, while most cocoon values from reference sericultural varieties and Slovenian
groups were positioned within intermediate values. The lowest values of cocoon weight
and silk thread parameters were described by fruit groups. Larvae fed with leaves of M.
nigra showed the worst possible performance, as none of them started spinning (despite
rapid larval bodyweight gains).

The general health status of silkworm groups was sufficient, as more than 99% of
larvae reached the spinning stage healthy and started to spin (i.e., only three larvae out
of 1270 died). By some (about 30) of larvae in the last day or two before spinning some
common, general, mild signs of disease were observed: inactivity, cessation of eating, laying
on the side of the rearing box, transparent skin, yellow/ivory colour. However, differentia-
tion between signs of disease and the physiological changes connected to preparation for
spinning was not obvious.

Within larvae that failed spinning BmNPV DNA was not detected, and all other
randomly sampled larvae were also negative. However, BmNPV DNA was detected
already in a dead and in a cachectic/ill larva in the third instar, though with very low viral
DNA content (cT values > 40). BmNPV DNA was also detected in a dead larva after the
third moult and in three ill/dead larvae in the fifth instar. Two of these larvae contained
high amounts of BmNPV (cT 18–20). These molecular data indicate that BmNPV infection
was present in (some of the) the larvae from the beginning of their life. Silkworm rearing
has never been performed in the place of the experiment, and there is no known alternative,
wild insect hosts of BmNPV, so the infection could not come from the environment, fomites,
or contaminated leaves. Nevertheless, the virus amount in the vast majority of the larvae
remained under detectable levels, and the larvae stayed healthy.

Whole genome sequencing of silkworm body tissue and 16S rRNA gene sequencing
of bacteria in guts did not reveal DNA of BmDNV or relevant amounts of facultatively
pathogenic bacteria (e.g., Enterococcus (Streptococcus) faecalis, E. (S.) faecium, Staphylococcal
species, Serratia marcescens); however, there were considerable differences in proportions
of detected sequences on the level of bacterial classes and orders between the groups
(detailed analysis will be described elsewhere). Attempts on the identification of probiotic
components of B. mori gut microbiota were reviewed by Barretto et al.: studies indicated
the impact of Lactobacillus, Enterococcus, and Bacillus spp. as major gut microbiota compo-
nents [91]. Besides competitive and antimicrobial effects on enteric pathogens, the probiotic
effects of Actinobacteria (e.g., Actinomycetales, Bifidobacteriaceae) and Betaproteobacteria
(e.g., Burkholderiales) contribute to the digestion with enzymes (e.g., protease, amylase,
and lipase production) [91]. In the experimental groups, the highest abundance of DNA
sequences from Burkholderiales was detected, followed by Actinomycetales and Bacillales.
Lactobacillales (including Streptococcaceae, Lactobacillaceae, and Enterococcaceae) were
found in the lowest amounts. The relative amounts of these detected sequences were higher
in the reference, M. australis and M. nigra groups, however, it was mainly attributed to the
high amounts of chloroplast-related sequences in the groups of Slovenian and Hungarian
varieties. When chloroplast DNA was excluded from the analysis, the relative abundance
of bacterial groups with suspected probiotic effects was similar in the different groups.
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Although the trees were cultured in the same collection (i.e., in a common microbial en-
vironment), the lower relative amounts of Burkholderiales, and higher relative amounts
of Bacillales, Lactobacillales, and Bifidobacteriaceae were detected in the gut microbiome
of larvae fed with M. australis, compared to the other four groups. No clear connection
was identified between the gut microbiome compositions, larval bodyweight gain, cocoon
production, and quality in this study.

The mean total haemocyte counts (THC) in the different groups ranged between 45.9
and 74.3 × 104 cells/mL; which is considerably higher than THCs reported by Nematol-
lahian et al. [92]. However, the haemocyte subsets (based on cell morphology) were found
similar. No significant differences were found in the haemocyte subset rations between the
different feeding groups. Neither was any correlation identified between THCs, haemocyte
subset ratios and larval bodyweight gain, cocoon production, and quality in this study.

5. Conclusions

The results of the present investigation showed that mulberry varieties of local genetic
origin as compared to reference sericultural and fruit varieties showed wide qualitative and
quantitative variation in chemical traits with respect to proteins, phenolics, and minerals.

As a result, positive correlations of total proteins and kaempferol derivatives were
obtained with silk thread parameters (i.e., length, weight). Coumaric acid correlated
negatively with raw silk length, whereas 5-coumaroylquinic acid with larval weight. In
addition, a positive correlation was found between Cl and raw silk weight, whereas Rb had
a negative correlation with larval weight. Fe and Sr correlated positively with reeling waste.

Hence, the present study reveals that the selection of mulberry varieties out of the local
gene pool for rearing silkworms based up on foliar protein, specific phenolics and mineral
constituents of the mulberry varieties is very important to optimise larval development,
cocoon production, and raw silk parameters. However, more research should be carried
out to support the current findings in consideration of varying periods of leaf picking and
nutrient analysis, pruning management, and field performances of mulberry varieties in
different regions when using these varieties as feed sources. Although larvae fed with
reference varieties were quickest reaching the final body weight, individual Hungarian
genotypes (BA2151, SO 1013, TO1131) showed promising results as the mean larval weight
was the highest. Furthermore, we were able to recognize Slovenian and Hungarian varieties
which gave superior raw silk parameters. The lowest was obtained when larvae were
fed with the reference varieties ‘Giazzola’ and some fruit genotypes. When analysing the
reeling wastes, the highest was obtained when larvae were fed with Hungarian varieties.

Besides the above results, it is important to consider that some of the reference sericul-
tural and fruit varieties of the mulberry trees are starting to develop earlier in the season
than the Slovenian and Hungarian genotypes, which is a risk factor for increased losses
due to early spring freezes, a relatively frequent climatic condition in these countries. So
later spring development of local genotypes of Slovenian and Hungarian trees and the
resistance to freezing can compensate for the bigger leaf yields of reference sericultural
varieties in field conditions.

While Saxena et al., in sericulture worldwide reported annual losses of almost 20% of
potential cocoon production, our experiment demonstrates that the sustainable production
of quality silk cocoons is possible in Slovenia and Hungary providing the selection of
superior local genotypes and suitable, locally adapted rearing technology is applied [93].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects13090836/s1, Table S1: List of local mulberry genotypes
form Slovenia and Hungary planted in the mulberry collection of the Faculty of Agriculture University
Maribor with location, geographic coordinates and detailed data along with the list and specification
of reference sericultural and fruit varieties; Table S2: The mean concentrations of the total proteins,
total phenolics and individual phenolics (mg/g DW) in leaves of Slovenian, Hungarian old mulberry
genotypes, reference sericultural and fruit varieties. Among predominant phenolics different letters
(a–n) indicate significant differences (p < 0.05), which were determined using the post hoc Duncan
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test; Table S3: The mean concentrations of the macro- and micronutrients in leaves of Slovenian,
Hungarian old mulberry genotypes, reference sericultural and fruit varieties; Table S4: Differences in
mean silkworm weight, fresh cocoon weight and silk thread parameters among Slovenian, Hungarian
mulberry varieties, reference sericultural varieties and fruit varieties. n, number of repetition; Table S5:
PCA scores of the main PC1 and PC2 axes.
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